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Abstract: Smart farming is set to play a crucial role in the sustainable transformation of agriculture.
The emergence of precision agriculture, facilitated by Internet of Things (IoT) platforms, makes
effective communication among the various sensors and devices on farms essential. The development
of smart sensors that utilize artificial intelligence (AI) algorithms for advanced edge computations
only intensifies this need. Moreover, once data are collected, farmers frequently find it challenging to
apply them effectively, especially in alignment with agroecological principles. In this context, this
paper introduces an energy-efficient platform for embedded AI sensors that leverages the LoRaWAN
network, along with a knowledge-based system to aid farmers in decision-making rooted in sensor
data and agroecological practices. This paper focuses on the deployment of an end-to-end IoT
platform that integrates a wireless sensor network (WSN), embedded AI, and a knowledge base.
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1. Introduction

Agriculture is the cornerstone of human civilization, marking the transition from a
nomadic hunter–gatherer lifestyle to a settled, city-based existence. Historically, agriculture
was labor-intensive, with low productivity and high sensitivity to climatic events, requiring
many small farms, and at least a third of the population engaged in primary agricultural
production.

During the late 19th and early 20th centuries, agriculture underwent significant trans-
formation, known as Agriculture 2.0 or the Green Revolution. This modern agriculture is
characterized by the extensive use of heavy machinery, chemical fertilizers, and chemical
protections (insecticides and pesticides). Today, it dominates global agriculture, enabling
farmers to produce massive quantities of food with minimal human effort and high adapt-
ability to climate challenges. Modern agriculture has significantly contributed to the world’s
food supply, supporting the growing global population.

However, modern agricultural practices have also introduced numerous challenges,
posing serious environmental, health, and economic risks, thereby threatening global
food security. Food security [1] means ensuring that all individuals have physical, social,
and economic access to sufficient, safe, and nutritious food to meet their dietary needs
and preferences for an active and healthy life. This concept encompasses the availability,
accessibility, affordability, and quality of food.

In fact, large-scale farming practices have led to soil degradation, water pollution,
and deforestation. Moreover, modern agriculture heavily relies on synthetic fertilizers,
pesticides, and herbicides, which negatively affect the environment. The extensive use of
these chemicals has caused soil and water contamination and has led to the development
of pesticide-resistant insects and weeds [2].

In addition to its environmental harms, modern agriculture is ill-equipped to address
climate change. Numerous studies have shown that the Earth has been warming since the
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mid-19th century due to human activity and the production of greenhouse gases. Even a
modest rise in temperature will disrupt rainfall patterns and increase the frequency and
severity of extreme weather events, such as floods, heatwaves, fires, and monsoons. This
will lead to significant and uneven shifts in climate patterns worldwide. Some regions
will experience a drastic reduction in their food production capabilities, threatening food
security, especially in developing countries where smallholder farmers are more vulnerable
to adverse weather conditions [3].

Addressing these issues requires adopting more efficient farming practices that pro-
duce more food with fewer resources.

This leads to the central question: How can we enhance farmers’ ability to use smart-
farming tools to implement sustainable agroecological practices?

Fortunately, the digital revolution has introduced numerous tools to make agriculture
more sustainable. The field dedicated to integrating recent technologies into farming is
known as Smart Farming or Precision Agriculture. This approach uses advanced technology
to improve agricultural production, increase yields, reduce waste and resource usage (both
mechanical and chemical), and enhance the overall reliability of food production.

In this context, we view Smart Farming as a solution for addressing this question.
Smart Farming is already being widely implemented and is expected to become even

more prevalent in the future. This progression has led to Agriculture 3.0, which incorporates
digital tools for automation and monitoring. It is now evolving into Agriculture 4.0, with
the integration of advanced information and communication technology (ICT) tools, such
as artificial intelligence (AI) and the Internet of Things (IoT). Concretely, smart farming
involves integrating various technologies such as sensing technologies, data analytics,
artificial intelligence, and robotics. A general view of the smart farming processes is
proposed in Figure 1.
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Figure 1. Smart Farming technologies.

2. Related Works

All technologies of an end-to-end IoT platform are generally used to assist the farming
process. IoT platforms are robust tools for collecting and interpreting data to make informed
decisions based on specific criteria. Besides that, embedded AI is a burgeoning field of
artificial intelligence (AI). It aims to focus on optimizing machine learning algorithms to run
on hardware with limited computational power and memory, such as microcontroller units
(MCUs) or embedded central processing units (CPUs). Thus, it reduces latency, enhances
privacy, and minimizes energy consumption.

This paper centers on deploying an end-to-end IoT platform (Figure 2) integrated with
a small-scale wireless sensor network (WSN), embedded AI, and knowledge base. The aim
is to help farmers in adhering to agroecological principles, which rely heavily on observing
and interpreting the behaviors of the farm’s biotope and biocenosis.

One area that could significantly advance agriculture is the application of AI-powered
computer vision for assessing crop growth and finding issues such as pest infestations
or weed proliferation. These AI algorithms typically depend on cloud computing due
to their substantial processing requirements. This reliance needs specialized network
architectures and raises concerns about privacy, security, and latency, while also increasing
energy demands due to the need for high data transfer rates. However, battery life is a
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critical factor in agriculture since sensors are often deployed over vast distances without
reliable access to electricity.
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Meanwhile, recent spectacular progress in computational technologies has led to an
unprecedented boom in the field of artificial intelligence (AI). AI is now used in a plethora
of research areas and has shown its capability to bring novel approaches and solutions
to various research problems. However, the extensive computation needed to train AI
algorithms comes with a cost. Driven by the need to reduce energy consumption, the
carbon footprint and the cost of computers running machine learning algorithms, Tiny
Machine Learning (TinyML) is nowadays considered as a promising AI alternative focusing
on technologies and applications (Figure 3) for extremely low-profile devices. This is the
case for agriculture [4].
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Research on Tiny ML is relatively nascent but holds significant promise for a variety of
applications. Within the agricultural sector, the potential use cases are extensive, including
livestock management and insect detection [5]. However, implementations in smart farming
remain limited, although we predict growth in this area in the future. Most current research
is focused on industrial applications; a comprehensive survey of recent advancements in
TinyML can be found in the work of the authors in [6].

In addition to agricultural applications, TinyML has been employed in diverse scenar-
ios, such as adaptive traffic control [7] and wildlife conservation [8]. Furthermore, TinyML
presents numerous advantages over Fog, Edge, and Cloud computing, particularly in terms
of privacy, security, latency, and energy efficiency, as discussed by the authors in [9].
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The authors in [10] designed an embedded ML pipeline that helps farmers and scien-
tists to check the health of the crop and its growth. This pipeline allows users to create an
embedded ML that can be used for different plants in labs, greenhouses, farms, or gardens.
The first step of the pipeline is data collection, where the authors proposed best practices
to collect data plants. The next step is training a convolution neural network (CNN) for
two cases: (a) estimation of the leaf area index (LAI) and (b) prediction of the plant growth
stage. After the training phase, the ML model is compressed and converted to TensorFlow
Lite (TFLite) format to be deployed on an MCU device. For testing, the authors have chosen
Sony Spresense setup as target device. The authors in [11] proposed a TinyML solution to
detect drought stress in soybeans. The system is composed of a Raspberry Pi zero W and
Sony IMX219 camera module. The Raspberry device runs the CNN model on the captured
image to detect crop drought stress and then sends prediction to a web platform. The
CNN model was converted to TFLite format in order to be deployed on a limited-resources
device. The authors in [10] proposed a low-power and real-time image detector for grape
leaf esca diseases based on a compressed CNN model. Many compressing techniques
such as CP decomposition, tucker decomposition, and tSVD are analyzed to choose the
method with the best compression factor and accuracy. CP decompositions were chosen
and applied on the CNN model. After the training and validation of the model, it was
compressed with post-training quantization using TFLite to generate a model with 8bits.
The compressed model is deployed on OpenMV Cam STM32H7. The device is mounted
on an agricultural vehicle moving at a constant speed through the cultivation field. The
authors in [12] proposed a system for agri-environmental management employing moisture
sensors and real-time video analysis of soil photographs. The VGG-19 model is used to
distinguish picture types and calculate the quantity of water needed for irrigation based
on the kind of crop planted. The model is trained on a Kaggle soil structure dataset and
evaluated on a proprietary dataset. The authors in [13] proposed a low-cost device based
on the MCU ESP32-CAM that uses a camera to gather data from numerical water meters
to check central pivot irrigation systems. The device runs a TinyML model to process the
images to read the water meter; it is then transmitted to a server using LoRaWAN. The
TinyML model scored an accuracy of 88%.

3. Our Proposal

To evaluate the feasibility and efficiency of our proposed architecture, we conducted a
study using an agricultural use case focused on monitoring strawberries in two operational
modes: normal behavior and degraded condition mode.

In the normal behavior mode (Figure 4), an intelligent, battery-powered camera sensor
with embedded TinyML algorithms is deployed on the sensors field. Its primary function
is to detect and count strawberry fruits. Once the count is decided, the sensor transmits
this data via a LoRaWAN network to an application server hosted in the cloud. This server
houses a decision platform that processes the fruit count alongside other relevant factors.

Decisions based on this data may include initiating fertilizer applications if the fruit
count is below expectations, implementing measures against potential diseases or pests,
detecting theft by humans or wildlife, or issuing a harvest notification when the fruits reach
maturity. The decision directives are then communicated to the executor, who could be the
farmer or an autonomous robot, to improve their actions. For instance, a human or robotic
operator will only move for harvest when the fruits are ripe.

After training the TinyML model, if the confidence score is lower than a threshold,
then it switches to degraded mode (Figure 5). In the degraded mode, the images captured
by the camera of the sensor must be transferred to the server; the TinyML model is then
re-trained on the server side, and then re-loaded onto the sensor according to the firmware
update over the air procedure (FUOTA).
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Figure 5. System in degraded condition mode.

The entire process is depicted in Figure 6, with steps for normal behavior mode
highlighted in blue and those for degraded conditions mode highlighted in red.

3.1. Normal Behavior Mode
3.1.1. Data Collection

To start the training of our model, the first step involves gathering data. While
datasets like the comprehensive fruit dataset from Kaggle [14] can be used, the preferred
approach in embedded machine learning is to collect data directly from the devices. This
is particularly beneficial because embedded camera modules often have varying quality
levels. In our specific scenario, initial datasets were obtained using the camera device. We
employed the Edge Impulse tool [15] to capture images directly from devices such as the
Arduino Portenta [16] and the ESP32 cam [17], which share the same camera module as the
STM32 [18]. Once collected, the data must undergo labeling. See Figure 7.
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3.1.2. TinyML Model Training

Our model was trained to count the number of fruits in an image using the FOMO
(Faster Object, More Object) algorithm developed by Edge Impulse. FOMO is an innovative
machine-learning algorithm designed for object detection on highly constrained devices. It
enables devices to count objects, find their locations within an image, and track multiple
objects in real time, consuming up to 30 times less processing power and memory compared
to other similar algorithms like MobileNet SSD or YOLOv5 [19], which are also suitable for
constrained devices.
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The FOMO algorithm runs based on heatmap determination, where the original image
is divided into smaller sections. Each section undergoes binary classification to find the
presence or absence of the target object being counted. (Figure 8).
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Following training, the model undergoes testing across multiple datasets to assess its
accuracy. Since accuracy in machine learning refers to the proportion of correct predictions
made by a model compared to the total number of predictions on a given data set, we set a
minimum accuracy threshold of 90%. The precision in our application is not critical.

3.1.3. Model Uploading

After the first model is trained, it is uploaded to the device via a wired connection.
The overall process of data collection, model training, and deploying according to Edge
Impulse is depicted in Figure 9.
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3.1.4. On-Device Inferring

As soon as it is deployed, the device will begin making predictions. For our application,
which involves counting strawberry fruits, we set the number of inferences performed to
one per day, although the frequency can be adjusted according to the application’s needs.
If the confidence score is higher than 90%, then the device sends the results to the server
according to step 5. Otherwise, the system passes to degraded mode. Every time the device
runs the TinyML algorithms, it assigns a confidence score to the prediction. In machine
learning, and specifically in the context of convolutional neural networks (CNNs) used
for classification tasks, a confidence score is a value that stands for the model’s certainty
about its prediction. After processing input data, the model generates a prediction, in our
case, of the estimated number of fruits. The confidence score (Cs), usually a value between
zero and one, shows how certain the model is that its prediction is correct, with a score
closer to one indicating higher confidence. For example, in our specific case, the prediction
might output three strawberries with a confidence score of 0.95, meaning that the device is
highly certain.

However, if it counts four strawberries with a confidence score of 0.45, this indicates
that this result should not be considered. In the case of successive inference processes that
have low confidence scores, this might show that the model needs to be re-adapted.
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In situations where multiple predictions in a row (number to be decided by the
application, in our case we set it to four) have low confidence scores, the system enters
degraded condition mode.

3.1.5. Result Transmission

Once the result is obtained, it is transferred to the application server via the LoRaWAN
network. The message consists of a single packet, with only the number of fruits included
in the payload as an integer. After transmission, the device waits for an acknowledgment
of reception from the gateway. If it does not receive it, it retries sending the message.

3.1.6. Result Interpretation

The application server can interpret the data. Even if it only received a number, extra
information such as the localization, the number of recent passages, or the historical data
values of the sensors can be retrieved from the knowledge implemented base.

3.1.7. Sleep Procedure

Once the device finishes transmission, it goes back in sleep mode. Sleep mode in
microcontrollers refers to a low-power state that conserves energy when the device is
inactive or when full power is not necessary. In sleep mode, certain functions or sections
of the microcontroller are turned off or used in a reduced-power state to minimize energy
consumption, thereby extending the battery life of battery-operated devices. The exit from
sleep mode can occur due to a scheduled procedure that is induced at the end of a timer, or
due to an external signal. In our case, it is triggered by a timer.

3.2. Degraded Condition Mode

In degraded condition mode, the phases follow the device inference.

3.2.1. Image Data Transmission (Heavy Data Offload)

To address the issue of local drift, the system needs to train another model; therefore,
the application server needs new data. We propose the following algorithm for transmitting
images over LoraWAN (Algorithm 1).

Algorithm 1 Image transmission algorithm

if Cs ≤ 0.9 then
Compress image to Webp format
Convert image in Webp format to hexadecimal string Determine data

rate for transmission
Split the file into several packet N according to data rate Group

packet together by a number of 10
Add an application specific CRC code for each group. Establish

connection with gateway
while PacketSent ≤ N do

Send packet by group
Server check the integrity of the received data
if CRC does not match then

Server asks for group Re-transmission
Device re-transmit the group

else
Servers sends acknowledgment of reception

end if
end while
Final error verification check
Server acknowledge the reception

end if



J. Sens. Actuator Netw. 2024, 13, 83 9 of 19

The procedure begins by compressing the image to the WebP format, which is identi-
fied as more efficient than JPEG or JPEG2000 in the existing literature [20]. The file is then
prepared for transfer by converting it to a hexadecimal string. Once the data rate is selected,
we decide the largest payload size per packet and then split our file accordingly. We group
the packets in sets of ten to minimize network congestion, as each packet typically receives
an acknowledgement in LoRaWAN. To prevent any loss of information during this group-
ing, we add an extra Cyclic Redundancy Code to each group, allowing the application
server to verify the successful receipt of each one. The transmission process then starts,
and each group of packets is acknowledged by the server. If a group is not received, it is
re-sent. Once all the groups have been retrieved, the server conducts a final verification of
the overall received file and acknowledges the device.

3.2.2. Server Model Re-Training

Once a certain amount of new image data has been collected, the server can re-train
a new model. In our application, we obtained a model with sufficient accuracy using
100 images.

Depending on the specific task a smart sensor must perform, this number may be
lower or higher. Images can be collected from one device or multiple devices monitoring the
same phenomenon under the same conditions. Linking devices with similar characteristics
can be challenging due to variations in hardware, applications, and the environments in
which they are deployed, among other factors.

The model re-training is quite straightforward and occurs in the same manner as in
the normal behavior mode.

3.2.3. Firmware Update over the Air

After obtaining the new model, the last step in the process is to update the concerned
devices. Once more, the server performs device grouping through semantic capabili-
ties. When the server is prepared to update, it starts the FUOTA procedure described in
Figure 10.
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4. Experimentation and Results
4.1. Normal Mode
4.1.1. TinyML Model Creation Process with Edge Impulse

For our experiment, we trained our model following the previously described phases
to identify strawberries, using a collection of 100 pictures, each containing 0 to 10 instances
of the fruit. We trained two distinct models: one using images from the Arduino Portenta
Shield and its HM-01B0 monochrome camera, and another using images from the ESP32
and its integrated OV2640 camera.

Since the STM32 also uses the OV2640 camera, we will employ the same TinyML
model for it. The Arduino’s camera, being black and white, produces images of lower
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resolution but of smaller size, which can be helpful for image offloading. The type of
images does not appear to influence the model size, as both library files retrieved from
Edge Impulse after training are approximately the same size (242 kB for Arduino and
253 kB for ESP). Regarding model performance, the model for the Arduino achieved a
mean accuracy of 90.2%, while the model for the ESP32/STM32 achieved a mean accuracy
of 92.3%.

This corresponds to steps 1, 2, and 3 of the end-to-end process.

4.1.2. Sensor Deployment (Hardware Deployment Results)

After training both TinyML models (one on Arduino Portenta et one on the ESP32/STM32),
they are ported to the various devices and tested multiple times to verify the system’s robust
behavior and obtain key metrics. We constructed a small wooden structure to hold the sensors
and evaluated our architecture with varying numbers of strawberries, see Figure 11.
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the STM32 on the right.

The technical characteristics of each device, with respect to RAM and flash memory
capacity, are presented in Table 1.

Table 1. Hardware characteristics.

ESP32 Arduino Portenta STM32

RAM 512 kb 1 Mb 100 kb

Operating frequency 8 MHz 48 MHz 32 MHz

Flash memory 448 Kb 2 Mb 1 Mb

We can observe from this hardware deployment testing that the models are performing
as expected, confirming the efficiency of TinyML in agricultural scenarios. However, we
also highlight the importance of hardware selection when developing an embedded AI
application (Table 2). In this specific scenario, some hardware, like the Portenta, appears
somewhat oversized as most of its resources are unused, while, conversely, the STM32
is underperforming due to RAM capacity. On the other hand, the ESP32 seems to be the
right size.

Table 2. Hardware deployment results.

ESP32 Arduino Portenta STM32

Firmware memory usage 18.42% 3.88% 9.32%

RAM usage 88.87% 24.39% 100%

Inference time 312 ms 148 ms 676 ms

Accuracy respected? Yes Yes Yes

4.1.3. LoraWAN Transmission (Transmission)

As soon as the TinyML model finished running, the number of fruits inferred is
transmitted to the server through LoRaWAN; the message will be transferred in the form
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of a single packet. In our experimental setup, the Gateway and the node were in the same
room, approximately 10 m apart, with a clear line of sight. We collected the average time
of the transmission process over 10 transmissions for the typical data rates and devices.
Additionally, we calculated the maximum number of transmissions per day according to
the duty cycle. The data rate (DR) in LoRaWAN is a crucial factor. It is the number of
bits transmitted per unit of time. In LoRaWAN modulation, the data rate is influenced by
several factors, including the spreading factor (SF), bandwidth (BW), and coding rate (CR).
It is expressed by the following formula:

DR =
BW × SF × CR

2SF

So, we consider data rate DR0 to DR6 (Table 3). We have seen that the transmission
time appears to be more dependent on the data rate than on the device (Table 4). This can be
explained using the same transmission chip hardware, the SX1276, in each microcontroller.
Finally, we also conclude that, overall, the transmission duration is quite short, minimizing
power consumption and adhering to duty cycle regulations (a maximum of 864 s a day
for transmission). This allows devices to communicate their results between 947 and
65,954 times a day.

Table 3. Bit rate for each data rate (DR0—DR6) configured with the spreading factor and the
bandwidth.

Data Rate Configuration (SF + BW) Bit Rate (bit/s)

0 LoRaWAN: SF12/125 kHz 250

1 LoRaWAN: SF11/125 kHz 440

2 LoRaWAN: SF10/125 kHz 980

3 LoRaWAN: SF9/125 kHz 1760

4 LoRaWAN: SF8/125 kHz 3125

5 LoRaWAN: SF7/125 kHz 5470

6 LoRaWAN: SF7/250 kHz 11,000

Table 4. Transmission time in milliseconds of inference result for various data rates and maximal
number of inferences per day.

DR0 DR1 DR2 DR3 DR4 DR5 DR6

ESP32
Max inference per day

912.4 458.1 241.6 117.2 61.2 28.8 15.2

947 1886 3576 7372 14,118 30,000 56,842

Arduino Portenta
Max inference per day

854.7 421.3 222.3 115.7 54.5 29.2 13.1

1011 2051 3887 7468 15,853 29,589 65,954

STM32
Max Inference per day

887.5 451.9 252.2 122.8 57.6 29.6 14.7

974 1912 3426 7036 15,000 29,189 58,776

Energy consumption: the WSN network used here is LoraWAN. It has three modes,
sleep, run, and transmission mode. The average energy consumption of each device in
various operational states is provided in the manufacturers’ datasheets and is presented in
Table 5. We chose to use the theoretical values for energy consumption, as experimental
readings yielded similar average results.
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Table 5. Power consumption for each device across various states.

Mode ESP32 Arduino Portenta STM32

Sleep 10 µA 2.95 µA 0.29 µA

Run 190 mA 121 mA 105 mA

Transmission LoRa 211.5 mA 142.5 mA 126.5 mA

We can calculate the daily average energy consumption for each device by multiplying
the time spent in each mode (specifically, ‘run’ during the inference process, ‘transmission’
during the transmission process, and ‘sleep’ during the sleep process) by the respective
energy consumption of that mode and adding them together. The formula is as follows:

Edaily = Erun × Trun + Etransmission × Ttransmission + Esleep × Tsleep

Using this daily energy consumption data, we can calculate the average battery life of
a device using a 2000 mA battery, a standard battery size for IoT devices. These results are
presented in Figure 12.
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With our experimental system, we illustrate that a 2000 mA battery can sustain opera-
tion for between 18 and 40 days for the ESP32, 32 and 80 days for the STM32, and 36 and
133 days for the Arduino Portenta. Table 6 illustrates the total energy requirement in mA
for one year of device operation.

Table 6. Total energy requirement in mA for one year of device operation.

DR0 DR1 DR2 DR3 DR4 DR5 DR6

ESP32 41,203 29,512 23,941 20,740 19,299 18,465 18,115

Arduino 20,098 12,584 9134 7286 6225 5786 5507

STM32 22,605 15,901 12,828 10,836 9833 9402 9172

4.1.4. Result Interpretation (Knowledge Base)

Once the transmission phase is completed, this enables our system to make informed
decisions based on the sensor network. These decisions may pertain to farm management
actions or sensor network maintenance operations. An effective tool for managing a wide
range of data and agents, as is the case in agricultural IoT, is the creation of an expert system
capable of making decisions with the help of a knowledge base. We will show how the
ontology is employed by a reasoning algorithm to help informed decision-making within
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our system. Our approach integrates elements from the Semantic Sensor Network [21] to
describe the WSN and draws on the Plant Ontology available on Planteome [22] for plant
descriptions. Additionally, we reference the work of authors in [23] to model interactions
between pests and diseases. Furthermore, we will include a rule layer to define the
interactions among these classes, generating valuable insights for managing farms and
sensor networks.

For the knowledge base of our IoT platform related to agroecology, we have chosen to
propose three main classes: WSN (wireless sensor network), Crops, and Farm. The overall
model is presented in Figure 13. We used Protegé software release 5.6.5 to construct our
ontology. We evaluated our ontology with O’FAIRe [24], an Ontology FAIRness evaluator,
and obtained a fair score based on various criteria. The results are presented in Figure 14.
The assessment of fairness for the ontology is based on various rules outlined by the
authors [25].
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4.2. Degraded Mode
4.2.1. Image Data Transmission (Heavy Data Offload)

The architecture we propose that supports model update for local application is, to our
knowledge, novel. Consequently, we found no literature addressing this specific use case
of heavy data offloading for model re-training. However, studies exploring the transfer of
substantial data, such as images or audio files, using the LoRaWAN network are available.
In this section, we will examine them to better define our strategy for implementing this
functionality in our system. Firstly, we will conduct a theoretical calculation to understand
the number of pictures that can be sent daily based on the picture size. Various data rate
values exist, figured out by network availability, which in turn decide the speed (S) of
transmission in bits per second (Bps). A lower data rate increases the probability of message
transmission at the expense of bit rate.

We are also aware of the duty cycle (DC)—the time a device can send data daily as per
regulations. Using this information, along with the size of a media (MS), we can decide the
maximum number (N) of times a media can be transmitted in a day using the following
formula:

N =
S × DC

MS
We implemented algorithm1 into only the Arduino Portenta and ESP32 microcon-

trollers. We are concentrating on these two microcontrollers at this time because the main
complexity of our algorithm arises from the transmission side and the size of the image
taken, while the STM32 utilize the same transmission chip and camera in their hardware
configuration.

The images taken from the Portenta and ESP32 can vary in size with each measurement.
The average size of images taken by the Arduino Portenta and compressed with WebP over
ten images is 4.7 kb. For the ESP32, the average size of images, which are in color this time,
is higher and reaches an average of 9.8 kb. The average transmission time for each image at
different data rates is presented in Table 7. We kept the same setup as previously, with only
one node at a time, separated by 10 m from the gateway, and with a clear line of sight.

Table 7. Average image transmission time (s) and maximum daily transfers at various data rates,
according to duty cycle.

Device DR0 DR1 DR2 DR3 DR4 DR5 DR6

ESP32 117.60 66.82 30.00 16.70 9.41 5.37 2.67

Max image transfer per day 7 13 29 52 92 161 323

Arduino Portenta 56.40 32.05 14.39 8.01 4.51 2.58 1.28

Max image transfer per day 15 27 60 108 191 335 674

From these results, we highlight the efficiency of our algorithm for sending images of
varied sizes, as it outperformed the other available methods. We also obtained a result like
the theoretical one regarding the duty cycle limitation in Table 8.
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Table 8. Number of image offload operations possible with a 2000 mA battery, according to data rates
and quantity of images sent in a single operation.

Device Image
Quantity DR0 DR1 DR2 DR3 DR4 DR5 DR6

ESP32

10 29 51 113 204 362 633 1274

50 6 10 23 41 72 127 255

100 3 5 11 20 36 63 127

Arduino

10 90 158 351 631 1120 1960 3942

50 18 32 70 126 224 392 788

100 9 16 35 63 112 196 394

4.2.2. Server Model Re-Training

Knowing that we only needed 100 pictures to train our TinyML model, we observe that
the Arduino Portenta can re-train a new model in one day when communicating at data
rates between DR3 and DR6. For the ESP32, re-training is possible at data rates between
DR5 and DR6.

However, devices, especially in agricultural scenarios such as ours, are usually not
deployed in isolation, and multiple others are seeing the same phenomenon. Therefore,
data could be collected from multiple nodes, making it possible to transfer enough images
for model re-training, even at the lowest data rate. For example, ten devices equipped
with the Arduino Portenta could each transfer ten images at the lowest data rate, allowing
a model to be re-trained even in degraded network situations. A comparison between
Arduino protenta and STM32 is represented in Figures 15 and 16. Separating the data
offload could also be beneficial for battery lifetime. Instead of having one device transfer
100 images, it would be more optimized to share this task among ten devices to maintain a
balance in the battery level, avoiding one device running out of power more quickly than
the others.
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4.2.3. FUOTA

In our final experimentation, we focused on the firare update over the air procedure
(FUOTA). We implemented the protocol described below using the open-source LoRaWAN
server, ChirpStack [26]. We adapted the FUOTA server proposed by the authors in [26] to
run on our Laird Gateway. The Arduino Portenta H7 operates Arm Mbed OS in charge
of the reception of the update. First, we trained a new example model with new data and
compiled it. The size of the updated model is 83.6 kb. The FUOTA process is long as the
firmware size is large. We compiled the average time measured for 10 FUOTA process for a
node device (reception and update) with the same firmware according to different data
rates (DRs) in Table 9.

Table 9. FUOTA process duration in seconds (s).

DR0 DR1 DR2 DR3 DR4 DR5 DR6

Arduino Portenta 552 475 412 302 245 176 153

Duty Cycle limitation 1 1 2 2 3 4 5

From these first results, we conclude that updating the TinyML model is possible with
LoRaWAN. As the FUOTA process is punctual, we can also assert that the duty cycle is
respected, especially since it is the gateway that uses its duty cycle for transmission, with
the node device only sending acknowledgment messages. Therefore, it is also of utmost
importance for the gateway to correctly group the devices that need to receive the same
update, as performed in the multicast addressing procedure of the FUOTA recommendation.
If multiple devices need different updates, the system should carefully schedule those
FUOTA processes to avoid overflowing its duty cycle, especially with lower data rates.

To illustrate energy consumption, we analyzed two scenarios, both utilizing a DR6
data rate. In each scenario, the device predominantly remains in standby mode, waking
up once daily to execute a single TinyML inference and send a brief telemetry message
to the server. Additionally, the device activates once a week for firmware updates, which
are 100 kb in size. The first scenario employs LoRaWAN for all communications, while
the second scenario uses WiFi for comparison. For our experiment, we implemented the
basic energy evaluation model from the INET framework of Omnet++ [27]. The simulator
assesses the battery’s expected lifetime and operates until both scenarios deplete a 2000 mA
battery. Results are illustrated in Figure 17, indicating that leveraging LoRaWAN in this
application could lead to significant energy savings compared to WiFi usage.
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Additionally, we suggest assessing the battery life for different sizes of firmware
updates, using the same parameters as before (Arduino Portenta only and DR6). The
results are illustrated in Figure 18. As anticipated, larger update sizes adversely affect
energy consumption. The overall finding regarding the FUOTA process indicates that it is
suitable for a TinyML model and is energy efficient. However, the frequency of the FUOTA
process may vary depending on the specific application. Therefore, careful consideration of
battery sizing is necessary to ensure optimal device performance.
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5. Conclusions

In this paper, we proposed an intelligent IoT platform for smart agriculture that
integrates various technologies. Initially, we utilized TinyML and LoRaWAN to develop
an energy-efficient model for fruit detection, proving the potential of these technologies
in agriculture. Our experiments indicated that this model achieved an accuracy of 90%
and was three times more energy-efficient than a cloud-based alternative for the same
application, paving the way for a new array of computer vision applications in smart
farming using battery-powered sensors. However, despite these promising results, the
TinyML paradigm has limitations on device learning capabilities.

To achieve this, we proposed an end-to-end platform that integrates several novel
contributions to support the TinyML. First, we demonstrated the energy efficiency of
embedded AI systems in processing large data sets, such as images. Next, we developed a
protocol that facilitates remote updates for intelligent sensors over LoRaWAN, overcoming
the challenges posed by large firmware sizes. Additionally, we introduced an energy-
efficient offloading strategy for managing agroecological IoT platforms.

Our findings underscore the potential of embedded AI in agriculture, tackling net-
working challenges within LoRaWAN networks, and highlighting the effectiveness of
knowledge-based systems in complex areas like agroecology and sensor management.

Moreover, we proposed a method for handling large sensor data by initiating the
re-training of AI models in the cloud, called firmware updates over the air (FUOTA), by
updating the TinyML model once the sensors are deployed to enhance accuracy post-
acquisition whenever a sensor’s confidence score drops below a specified threshold. This
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approach allows models to utilize local data for re-training and subsequent remote updates.
We also created an ontology-based knowledge base to represent IoT devices, their inter-
actions with plants, and agroecological principles, thereby establishing a comprehensive
framework for agricultural IoT.

Overall, our results highlight the future potential of embedded AI in agriculture and
provide solutions to address networking challenges within the LoRaWAN network. We
tested the proposal under various hardware and network conditions, demonstrating the
effectiveness of knowledge-based systems for complex application areas like agroecology
and sensor management.
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read and agreed to the published version of the manuscript.
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