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Abstract: Wireless communication technologies (WSN) are pivotal for the successful deployment
of the Internet of Things (IoT). Among them, long-range (LoRa) and long-range wide-area network
(LoRaWAN) technologies have been widely adopted due to their ability to provide long-distance
communication, low energy consumption (EC), and cost-effectiveness. One of the critical issues in the
implementation of wireless networks is the selection of optimal transmission parameters to minimize
EC while maximizing the packet delivery ratio (PDR). This study introduces a reinforcement learning
(RL) algorithm, Double Deep Q-Network with Prioritized Experience Replay (DDQN-PER), designed
to optimize network transmission parameter selection, particularly the spreading factor (SF) and
transmission power (TP). This research explores a variety of network scenarios, characterized by
different device numbers and simulation times. The proposed approach demonstrates the best perfor-
mance, achieving a 17.2% increase in the packet delivery ratio compared to the traditional Adaptive
Data Rate (ADR) algorithm. The proposed DDQN-PER algorithm showed PDR improvement in the
range of 6.2–8.11% compared to other existing RL and machine-learning-based works.

Keywords: LoRaWAN; wireless sensor networks; packet delivery ratio; reinforcement learning;
Double Deep Q-Network with Prioritized Experience Replay (DDQN-PER); transmission parameter
selection; Adaptive Data Rate; energy consumption

1. Introduction

In the current landscape of rapidly evolving IoT applications, there is a growing
demand for long-range low-power wide-area network (LPWAN) wireless transmission
technologies that minimize energy consumption (EC), while ensuring cost-effectiveness.
LPWAN technologies are specifically designed for interaction between machine-to-machine
(M2M) systems and Internet of Things (IoT) devices. The main advantages of LPWAN
technology over other wireless solutions include its extensive range of radio signal trans-
mission, low power consumption of end devices, utilization of unlicensed frequency bands,
and high network scalability. These benefits make LPWAN suitable for a wide range of
applications, providing efficient data collection from various devices such as sensors, utility
meters, and fire alarm devices.

There are several popular LPWAN technologies today, such as SigFox, long-range
wide-area network (LoRaWAN), Narrow Band Internet of Things (NB-IoT), and Long-
Term Evolution for Machines (LTE-M) [1]. SigFox and LoRaWAN operate in unlicensed
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frequency bands, which helps reduce operating costs. In contrast, NB-IoT and LTE-M use
licensed cellular bands, which increases costs. SigFox is well suited for simple solutions
involving small amounts of data, but has limitations in terms of data transmission capacity
and flexibility. Consequently, LoRaWAN has emerged as the preferred choice for estab-
lishing networks that provide long-range communication with low power consumption.
Nevertheless, selecting optimal transmission parameters within LoRa networks remains a
significant challenge, as it is crucial for further reducing node EC and enhancing overall
network efficiency.

LoRaWAN was developed and is maintained by the LoRa Alliance [2]. In order to
minimize EC of network nodes and simultaneously maximize throughput, LoRaWAN em-
ploys the Adaptive Data Rate (ADR) mechanism, which automatically adjusts transmission
parameters such as spreading factor (SF), bandwidth (BW), coding rate (CR), transmis-
sion power (TP), and carrier frequency (CF) [3]. This algorithm plays an essential role in
managing the data transfer rate and transmission power within LoRaWAN networks. The
selection of transmission parameters for LoRaWAN wireless networks is to achieve a trade-
off between various parameters, such as EC and PDR, PRR, goodput. Reducing EC usually
means reducing TP, which in turn reduces the probability of successful message delivery.
Conversely, ensuring a high probability of message delivery requires increasing TP. Also,
for long distances, a high SF value is required, since with a small SF value, the signal may
not reach the node. Therefore, the optimization of transmission parameters of the LoRa
network is very critical and requires careful research. Figure 1 illustrates the process of
optimizing the data transmission parameters in the LoRa network environment using the
optimal transmission parameter selection algorithm. The task of the algorithm is to select
parameters such as SF, BW, TP and CR to achieve the best transmission characteristics. The
simulation environment created in NS-3 allows evaluating the performance of the LoRa
network taking into account metrics such as EC, PDR, PRR and goodput.
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Many researchers worldwide have devoted considerable attention to the study of the
ADR mechanism and its impact on network performance with static or mobile nodes under
various conditions. The study in [4] discusses how adaptive parameter configuration can
improve network performance in dense IoT deployments. In contrast, the authors in [5]
investigate the flexibility of the ADR algorithm and its impact on network performance un-
der various operating conditions. However, the ADR algorithm exhibits several limitations,
which led to further research in this area [6,7]. Firstly, ADR demonstrates the best results
with stationary devices; for mobile nodes that move from one point to another, a static ADR
configuration will be ineffective, as the algorithm may not have sufficient time to adjust
the network transmission parameters. Secondly, in conditions characterized by frequent
changes in external factors, such as temporary interference, variations in device density,
and object movement, ADR struggles to adapt the transmission parameters quickly, leading
to a decrease in quality of service (QoS). Thirdly, ADR faces scalability issues; in large
networks with uneven device distribution, the ADR mechanism does not account for these
disparities, potentially resulting in network congestion due to inadequate optimization of
transmission parameters. Based on the above limitations of the ADR mechanism, there is a
need to develop new solutions for selecting optimal transmission parameters in wireless
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sensor networks, especially for large scale. To address these issues, a promising direction
is the use of machine learning and deep learning methods that can learn from incoming
data and predict optimal transmission parameters for specific network conditions. Such
approaches will provide greater adaptability, performance, and scalability compared to
traditional ADR.

The paper is organized as follows: after the introduction, Section 2 reviews related
works and highlights the novelty of the proposed approach. Section 3 provides the Lo-
RaWAN background. Section 4 describes the system model, including simulation param-
eters in the NS3-LoRaWAN environment, and the RL and ADR algorithms for selecting
optimal transmission parameters. Section 5 presents the results, comparing the outcomes
of the RL-based algorithm with those of the ADR algorithm, identifying node parameters
that strike a balance between energy consumption (EC) and packet delivery ratio (PDR).
Section 6 offers a comparative analysis of the proposed algorithm with the works of other
researchers. Section 7 summarizes the findings and outlines future research directions.

2. Related Works

Modern researchers propose improved versions of ADR, such as SSFIR-ADR, LR + ADR,
K-ADR and EARN to address the limitations of traditional ADR algorithm. These advanced
algorithms consider the average SNR (Signal-to-Noise Ratio) value to update data transmission
parameters, resulting in an improved PDR and reduced EC [8–11]. In the paper [8], the
proposed SSFIR-ADR algorithm improves PDR and reduces energy consumption by over
four times compared to the standard ADR, leveraging randomized spreading factor allocation
to optimize LoRaWAN network performance. Jiang et al. presented the K-ADR algorithm,
which uses the ordinary kriging function to dynamically adjust the transmission parameters,
which can improve the packet delivery ratio by 21.46% compared with ADR and enhance
the reliability under harsh environments [9]. Park J. et al. developed EARN, an improved
greedy ADR mechanism that uses coding rate adaptation to optimize the trade-off between
delivery ratio and energy consumption. In addition, large-scale simulation results show that
this method outperforms traditional schemes in efficiency [10]. In paper [11], the authors
presented a novel LR + ADR mechanism that significantly enhances the PDR while keeping
the EC per delivered packet low. In real-world scenarios, LR + ADR demonstrates up to a
520% improvement in PDR compared to the traditional ADR and up to a 38% advantage over
the best competitor, G-ADR. Recent studies suggest that the ADR mechanism and its modified
versions do not always select the most efficient mode of network operation [12]. Inefficient
energy usage, particularly in wireless sensor networks with autonomous wireless nodes,
leads to accelerated node discharge, resulting in additional operational expenses. One of the
solutions to this problem, along with an effective routing algorithm [13], security [14] and
optimization of the indoor nodes localization [15,16], is the application of machine learning
(ML) techniques to determine the most optimal operating mode of the entire network.

For the task of selecting transmission parameters for LoRa wireless network nodes,
three ML methods are employed: supervised learning (SL), unsupervised learning (USL),
and reinforcement learning (RL). In SL, network parameters, such as SF or TP, are typically
chosen based on known data, utilizing regression or classification techniques for predic-
tion [17]. In addition, these methods are also used to predict collisions. The paper [18]
introduces a SL approach to configure two PHY-layer parameters aimed at reducing EC in
LoRa networks. Similarly, the authors of [19] focus on enhancing the energy efficiency of
end nodes by comparing classification algorithms, in particular k-NN, Naïve Bayes and
Support Vector Machines (SVM), for assigning the SF in LoRa networks. Despite their effec-
tiveness in certain scenarios, SL methods have significant limitations. One of the primary
challenges is their reliance on labeled data, which is often expensive and time-consuming to
collect. Additionally, SL methods require substantial computational resources for training,
especially when dealing with large datasets. As a result, these models may be inefficient in
real-world conditions where quick and cost-effective data processing is essential, limiting
their applicability in LoRa networks.
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Unsupervised learning is used to determine the most efficient operating modes of
network nodes [20–22]. In the paper [20], a multi-hop clustering approach using the Mini
batch K-means clustering (MBKMC) algorithm is proposed to address load imbalance and
computational complexity in LoRaWAN networks, reducing collision rates and improving
resource allocation efficiency. In the paper [21], the authors introduce a dynamic priority
scheduling technology (PST) that utilizes a USL clustering algorithm to minimize packet
collisions while enhancing transmission delay and energy consumption within the network.
In the paper [22], the authors propose a K-means clustering-based algorithm to solve the
LoRa SF distribution problems. Using USL methods has its own drawbacks, including
lower accuracy compared to SL for specific tasks, as well as difficulty in determining the
number of clusters and other hyperparameters. Moreover, the training process can be slow,
especially for algorithms that require a large number of iterations. USL methods can find
local minima or solutions that are far from optimal.

Reinforcement learning in the context of selecting transmission parameters offers
an intuitive approach. This method allows a wireless network node (agent) to interact
with its environment, receiving feedback in the form of “reinforcement” or “punishment”,
thereby finding the optimal transmission parameters [23–27]. In the paper [23], the authors
proposed a new algorithm with a two-expert EXP4 algorithm to distribute the SF and TP to
devices using a combination of decentralized and centralized approaches. The paper [24]
presents a distributed Markov decision process (MDP) model for uplink transmission in
Class A LoRaWAN devices, which improves the packet transmission performance through
dynamic SF allocation strategies. The paper [25] presents the Low-Power Multi-Armed
Bandit (LP-MAB) algorithm, which centrally configures transmission parameters on the
network server to optimize power consumption while maintaining high packet delivery
rate (PDR). Fedullo T. et al. propose a new RL-based adaptation strategy for LoRaWAN
in industrial sensing systems, demonstrating improved packet reception compared to
the standard ADR strategy while maintaining similar power consumption [26]. The pa-
per [27] discusses the use of ML techniques, including RL, and proposes a novel proactive
approach—“artificial intelligence-empowered resource allocation” (AI-ERA) to optimize
resource allocation in LoRa-based IoT applications. Table 1 presents a comprehensive
comparison of the proposed DDQN-PER algorithm with existing methods, including ADR-
based approaches, SL, USL, and RL techniques. The Table 1 highlights the limitations of
traditional algorithms and underscores the contributions of the proposed method.

As a result of the comparison of these three methods, supervised learning is effective
in the presence of labeled data but is limited in its ability to adapt to new conditions. Unsu-
pervised learning is used to optimize operating modes but is constrained by the accuracy
and complexity of hyperparameter tuning. Reinforcement learning stands out for its ability
to find optimal solutions in real time, making it the most promising approach. However,
existing RL algorithms for the task of selecting transmission parameters in LoRa networks
require significant training time and are both labor- and resource-intensive. Moreover,
many reinforcement learning algorithms use the LoRa network gateway as the main agent.
This can lead to overload and deterioration of the LoRa gateway performance due to the
constant changing environment, especially for large-scale LoRa nodes. Therefore, we pro-
pose a new algorithm designed to effectively handle challenging conditions and focus on
critical transitions, enabling faster identification of optimal transmission parameters. The
developed DDQN-PER algorithm is a new solution for optimizing transmission parameters
in static LoRaWAN networks. The algorithm combines the advantages of deep learning and
Prioritized Experience Replay, which provides high adaptability, scalability and efficiency
in complex network conditions, outperforming existing ADR methods and ML algorithms.

The main contributions of this study are summarized as follows:

1. A Novel Double Deep Q-Network with Prioritized Experience Replay (DDQN-PER)
algorithm was proposed for optimizing LoRaWAN transmission parameters (SF, TP).
The algorithm effectively addresses Q-value overestimation, enhances learning stabil-
ity, and ensures efficient parameter selection in large-scale network environments.
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2. To evaluate the performance of DDQN-PER, extensive simulations were conducted
and compared with various ADR mechanisms, including ADR-MAX, ADR-AVG, and
ADR-MIN, as well as other reinforcement learning methods such as Q-learning and
DQN. The results demonstrate that DDQN-PER achieves optimal resource allocation
within 24 h, maintaining low energy consumption and high scalability for networks
with up to 1000 devices, while ensuring high PDR across diverse scenarios.

3. The simulation study considers challenging conditions such as high node density (up
to 1000 nodes), varying simulation durations (up to seven days), and environments
with obstacles. Results indicate that DDQN-PER significantly outperforms existing
approaches in terms of energy efficiency, and robustness, making it highly adaptable
to complex LoRaWAN deployments.

Table 1. Comprehensive comparison of the proposed DDQN-PER algorithm with existing methods.

Category Method/
Reference Key Features Limitations Proposed Solution

(DDQN-PER)

ADR methods

Standard ADR
[4]

Configures SF and
TP based on
historical SNR for
static nodes.

Poor performance in
networks with high
density or varying
conditions; limited
scalability.

Achieves optimal
resource allocation for
static environments
with high node density.

SSFIR-ADR [8]

Uses randomized SF
allocation to improve
PDR and reduce
energy consumption.

May result in
suboptimal SF
selection; lacks
adaptability for
large-scale static
deployments.

Ensures accurate and
scalable SF/TP
selection while
maximizing PDR.

K-ADR [9]

Dynamically adjusts
SF/TP using kriging
functions to improve
reliability.

Computationally
intensive; limited
validation in
large-scale static
networks.

Faster convergence
and reliable
performance in static
large-scale networks.

EARN [10]

Greedy ADR
mechanism with
coding rate
adaptation to
balance PDR and EC.

Greedy methods
may converge to
local optima;
scalability issues
with dense static
networks.

Stable and globally
optimal SF/TP
selection in dense
environments.

LR + ADR [11]

Combines
regression-based
ADR with dynamic
adaptation,
improving PDR.

Requires significant
computational
resources;
suboptimal for
large-scale static
node networks.

Efficient learning for
optimal transmission
parameters with
minimal overhead.

Supervised
Learning

SL for
PHY-layer [18]

Configures
PHY-layer
parameters to reduce
energy consumption.

Requires labeled
data, costly to collect;
computationally
expensive.

Reduces resource
requirements and
achieves optimal
transmission selection.

k-NN, SVM,
NB [19]

Compares
classification
algorithms to
improve energy
efficiency in LoRa
nodes.

Limited scalability;
higher complexity
for static networks.

Optimized for static
networks with efficient
learning and lower
overhead.
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Table 1. Cont.

Category Method/
Reference Key Features Limitations Proposed Solution

(DDQN-PER)

Unsupervised
Learning

K-means [22]

Clusters nodes to
optimize SF
allocation and
reduce collisions.

Requires careful
hyperparameter
tuning; less precise
for static networks.

Faster optimization for
static environments
with high precise.

MBKMC [20]
Mini-batch K-means
for resource
allocation.

Slow convergence
for static, large-scale
networks.

Accelerates
convergence and
optimizes resource
allocation for static
setups.

PST with
clustering [21]

Enhances energy
consumption using
clustering
algorithms.

Accuracy limitations
in static, large-scale
networks.

Ensures stable, optimal
transmission
parameter selection.

Reinforcement
learning

Two-expert
EXP4 [23]

SF/TP optimization
using RL with
central-
ized/decentralized
learning.

Computationally
heavy and
unsuitable for static
environments.

Efficient Q-learning
structure optimized for
static networks.

MDP for Lo-
RaWAN [24]

Distributed RL
improves SF
allocation for uplink.

Gateway overload
issues in large-scale
static setups.

Reduces gateway
overload and improves
scalability.

LP-MAB [25]

Optimizes power
consumption while
maintaining PDR
using MAB.

Requires high
computational
power and extended
training time for
large datasets.

Reduces training time
while maintaining
robustness and
adaptability.

RL-based
adaptation
strategy [26]

RL-based SF/TP
optimization
improves packet
reception in
LoRaWAN.

Does not address
Q-value
overestimation;
limited evaluation
for scalability.

Addresses Q-value
overestimation for
stable learning in
large-scale networks.

AI-ERA [27]

Proactive RL
approach for
resource allocation in
LoRa IoT
applications.

Requires high
computational
power and extended
training time for
large datasets.

Reduces training time
while maintaining
robustness and
adaptability.

3. LoRaWAN Background

This section provides an overview of LoRaWAN technology, including its basic princi-
ples, network architecture, and key transmission parameters. This section also discusses the
path loss model used for communication in LoRa networks and the performance metrics
used to evaluate the proposed reinforcement learning algorithm.

3.1. LoRaWAN Overview

In 2014, the LoRa Alliance developed a standard called LoRaWAN by Semtech, which
is a physical layer modulation method based on Chirp Spread Spectrum (CSS) technol-
ogy [28,29]. LoRa uses CSS modulation to increase receiver sensitivity and reduce the risk
of interference. The standard LoRaWAN architecture is a star topology, where end devices
(nodes) transmit and receive signals at one or more access points (gateways). The received
packets are then sent to network servers, which in turn are connected to standard Internet
Protocol (IP) networks.

In LoRaWAN, the theoretical bit rate at SFk, k = 7, 8, 9. . .12, is given by

RSFk =
BW × SFk × CR

2SFk
(1)
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where BW is the bandwidth in [Hz], CR is the coding rate, and SF indicates the spreading
factor. Table 2 presents a summary of the bit rate and SNR for the LoRaWAN configuration,
specifically at a bandwidth (BW) of 125 kHz.

Table 2. LoRaWan Configuration table [30].

Configuration Bit Rate, b/s Required SNR, dB

SF12/125 kHz 293 −20.0
SF11/125 kHz 537 −17.5
SF10/125 kHz 976 −15.0
SF9/125 kHz 1757 −12.5
SF8/125 kHz 3125 −10.0
SF7/125 kHz 5469 −7.5

3.2. The Path Loss Model

In wireless networks, the path loss is usually modeled using a logarithmic distance
power law with a random term, and we use the logarithmic path loss model to analyze the
LoRa networks, as follows [10]:

PL(d) = PL(d0) + 10nlog10

(
d
d0

)
+ Xσ (2)

where

PL(d)—path losses over distances d;
PL(d0)—losses at reference distance d0;
n—attenuation coefficient;
Xσ—random value, normally distributed with zero mean and standard deviation σ.

3.3. LoRa Network Transmission Parameters

Below are the key transmission parameters that need to be considered in LoRa net-
works to minimize the power consumption of network nodes while maximizing PDR.

1. Bandwidth

Bandwidth affects the data transfer rate and range. In LoRa networks, the bandwidth
values are: 125 kHz, 250 kHz and 500 kHz. For long distances, it is necessary to set the BW
value to 125 kHz and vice versa for fast transmission over short distances, it is necessary to
set the value to 500 kHz [31]. Therefore, for our work for a large-scale LoRa network, we
chose a fixed setting and a value of 125 kHz.

2. Coding Rate

Coding rate is a parameter that determines the error correction coefficient in the
transmitted data. In LoRa networks, 4 CR parameters are available—4/5, 4/6, 4/7 and 4/8.
A higher CR provides greater protection against interference bursts, but increases ToA and
energy consumption [31]. Therefore, in our work, the CR value of 4/5 was chosen.

3. Spreading Factor

Spreading factor is the degree to which data are broken down into longer symbols.
LoRa has SF values between 7 and 12. In our work, the values of sf also vary from 7 to 12.
A higher spreading factor increases the transmission range, but reduces the data rate and
increases the time required for transmission. For example:

• SF7: Data transfer is fast, but range is limited.
• SF12: Range is increased, but data transfer is significantly slower.

4. Transmission Power

Transmission power is the signal strength with which a transmitting device in a LoRa
network sends data. TP is measured in dBm and has a direct impact on the communication
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range, energy consumption, and overall network performance. In our simulation, we took
the TP value from 2 dBm to 14 dBm with a step of 2 dBm.

3.4. Performance Metrics

To compare the performance of the proposed RL algorithm with other ADR and
RL algorithms used for transmission parameter selection in LoRa communication, the
following performance metrics were selected.

1. Packet Delivery Ratio

PDR is calculated with the ratio of successfully delivered packets to the total number
of transmitted packets.

PDR =
Number o f success f ully delivered packets

Total number o f packets sent
(3)

PDR is used to assess the reliability of the network: the higher the PDR value, the better
the network copes with data transmission.

2. EC per received packet

To calculate the EC for each packet received, you can use the following formula:

EC =
Total energy

Number o f received packets
(4)

where

Total energy is the total amount of energy (in joules) used to transmit packets.
Number of received packets is the total number of packets successfully received.

4. The System Model

This section provides an overview of the LoRaWAN network architecture, the simula-
tion setup employed for evaluating the proposed model, and the ADR and RL algorithms.
The network architecture outlines the essential components of the LoRaWAN protocol,
while the simulation setup describes the experimental environment and the parameters
utilized. The ADR and RL algorithms are discussed in terms of their role in optimizing
network performance within a LoRaWAN system. Furthermore, the proposed DDQN-PER
algorithm is introduced, alongside the ADR techniques, and the DQN algorithm, all of
which are compared to assess their performance.

4.1. LoRaWAN Network Architecture

• In this paper, we consider a LoRa network consisting of a network server, one gateway
(GW) with half-duplex operation mode and end devices (EDs) in a star topology as
shown in Figure 2. All EDs belong to class A which have very low power consumption
and are distributed evenly around the gateway. LoRa uses CSS modulation, which
allows devices to operate at low power and withstand significant interference.

• End devices, also known as nodes, are sensors or IoT devices deployed in the area.
They are responsible for collecting data and transmitting it to the network using
LoRa modulation.

• Gateways act as intermediaries between end devices and the network server. Posi-
tioned within the communication range of the end devices, gateways receive uplink
transmissions and forward them to the network server using high-speed backhaul
communication, such as Ethernet or cellular networks.

• The network server is the central component responsible for managing the network.
The network server processes data from the gateways, ensures reliable delivery to ap-
plication servers, and applies error correction mechanisms. Additionally, the network
server manages device authentication and communication integrity.
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Figures 3 and 4 present the spatial arrangement of end nodes (blue dots) surrounding
a gateway (red dot) with 1000 and 100 nodes, respectively. In both scenarios, the gateway
is positioned at the center of the area, while the end nodes are continuously uniformly
distributed around it.
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4.2. Simulation Setup

NS-3 with the LoRaWAN module was chosen as the simulation tool for establishing
experiments in accordance with the System model from Section 4. NS-3 is a widely used net-
work simulator that supports multiple network protocols, including LoRaWAN as shown
in Figure 2. In NS-3, the LoRaWAN module allows you to simulate LoRaWAN networks,
providing a framework for simulating communications between end devices, gateways,
and the network server. A set of simulations in different scenarios were performed using
the NS-3 LoRaWAN tool. To compare the results of the proposed algorithm with other
ADR mechanisms and RL algorithms, four different scenarios changing the simulation time
and the number of nodes were considered.
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Scenario 1: The number of nodes varies from 10 to 100 with a step of 10. The simulation
time was fixed and amounted to 1 day.
Scenario 2: The number of nodes varies from 100 to 1000 with a step of 100. The simulation
time was fixed and amounted to 1 day.
Scenario 3: The number of nodes was fixed at 100. The simulation time was increased from
1 day to 7 days in 1-day increments.
Scenario 4: The number of nodes was fixed at 1000. The simulation time was increased
from 1 day to 7 days in 1-day increments.
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In Table 3, we present the key simulation parameters, which were carefully selected to
reflect real-world LoRaWAN deployment scenarios. The simulation time varied depending
on the specific scenario, ranging from 1 to 7 days, to analyze the efficiency of the algorithms
in both short-term and long-term perspectives. The radius of the simulation area was
5 km, which was chosen to approximate the typical conditions of large-scale LoRaWAN
networks operating in the 868 MHz frequency band. For each scenario, NS3-LoRaWAN
simulations were run twice: first in an open space environment and then with the inclusion
of building obstacles. This dual approach allowed us to evaluate the adaptability of the
algorithm to different environments. The number of nodes involved in the simulation also
varied depending on the scenario, as mentioned earlier, to evaluate the performance of the
algorithms in networks of different scales. A message inter-arrival time of 600 s was chosen
to simulate the typical operating mode of low-power IoT devices, while a message size of
20 bytes reflects standard payloads. The SF range from 7 to 12 corresponds to standard
LoRaWAN values, enabling the simulation of both short high-speed and long low-speed
communication links. TP varied from 2 to 14 dBm to optimize the balance between energy
consumption and communication range. The step size for the spreading factor is 1 (i.e.,
values progress as 7, 8, 9, 10, 11, 12). For the transmission power, the step size is 2 dBm
(i.e., values progress as 2, 4, 6, 8, 10, 12, 14). The frequency of 868 MHz was chosen as the
standard for LoRaWAN worldwide, while the bandwidth of 125 kHz ensures maximum
transmission range with minimal energy consumption. Path loss model and receiver
sensitivity of−137 dBm reflects real-world hardware characteristics, making the simulation
more realistic. The CR was set to 4/5, which is a standard value in LoRaWAN, providing
a good balance between data transmission reliability and efficient channel bandwidth
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utilization. In addition to the main simulations, we performed a comparative analysis of
our proposed DDQN-PER algorithm with several existing ADR mechanisms, including
ADR-AVG, ADR-MIN, and ADR-MAX. We also compared our proposed approach with
traditional reinforcement learning algorithms such as Q-learning and Deep Q-Network. The
simulation algorithms were selected to ensure an objective comparison between traditional
approaches and modern reinforcement learning methods. This comprehensive comparison
allowed us to evaluate the efficiency and effectiveness of our solution for selecting the
optimal transmission parameter of the LoRaWAN network.

Table 3. Simulation parameters in NS-3.

Parameter Value

Simulation algorithms ADR-MIN, ADR-AVG, ADR-MAX, Q-learning, Deep Q-Network,
DDQN-PER (proposed algorithm)

Simulation time 1 day–7 days

Simulation area 5 km radius, open area and area with obstacles

Number of nodes [10–100 with step 10], [100–1000 with step 100]

Message inter-arrival time 600 s

Message size 20 bytes

Spreading factor (SF) [7–12 with step size 1]

Transmission power (TP) [2–14 with step size 2] dBm

Path loss PL(d0) = 127.41, d0 = 40, n = 2.08, σ = 3.57

Receiver sensitivity −137 dBm

Carrier frequency (CF) 868 MHz

Bandwidth (BW) 125 kHz

Coding rate (CR) 4/5

4.3. The ADR and RL Algorithms

1. ADR-MIN

In the paper [32], the authors present an improved ADR-MIN algorithm for select-
ing transmission parameters for LoRaWAN in noisy channel conditions. The ADR-MIN
algorithm uses the minimum SNR value from the last 20 received packets to estimate the
optimal SF and TP values. This approach focuses on the weakest signal conditions to
ensure transmission stability even in high-noise conditions. The algorithm is suitable for
noisy channels, but may result in excessive power consumption in conditions with good
communication quality.

Workflow:

• Collect SNR for each of the last 20 packets.
• Select the minimum SNR value.
• Adjust transmission parameters: increase SF to enhance range and, if necessary, in-

crease TP for reliability.

2. ADR-MAX

The paper by Peruzzo and Vangelista discusses an improved ADR-MAX algorithm de-
signed to enhance power efficiency in LoRaWAN networks [33]. The ADR-MAX algorithm
uses the maximum SNR value from the last 20 received packets to estimate the optimal
SF and TP values. This method focuses on energy conservation, as it is based on the best
signal conditions. The algorithm may be less effective in dynamic networks where signal
quality degrades quickly.

Workflow:

• Collect SNR values from the last 20 packets.
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• Select the maximum SNR value.
• Decrease TP or SF to minimize energy consumption while maintaining sufficient

signal quality.

3. ADR-AVG

In the paper [34], Slabicki et al. propose an adaptive ADR-AVG mechanism for
configuring transmission parameters in LoRaWAN networks, which improves performance
and scalability in high-density environments by reducing collisions and interference. The
ADR-AVG algorithm uses the average SNR value from the last 20 received packets to
estimate the optimal SF and TP values. ADR-AVG is more complex to implement compared
to ADR-MIN and ADR-MAX due to the need to dynamically account for network density.

Workflow:

• Collect SNR values from the last 20 packets.
• Calculate the average SNR value.
• Adjust SF and TP based on the average SNR to achieve a balance between energy

consumption and reliability.

4. Q-learning

Q-learning is a reinforcement learning algorithm used to find the optimal action policy
for an agent in a given environment and was first invented by Watkins, Christopher JCH
and Peter Dayan [35]. In Q-learning, an agent interacts with the environment by performing
actions and observing emerging states and rewards. The environment is defined by a set of
states S and a set of possible actions A that the agent can take. The basic idea of Q-learning
is to learn a function Q(s,a), which represents the expected utility value of performing
action a in state s and then following the optimal policy. Q-learning updates the Q-values
using the Bellman equation:

New Q(s, a) = Q(s, a) + α
(
r + γmaxQ

(
s′, a′

)
−Q(s, a)

)
(5)

where

a is the learning rate;
r is the immediate reward received after taking action a;
γ is the discount factor;
s′ is the new state after taking action a.

Q-learning iteratively updates the Q-values by exploring actions and observing the
rewards and transitions. The agent aims to maximize its cumulative reward over time.
Q-learning struggles with environments with large state-action spaces, as it requires a table
to store all Q(s, a) values.

5. Deep Q-Network

Deep Q-Network (DQN) is a deep learning algorithm derived from Q-learning, de-
signed to tackle control problems in environments with high-dimensional states [36]. By
integrating traditional Q-learning with neural networks, DQN enables agents to develop
optimal decision-making strategies. The algorithm aims to estimate the value of actions
in a given state, called the Q-value (Q(s,a)), using the Bellman equation to update values
based on the rewards received and expected future rewards. Instead of storing a table
of Q-values, DQN uses a deep neural network to approximate the Q-value function. To
increase the stability of learning, DQN uses a replay buffer mechanism that preserves
the agent’s experience (state, action, reward, next state) and uses random samples from
it for training. DQN uses two networks: the main network and the target network. The
target network is updated less frequently than the main network, which contributes to the
stability of Q-value updates. The agent interacts with the environment, collects experience,
and periodically uses samples from the repeated buffer to update the Q-values, minimizing
the RMS error between the predicted and target Q-values. DQN also uses an e-greedy
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strategy, which helps to find a balance between exploring new actions and using already
known optimal actions.

By combining Q-learning with neural networks, DQN copes with large state spaces.
The experience buffer and the target network contribute to the stability and efficiency of
training. Training DQN requires significant computational resources and careful tuning of
hyperparameters (learning rate, discount factor).

6. The DDQN-PER algorithm

In selecting the transmission parameters of the LoRa network, two conflicting ob-
jectives of energy minimization and PDR maximization make it difficult to choose the
appropriate parameter during reinforcement learning. To address this, the DDQN-PER
algorithm employs a multi-objective optimization strategy, incorporating both objectives
into the reward function. This allows the algorithm to balance the trade-off between energy
efficiency and reliable data transmission, ensuring optimal performance under varying
conditions. Moreover, for large-scale LoRa nodes with various obstacles between nodes and
the gateway will lead to congestion and deterioration of the LoRa gateway performance,
and will be time-consuming and computationally expensive. To address these challenges,
we propose the DDQN-PER algorithm, which effectively identifies optimal transmission
parameters in diverse scenarios.

Double Deep Q-Network (DDQN) is an improvement over the traditional reinforcement
learning algorithm Deep Q-Network that aims to address sequential decision-making is-
sues [37]. DDQN addresses this problem by separating action selection and action evaluation
into two stages using two separate networks. In traditional DQN, both functions—selecting
the best action and evaluating the value of that action—are performed by the same network,
which leads to the problem of Q-value inflation.

A target network is used to evaluate the Q-value, which computes the value Q for the
selected action a in the next state s. The target value is calculated as:

Yt = r + γQ
(
st+1, argmaxaQ(st+1, at+1; θt); θ′t

)
(6)

where

• r is the reward obtained for performing action at in state st;
• γ is the discount factor reducing the weight of future rewards (0 ≤ γ ≤ 1);
• st+1 is the next state;
• Q is Q-value of the target network
• θt, θ′t are the parameters of the main and target networks, respectively.

The difference between the target and predicted Q-values is used to calculate the mean
squared error loss function:

L(θt) = E
[
(Yt −Q(st, at; θt))

2
]

(7)

where

• L(θt) is the loss function;
• Yt is the target Q-value;
• Q(st, at; θt) is the predicted Q-value of the main network for current state st and action at;
• E is the expectation operator for averaging over samples.

One of the key problems with traditional DQN and other reinforcement learning
methods is the overestimation of Q-values. This happens because the same Q-value is used
for both action selection and evaluation. DDQN solves this problem by separating the
action selection and evaluation processes using two different networks. This reduces bias
and makes the learning process more stable and robust.

Thus, DDQN reduces bias and makes action estimation more accurate, which leads to
more stable learning.
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In standard Experience Replay, training examples are selected randomly from the
agent’s memory, which can be inefficient, especially in rare or critical situations. PER
improves this process by giving higher priority to examples with high TD-error [38]. This
means that the agent repeats important or difficult to predict transitions more often, which
speeds up learning.

The TD error can be represented as follows [39]:

δ = r + γQtarget(st+1, argmaxaQ(st, a))−Q(st, at) (8)

where

• δ is the TD error, representing the discrepancy between expected and predicted Q-
values;

• Qtarget is the Q-value from the target network for the next state and the optimal action;
• r is the reward obtained for performing action at in state st;
• γ is the discount factor.

Prioritized Experience Replay (PER) allows the agent to pay more attention to those
transitions that have a higher TD error (temporal difference error). This speeds up the learn-
ing process on critical episodes and helps to optimize the LoRa network parameters faster.

By reducing bias in action evaluation, DDQN allows the agent to better balance
exploration of the environment and the use of already accumulated knowledge. In our
case, this helps the agent more accurately select parameters, such as transmit power and
spreading factors that improve network transmission performance. In a large-scale LoRa
environment, this enables the agent to quickly and successfully find optimal network
transmission parameters despite the challenges of multiple end-devices, network scale, and
obstacles. Below is the algorithm of the proposed approach for clarity (Algorithm 1).

Figure 5 shows the DDQN-PER algorithm in interaction with the LoRa environment
for our situation. The current network state and transmission parameters of the LoRa
network are input to the DQN network. The measured SNR value is utilized to determine
the current channel conditions. If the SNR is low, the algorithm may select a higher SF
to increase transmission range or increase TP to strengthen the signal. If the SNR is high,
the algorithm may reduce SF or TP to decrease energy consumption. The agent selects an
action based on the current state. The action is a change in the transmission parameters
SF and TP. The environment (LoRa network) returns a reward to the agent, which can be
based on the success of the transmission.
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All experiences (state, action, reward, next state) are stored in a prioritized replay
buffer, and training is performed based on these data. The main network is trained on the
selected experiences from the buffer, using the priorities of the prediction errors. The target
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network is updated with a fixed periodicity for the stability of the training. This process is
repeated until the agent finds the optimal parameters for data transmission in the LoRa
network. At the output, we obtain the optimal transmission parameters (SF, TP) for LoRa.
This approach allows the agent to effectively manage the LoRa transmission parameters,
adapting to changing network conditions.

Algorithm 1. Pseudocode of the DDQN-PER algorithm

Input: -Range of SF: [7 to 12 with step size 1]
-Range of TP: [2 to 14 with step size 2] dBm
-SNR: observed
-Simulation Environment Parameters: number of nodes, simulation time, simulation area

radius, obstacle presence, message inter-arrival time, message size, path loss model, receiver
sensitivity, CF, BW, CR
Initialization:

(a) Initialize Q_network, Target_network, and PER_buffer← empty, SNR← observed
(b) Set learning parameters: α, γ, ε
(c) Initialize LoRaWAN environment and start communication

repeat
if nodes generate a packet then

(a) Choose action a_t using ε-greedy policy in main network based on state s_t = [s_SNR_t,
s_TP_t, s_SF_t]

(b) Send the packet with selected SFi and TPj
(c) Observe next state s_{t+1} = [s_SNR_{t+1}, s_TP_{t+1}, s_SF_{t+1}] and reward R
(d) Store (s_t, a_t, R, s_{t+1}) in PER_buffer
Q-value update:

(a) Sample experiences from PER_buffer based on TD error
(b) Perform Q-value update using Formula (4).
(c) Compute the loss between the predicted and target Q-values using Formula (5)
(d) Backpropagate the loss to update main network
(e) Periodically update target network

end if
until the LoRaWAN network stops
Output: Optimal transmission parameters (SF, TP)

5. Results

This section presents the simulation results obtained under varying environmental
conditions. The simulations were carried out using the NS3-LoraWAN module, focusing on
analyzing key performance metrics. One of the primary observations across all scenarios
was that the EC per node remained relatively stable, fluctuating within the narrow range
of 0.18 to 0.19 mJ. Given the minimal variation in energy consumption, we turned our
attention to comparing the PDR values across different algorithms. Below, we provide a
detailed breakdown of the results for each scenario individually, offering insights into the
performance of each approach under specific conditions. Also, from the figures below, it can
be determined that the values of the PDR are very strongly dependent on the environmental
parameters. The values of the PDR in open area are always higher by 0.4–0.5 value than in
areas with obstacles.

First scenario. In the first scenario, the number of nodes was increased from 10 to
100 nodes with a step of 10. The simulation time was 1 day and was not changed throughout
the first scenario. The simulation results for the first scenario can be seen in Figures 6 and 7
without obstacles and with obstacles, respectively. From the figures, it is clear that our
proposed algorithm showed good results and were higher than other algorithms.

Second scenario. The second scenario is very similar to the first scenario. The main
difference between the second and the first is the number of nodes. The second scenario
was as close as possible to a large-scale network, the number of nodes varied from 100 to
1000 with a step of 100 nodes. Figures 8 and 9 show the simulation results for the second
simulation without obstacles and with obstacles, respectively. As you can see in the figures,
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here too, our proposed algorithm DDQN-PER was the best among other algorithms in all
numbers of nodes for both open area and area with obstacles.
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Third scenario. As shown in Figures 10 and 11, the PDR values for the ADR-MIN [32],
ADR-MAX [33] and ADR-AVG [34] algorithms gradually increase and achieve better results
than the RL algorithms with each day of simulation. The trend is typical for both open
space and obstacle-ridden networks. This is explained by the fact that the ADR mechanisms
adapt well with increasing time to select the optimal network transmission parameter. On
one hand, this poses a challenge, as the ADR mechanism requires considerable time to
adapt. While the ADR mechanism performed best after 7 days, it is important to consider
the results from days 1 and 2, where our proposed DDQN-PER algorithm outperformed
the others. By reducing the simulation time, we can minimize the duration required to
select the optimal network transmission parameters.

Fourth scenario. In the last scenario, 1000 nodes were used for training and one
to seven days of simulation time were used to select the optimal network transmission
parameters. As shown in Figures 12 and 13, the ADR mechanism struggles to perform
effectively in large-scale networks. In each case, our proposed algorithm demonstrated
superior performance compared to the alternatives.
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the FLoRa library was employed in [19], while studies [40,41] utilized the NS-3 simulator,
and [22] relied on LoraSim for simulating and testing the proposed methods. Additionally,
the study in [18] implemented Lora-MAB in Python.

The proposed DDQN-PER algorithm has been extensively evaluated across various
scenarios, including obstacle-prone environments, extended simulation durations, and
networks with varying node densities.

Impact of obstacles: In simulations with obstacles, PDR values were consistently lower
(by 0.4–0.5) compared to open spaces. This is due to increased signal loss and interference,
which reduces the likelihood of successful packet delivery.

Adaptation of algorithms over time: Algorithms such as ADR-MIN, ADR-MAX,
and ADR-AVG showed improvement in PDR as the simulation time increased (e.g., up to
7 days) because they require more time to adapt and select optimal transmission parameters.
During the early days of the simulation, our DDQN-PER algorithm outperformed others
as it adapts more quickly to changing environmental conditions by selecting optimal
transmission parameters (SF, TP). However, longer simulations allowed other algorithms
to reduce the performance gap.

Performance of the proposed algorithm with varying node densities: in simulations
with a smaller number of nodes, the DDQN-PER algorithm consistently demonstrated
better performance compared to other algorithms, maintaining a higher packet delivery
ratio (PDR). As the network scaled up to 1000 nodes, the proposed algorithm continued to
outperform other approaches in both open areas and obstacle-prone environments. This
highlights its robustness and scalability when handling increased network densities.

For comparison, the table for our algorithm was taken with data for 1000 nodes in
a space with obstacles, and for other algorithms, the maximum number of nodes that
the authors considered in their simulation were taken. Table 4 summarizes the research
methods, adjustable parameters, and ML accuracy from the reviewed studies. As illustrated
in Table 4, our proposed algorithm demonstrated an improvement of 17.2% over the ADR.
Significant progress was reached in [23], where parameters such as SF, TP, CR, and CF were
analyzed using a hybrid approach of SL and RL. The study [19] utilized GRU with high
training accuracy, demonstrating an 11% enhancement in PDR performance compared to
ADR, although specific EC data were not provided. The main disadvantage of the method
was its high resource intensity and long training time of up to 24 h, which is unacceptable
for dynamic networks. For comparison, in addition to the standard ADR, we also consid-
ered specific cases where RL was utilized [40]. We compared the results with the ADR-MIN,
ADR-AVG, and ADR-MAX algorithms, which use minimum, average, and maximum
SNR values, respectively. The best results compared to ADRavg were achieved at high
attenuation, improving EC by 7.05% and PDR by 9.09%. In the paper [41], the authors used
the Multi-armed Bandits RL method, achieving a 40% improvement in EC compared to
ADR. However, when experimenting with a single gateway, the PDR decreased by 22.7%,
and with multiple gateways—by 6.7%. An additional disadvantage is slow convergence, es-
pecially in scenarios with a large number of nodes. The study [42] introduces a GRU-based
deep learning approach for LoRaWAN resource allocation, achieving an 11% improvement
in packet success ratio by predicting and assigning optimal spreading factors in real-time.
The findings in [43] indicate an approximate improvement of 18% and 20% in PDR for
SSFIR-ADR1 and SSFIR-ADR2, respectively, compared to the standard ADR algorithm.
However, while the SSFIR-ADR algorithm achieves better PDR performance than ours,
it is important to highlight that our simulation involved 1000 nodes, whereas theirs was
limited to only 200 nodes, making the comparison less directly comparable. The proposed
DDQN-PER algorithm showed PDR improvement in the range of 6.2–8.11% compared to
other existing RL and machine-learning-based works.

The key distinction of our approach lies in its ability to optimize the balance between
EC and PDR by effectively focusing on critical transitions through Prioritized Experience
Replication. This significantly enhances the overall efficiency of the LoRaWAN network.
We chose RL methods due to their ability to efficiently process large amounts of data and
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accurately predict parameters, making them ideal for the task of choosing the optimal
network transmission parameters in large-scale and resource-intensive networks.

Table 4. Comparison of results with other studies.

Reference Year Method Adjustable
Parameters

Comparison
with ADR Simulation

Proposed
algorithm 2024 RL (DDQN-PER) SF, TP EC-equal

PDR—17.2%
NS-3
LoRaWAN

[23] 2022 Supervised ML
and RL (EXP4)

SF, TP, CR,
CF no data LoraSim

[19] 2021 Supervised ML
and RL (EXP4) SF PDR—11% NS-3

LoRaWAN

[40] 2022 RL
(Q-Learning) SF, TP EC—7.05%

PDR—9.09%
NS-3
LoRaWAN

[41] 2021 Multi-armed
Bandits (RL) SF EC—40% NS-3

LoRaWAN

[42] 2022 Gated Recurrent
Unit SF PDR—11% NS-3

LoRaWAN

[43] 2024 SSFIR-ADR SF, TP PDR-20% NS-3
LoRaWAN

The novelty of our algorithm lies in the integration of DDQN-PER, which significantly
accelerates the learning process and enhances the stability of parameter optimization.
This approach provides a clear advantage in high-density networks and environments
with significant interference, where traditional methods face challenges. Furthermore, our
algorithm has been specifically tested in challenging scenarios, such as networks with up to
1000 nodes and the presence of obstacles, demonstrating superiority over existing methods
as well as faster adaptation times, highlighting its robustness and adaptability.

Our proposed algorithm has several limitations, including scalability issues in multi-
gateway networks, which require additional computational resources. The algorithm is
also optimized for static nodes, and adapting it for mobile nodes will require further
modifications. Additionally, the algorithm’s performance in real-world conditions may be
limited by differences in hardware and channel interference.

7. Conclusions

In conclusion, our work demonstrates that the Double Deep Q-Network with Priori-
tized Experience Replay is an effective solution for achieving a balance between EC and
PDR in LoRa networks. By concentrating on critical transitions, our model accelerates the
identification of optimal transmission parameters, significantly enhancing the performance
of the LoRa gateway.

The proposed DDQN-PER algorithm outperformed other reinforcement learning and
ADR algorithms over a 24-h period, particularly in scenarios with 1000 devices in both
obstacle-laden and open environments. While ADR mechanisms showed improvements
with extended simulation times for smaller networks, they struggled to replicate this
success at scale; in contrast, our algorithm consistently delivered superior performance.

In the future, the algorithm will be implemented in real LoRaWAN networks to
validate simulation results and assess its performance under real conditions. Additionally,
the algorithm’s adaptation for mobile nodes and scalability in large multi-gateway networks
will be explored. Furthermore, there are plans to integrate the algorithm with other
communication protocols to expand its applicability and improve efficiency.
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