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Abstract: In an era of increasing reliance on digital health solutions, safeguarding user
privacy has emerged as a paramount concern. Health applications often need to balance ad-
vanced AI functionalities with sufficient privacy measures to ensure user engagement. This
paper presents the architecture of FLORA, a privacy-first ovulation-tracking application that
leverages federated learning (FL), privacy-enhancing technologies (PETs), and blockchain
to protect user data while delivering accurate and personalized health insights. Unlike con-
ventional centralized systems, FLORA ensures that sensitive information remains on users’
devices, with predictive algorithms powered by local computations. Blockchain technology
provides immutable consent tracking and model update transparency, further improving
user trust. In addition, FLORA’s design incentivizes participation through a token-based
reward system, fostering collaborative data contributions. This work illustrates how the
integration of cutting-edge technologies creates a secure, scalable, and user-centric health
application, setting a new standard for privacy-preserving digital health platforms.

Keywords: federated learning; blockchain; privacy; machine learning; encryption

1. Introduction
In recent years, the use of digital health applications has become increasingly

widespread, offering individuals innovative tools to manage and monitor their well-
being [1]. Among these, ovulation-tracking apps have gained notable popularity, providing
women with valuable insights into their reproductive health, including menstrual cycles,
fertility windows, and overall wellness [2]. These applications play a critical role in empow-
ering users to make informed decisions about family planning and health management.
However, as the adoption of these technologies has grown, so have concerns regarding
data privacy and security [3]. Studies [4,5] have revealed significant issues with many
existing apps, particularly those that collect sensitive health data, which are often shared
without explicit user consent. This raises ethical and legal concerns, especially in contexts
where such information could be misused, potentially leading to discrimination, profiling,
or legal repercussions.
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The challenges that can arise from poor quality of privacy in such applications are
profound. Sensitive reproductive health data, including menstrual cycle details and ovu-
lation patterns, can reveal many aspects of users’ lives. For instance, research conducted
by the Mozilla Foundation revealed that 72% of reproductive health apps exhibit serious
privacy flaws, often sharing sensitive data with third parties for advertising or analytics
purposes [6]. Such practices undermine user trust and deter individuals from adopt-
ing potentially beneficial digital health solutions. This underscores the need for health
applications that prioritize data privacy and user control.

Existing ovulation-tracking apps offer a range of features, including period tracking,
fertility predictions, and wellness recommendations [7]. Although most popular apps
currently available in the market have gained recognition for their usability and predictive
accuracy, they often rely on centralized data storage and processing, posing inherent risks
to user privacy. Other apps [8] that have attempted to focus on privacy in response to users’
growing concerns often lack advanced features, like AI-powered predictions, limiting their
appeal to a broader audience.

To address these challenges, the FLORA project introduces an innovative solution
that aims to set some general guidelines and good practices on how health applications
handle sensitive user data. FLORA is designed as a privacy-first and user-centric ovulation-
tracking app that leverages advanced technologies in the field of privacy such as federated
learning (FL) [9] and blockchain [10], as well as some key privacy-enhancing technologies
(PETs) like fully homomorphic encryption (FHE) [11], differential privacy (DP) [12], and
proxy re-encryption (PRE) [13]. Unlike conventional app architectures that centralize user
data for analysis, FLORA ensures that sensitive information remains on users’ devices,
empowering individuals with trust and control over their personal information. The app
employs FL to collaboratively train machine learning models locally on user devices, with
only encrypted model updates being shared. This decentralized approach minimizes
privacy risks while maintaining the accuracy and reliability of predictions.

In addition to federated learning, FLORA incorporates state-of-the-art cryptographic
techniques, including FHE and DP, to enhance data privacy during parameters exchange
between clients and safeguard the application against model-related attacks, e.g., model
inversion [14]. These methods set a high level of privacy level by ensuring that user
data remain encrypted even when processed, effectively eliminating the possibility of
unauthorized access or data breaches. The app also uses PRE to enable secure and controlled
access to encrypted data with explicit user consent, further bolstering privacy protection,
even when access to raw data is imposed by other factors, i.e., medical history.

FLORA also investigates the integration of blockchain technology into the FL frame-
work, in order to enhance transparency and accountability. A blockchain-based consent
system allows users to manage and audit their data-sharing preferences, ensuring com-
pliance with privacy regulations. The app’s Model Vault provides an immutable record
of all machine learning model updates on the server side, fostering trust in the system’s
predictive capabilities. Additionally, FLORA incentivizes user participation through a
token-based reward system, which compensates individuals for contributing to the feder-
ated learning process.

The proposed architecture of FLORA aims to serve as a reference architecture for
digital health application design by addressing critical privacy concerns and aligning with
the growing demand for ethical and transparent handling of sensitive health data. The
general architecture of FLORA is visually presented in Figure 1. The main contributions of
this paper are as follows:

• We systematically evaluate the integration of advanced PETs, like FHE and DP, into
an FL framework. Specifically, we focus on PETs’ impact on data privacy, predictive
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accuracy, and computational overhead, contributing to the optimization of privacy-
preserving machine learning models.

• We examine the use of blockchain technology to enhance FL systems, focusing on
the role of immutable consent management and the integrity of model updates. This
work demonstrates how blockchain can address trust and transparency challenges
in distributed systems. Additionally, we introduce a token-based reward system
designed to incentivize user participation.

• We integrate FL, PETs, and blockchain technologies into a unified system and evalu-
ate their combined performance in a real-world ovulation-tracking application. The
deployment demonstrates the feasibility and effectiveness of privacy-preserving frame-
works in addressing sensitive health problems. To the best of our knowledge, this
is the first time that the integration and deployment of all these technologies into a
single real-world testbed are being discussed in a study.

• Based on direct feedback from end users during the co-design process, this paper
describes best practices for designing and deploying federated learning systems in
real-world applications. Insights include technologies and architectural choices aimed
at balancing privacy, predictive accuracy, and usability.
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Security
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Server
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Figure 1. FLORA general architecture.

The rest of this paper is structured as follows. Section 2 describes the detailed archi-
tecture and technologies used in every aspect of the application development, including
machine learning processes and user engagement strategies to foster end-user co-design.
Section 3 presents measurable outcomes of the federated learning framework, comparing
its accuracy and computational overhead to centralized counterparts, in both simulation
and real-world settings. Section 4 evaluates the advantages of the proposed solution, ad-
dressing challenges and limitations. Finally, Section 5 summarizes the work and discusses
possible future contributions.

2. System Model
The FLORA project adopts a privacy-centric design approach, integrating cutting-edge

technologies to address the challenges associated with safeguarding user data in health ap-
plications. This section describes the core methodologies and technical components used in
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FLORA, with a focus on the user co-design process, the mobile application design, federated
learning framework architecture, cryptographic enhancements, and blockchain integration.

2.1. User Needs Evaluation

Understanding the needs and preferences of the target audience of the application
was an essential step for the development of an ovulation-tracking app. The target users of
such an application include women of reproductive age who actively engage in managing
their reproductive health through digital tools, and healthcare providers who guide these
individuals. To gain comprehensive insights, we conducted a multi-step research process
that included desk research and a quantitative survey using a structured questionnaire.
This holistic approach ensured that we could capture a diverse range of user insights
and requirements.

The questionnaire included a series of Likert scale questions, ranging from 1 (strongly
disagree) to 10 (strongly agree), to capture user opinions. All the participants were first
informed about the scope of the survey and were reassured that their answers would remain
anonymous. A total of 40 individuals participated in the questionnaire, representing a
diverse demographic profile. The summarized results of the survey are presented in
Table 1.

Table 1. The average scores from a user needs evaluation questionnaire, indicating the extent to
which respondents agree with the statement.

Statement Average Score (0 to 10)

1. I use apps regularly to track my menstrual cycle. 7.35
2. I find period-tracking apps to be accurate in predicting my menstrual cycle. 7.12
3. I would like more personalized insights based on my period-tracking data. 7.7
4. How satisfied are you with the current features of ovulation-tracking apps? 6.5
5. Having reminders and alerts related to my period is useful to me. 8.3
6. I would like the app to support other aspects of health and well-being. 7.95
7. I am concerned about my privacy when using ovulation-tracking apps. 6.02
8. I am comfortable with sharing anonymized data to improve app services. 7.3
9. I regularly review and adjust privacy settings in health-related apps. 5.05
10. I feel informed about how my data are used by health apps. 4.27
11. I am likely to adopt a new ovulation-tracking app that prioritizes privacy. 7.07
12. Receiving rewards or incentives for sharing data or models is appealing to me. 6.4

The key insights gathered from the responses can be summarized as follows:

• Participants were asked to rate how important they consider the use of an app for
tracking their ovulation and menstrual cycles. Approximately 71% of respondents
responded that they found ovulation-tracking apps to be important or very important
in managing their reproductive health. This underscores the essential role these apps
play in users’ lives, providing valuable insights for family planning and menstrual
health management. However, around 77% of the respondents stated that the apps
they currently use could be improved with new features.

• Respondents were asked about their level of concern regarding the privacy of their
health data when using ovulation-tracking apps. Around 60% of participants ex-
pressed moderate to high concern over data privacy, highlighting a significant appre-
hension about how their sensitive information might be handled or shared without
consent. However, many users are unaware of how important privacy is in such
applications. Also, an alarming 50% of the participants stated that they do not often
review the privacy settings in health-related applications.

• Users were questioned about their concerns regarding data sharing with third parties
and whether they find it significant to receive rewards or incentives for sharing knowl-
edge (data or models) with third parties. Approximately 65% expressed a significant
desire to receive rewards when their personal data are shared with third parties.
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Overall, 70% of the users answered that it is highly possible to adopt a new ovulation-
tracking app that prioritizes privacy, showing the pressing need for a privacy-first ovulation-
tracking app.

2.2. Ovulation Tracking with ML Methods

Machine learning (ML) offers innovative solutions for ovulation tracking by analyzing
patterns in menstrual cycle data. One approach involves using time series forecasting
algorithms such as AutoRegressive Integrated Moving Average (ARIMA) and Seasonal and
Trend decomposition using Loess (STL), which predict future values based on historical
data. These algorithms can be trained on past menstrual cycle data to predict the timing
of future cycles accurately. Neural networks, which model complex data patterns, can
also be used to predict the next period date by analyzing cycle length and symptoms. In
addition, ensemble methods like random forest and gradient boosting can classify and
predict ovulation dates, and support vector machines (SVMs) can handle classification
tasks effectively [15].

Another ML application involves using menstrual cycle tracking apps (MCTAs) that
collect real-time data on bleeding days and symptoms. These apps help users track their
cycles accurately and provide personalized notifications. A study evaluating the character-
istics of MCTA users found that app users, non-trackers, and those using other tracking
methods are largely comparable in demographic and menstrual cycle characteristics. This
suggests that MCTAs can be reliable tools for a diverse population, enhancing the general-
izability of data collected for epidemiological studies [16].

ML also aids in personalized ovulation tracking by incorporating additional relevant
data, such as stress levels, weight changes, and symptoms. By analyzing data from multiple
users, ML algorithms can identify trends and patterns, improving the overall accuracy
of predictions. This personalized approach helps in understanding and managing men-
strual cycles more effectively, providing women with better tools for reproductive health
management. For instance, a deep learning approach to menstrual cycle tracking has
demonstrated enhanced accuracy in predicting ovulation and menstrual dates, thereby
empowering women with more precise reproductive health information [17]. Furthermore,
a study on unsupervised deep learning applied to longitudinal follicular growth tracking in
IVF cycles demonstrates the potential of ML in automating and improving the accuracy of
ovulation monitoring. This approach reduces manual errors and provides reliable tracking
of follicular growth, which is essential for effective assisted reproduction techniques [18].

In our application, we employed a multi-layer perceptron (MLP), designed to han-
dle a multi-class classification problem. The learning task involves predicting the men-
strual cycle regularity of users, represented by three target classes: 0 (regular, 25–35 days),
1 (long, >35 days), and 2 (short, <25 days). The selection of a classification task, rather than
a regression one, can be justified due to the limited amount of data and the complexity of
ovulation date predictions, as also presented in [19,20].

The MLP model consists of an input layer with 14 features corresponding to the
collected dataset’s variables. It has a single hidden layer with 64 neurons, where each
neuron is followed by a ReLU activation function. The model’s parameters are optimized
using a cross-entropy loss function, suitable for multi-class classification tasks, and a
stochastic gradient descent optimizer with a learning rate of 0.01. The dataset was divided
into training and testing sets, with a batch size of 32.

2.3. Dataset

The dataset used in this study was constructed through a combination of real and
synthetic data to address challenges related to limited sample size and class imbalance. As
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our main focus was to deploy and test a distributed ML framework in a real-world scenario,
rather than a machine learning task itself, we used a hybrid solution. The initial dataset
consisted of responses from 20 individuals, who completed a comprehensive questionnaire
designed to capture key variables related to reproductive health. While the sample size was
sufficient to capture the structure of the data, it was necessary to augment the dataset to
ensure robustness and avoid bias. The collected data included variables that are described
in detail in Table 2.

Table 2. Dataset feature description.

Feature Name Description

Age Participant’s age in years
Height (SI units - m) Height in meters
Mass (SI units - kg) Weight in kilograms
Pregnancy Whether the participant is currently pregnant
Number of pregnancies Total number of previous pregnancies
Number of Miscarriages Number of miscarriages
Number of Abortions Number of abortions
Race Group Categorical variable for participant’s race
Gyno surgeries Number of gynecological surgeries undergone
Breastfeeding Whether the participant is currently breastfeeding
Most recent family planning method The most recent method used for family planning
Stress level until the last period Reported stress level before the last period
Sleep quality until the last period Reported sleep quality before the last period
BMI Body mass index
Target Three target classes: 0: regular (25–35 days period), 1: long (>35 days), 2: short (<25 days)

Given the limited sample size and the need for a balanced dataset, two synthetic
data generation techniques were applied: SMOTE (synthetic minority oversampling tech-
nique) [21] and ADASYN (adaptive synthetic sampling) [22]. These methods were used in
conjunction with Gaussian noise augmentation to create diverse and realistic data samples.

SMOTE was employed to generate synthetic samples by interpolating between minor-
ity class instances. Gaussian noise was then added to these synthetic samples to introduce
variability and improve robustness. This approach is particularly effective for datasets
with continuous numerical features, as it prevents overfitting and enhances the model’s
ability to generalize to unseen data. ADASYN generates synthetic samples by adaptively
focusing on instances that are harder to classify. Gaussian noise was similarly added to
the ADASYN-generated samples, creating an alternative synthetic dataset with different
properties compared to the SMOTE-augmented data. This dual approach allowed us to
analyze the impact of synthetic data generation methods on model performance. Gaussian
noise augmentation was chosen for its ability to perform the following:

• Improve robustness: Adding noise helps the model generalize to noisy or imper-
fect data.

• Increase variability: When working with a small dataset, Gaussian noise introduces
variability without creating artificial patterns.

• Act as regularization: By exposing the model to slight variations of the same data
points, overfitting is minimized.

However, Gaussian noise is less suitable for structured or highly sensitive features
(e.g., categorical data) and requires careful application to ensure that the augmented data
remain valid.

The characteristics of the augmented datasets are visualized using t-SNE plots
(Figure 2), showing the distribution of synthetic samples generated by SMOTE and
ADASYN. Both methods effectively expanded the dataset while preserving the original
data structure.



J. Sens. Actuator Netw. 2025, 14, 11 7 of 23

Figure 2. TSNE representation of the synthetic dataset.

After a series of experiments using ML on both synthetic datasets, we found that the
SMOTE-augmented dataset exhibited superior performance, with more stable loss and
accuracy metrics during training and testing. For this reason, we selected this dataset,
consisting of 130 unique records, for the rest of the experiments in this work.

2.4. Mobile Application Design

The mobile application serves as the gateway through which users interact with FLORA.
It is developed using Kotlin, a language suitable for Android platforms, ensuring a seam-
less and responsive user experience. The app was designed with a user-first approach, by
effectively integrating end-user feedback, emphasizing simplicity and accessibility for a broad
demographic of users. Some key screens of the app interface are presented in Figure 3.

Figure 3. FLORA app interface.

Key features of the mobile application include data input interfaces for logging men-
strual cycle information, tracking symptoms, and viewing personalized health insights.
The app provides predictive analytics on ovulation and fertility windows, enabling users
to make informed decisions about family planning or menstrual health management.

The app also provides users with the option to subscribe to the ‘Sharing4Good’ mode.
This mode is designed to facilitate collective benefits by enabling users to share their raw
private data with external actors, such as clinicians and researchers. In this mode, the user’s
data are securely processed, and the proxy re-encryption (PRE) protocol is employed to
ensure the secure transfer of data to external actors. Users can revoke access at any time,
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according to their preferences. An overview of how the Sharing4Good mode operates is
illustrated in Figure 4.

FLORA
Mobile

App Grant
Access

Transmit
Local Data

Proxy Re-
Encryption

Machine
Learning

FLORA
Server

Public Key
Cryptography

<Private Key1>

New Reencryption
with <Public Key2>

<Public Key1>

<Private Key2>

Request
access to data

Train ML
Predictors

Third-Party
(clinician)

Blockchain
Consent
System

Figure 4. Sharing4Good mode architecture.

To support its functionalities, the app employs a modular architecture based on
microservices. This ensures that each feature operates independently, allowing for seamless
updates and scalability. The local storage of data is managed using the Android Room
database, which provides an efficient mechanism for secure, offline data handling. For
network communication, the app leverages Ktor, a robust framework that ensures secure
API interactions, further enhancing the security of data exchanges between the app and the
FL orchestrator.

2.5. Federated Learning Architecture

Federated learning [9] is particularly beneficial for health-related applications as
sensitive information is not exposed during the training process. Hence, FL holds the
potential for generating high-quality and personalized predictions and insights without
compromising privacy.

Recent studies have demonstrated the effectiveness of FL in several healthcare applica-
tions. For instance, Patel et al. [23] reviewed state-of-the-art techniques for adopting FL in
smart healthcare, analyzing market needs, industry trends, and challenges in adopting FL
frameworks. Liu et al. [24] proposed a secure and efficient smart healthcare system based
on FL, addressing critical issues such as reducing system overhead and authenticating user
devices. Nikolaidis et al. [25,26] showed that FL can achieve similar predictive accuracy to
centralized settings in the context of predicting early dropouts from healthy aging applica-
tions, focusing on patients with Parkinson’s disease, while also demonstrating the potential
for improving training efficiency and reducing environmental impact.

Despite these recent advances, most studies simulate FL processes, which may not
fully reflect real-world scenarios where data are distributed across actual individuals. In
addition, to the best of our knowledge, no study integrates FL to enhance user privacy into
period-/ovulation-tracking applications, leaving significant room for exploring privacy-
preserving techniques in this domain. To address this gap, FLORA introduces a generic,
practical, privacy-preserving FL framework that can be integrated into any application
(whether web or mobile), using ovulation-tracking applications as a case study, an area
that has received limited attention concerning user privacy needs. Moreover, FLORA’s
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architecture can be integrated with any ML algorithm that can be executed under FL
settings such as neural networks, random forests, logistic/linear regression, and gradient
boosting algorithms. On top of this, FLORA can be integrated with state-of-the-art PETs
like HE and DP, technologies that are already integrated into the platform.

In our federated learning implementation, we began by experimenting with popular
Python libraries to establish a robust foundation for our models in a simulation environ-
ment. Initially, we utilized Pandas and NumPy for efficient data processing, manipulation,
and analysis. For traditional machine learning algorithms, we will employ scikit-learn,
which provides a comprehensive suite of tools for learning tasks, and pre-processing meth-
ods such as normalization and evaluation metrics for our models. PyTorch was used to
handle more advanced models, such as artificial neural networks, due to its flexibility and
extensive support for deep learning.

During the simulation phase, we incorporated visualizations to analyze data character-
istics, as well as to observe the convergence of our models and compare their performance
across different metrics.

As we transitioned from simulation to production, our focus shifted to creating a
hardware-agnostic training pipeline, with models that can be deployed across platforms
with different characteristics, including web and mobile applications. For this, we leveraged
ONNX (Open Neural Network Exchange) and its runtime, onnxruntime, to enable model
interoperability and optimize execution on different devices.

In production mode, we also developed a job scheduler—a service orchestrating the
FL process. The service distributes the global model to clients, receives locally trained
models, and aggregates them to update the global model.

Some screens of the developed web FL orchestrator are presented in Figure 5.

Figure 5. Web FL orchestrator.

2.6. Privacy-Enhancing Techniques
2.6.1. Fully Homomorphic Encryption

Fully homomorphic encryption is a cryptographic technique that allows computations
to be performed on encrypted data without requiring decryption. This capability is crit-
ical for preserving privacy in scenarios where sensitive data must be processed without
exposing the underlying information. Even though FL ensures that raw data remains with
the data owner, model updates shared during the training process can still leak sensitive
information [27]. We introduce FHE to our FL framework to counter potential inference
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attacks to ensure that neither our FL orchestrator nor any other adversary can access
local model parameters. Our approach ensures that the aggregation service, operating
on encrypted data, performs the aggregation blindly and only clients can decrypt the
aggregated outcome.

FHE supports both additive and multiplicative operations, making it ideal for com-
plex computations necessary in machine learning models. Unlike partially homomorphic
encryption (PHE), which only allows a limited set of operations on encrypted data (e.g.,
only addition or only multiplication), FHE permits arbitrary computation sequences, pro-
viding a higher level of flexibility [28]. For instance, PHE cannot perform operations such
as weighted averaging, thus making FHE the preferred option [29]. Since we are work-
ing on floating point numbers, i.e., neural network weights, we will employ the CKKS
cryptosystem [30].

Secure aggregation using FHE protocols in FL has been extensively studied in the
literature. Hijazi et al. [31] proposed a method for secure aggregation on IoT devices using
FHE, where model weights are encrypted before being sent to the server, and only users
(with access to the private key) can decrypt the aggregated result. Similarly, SafeLearn [32]
employs a multi-party FHE scheme, where the secret key is divided among clients, al-
lowing each client to decrypt the global model after the encrypted aggregation process.
Finally, Ref. [28] introduced a protocol that utilizes a multi-party key variant of the CKKS
cryptosystem for secure aggregation.

Despite these advancements in ensuring privacy and security through homomorphic
encryption, most research efforts have been conducted using simulation devices. Hence,
overseeing the computational overhead introduced by FHE protocols.

In our FL implementation, participants encrypt their model updates (i.e., weights)
using a shared public key before transmission to the central server. The server aggregates
these encrypted updates without decrypting them, thus preventing any potential data
leakage while ensuring privacy. The encrypted global model, aggregated by the server, is
then sent back to participants who decrypt it using their private keys to continue training.
Overall, the secure aggregation process ensures the privacy, accuracy, and integrity of the
machine learning models [33].

To facilitate this, we use Microsoft’s Simple Encrypted Arithmetic Library (SEAL) to
incorporate FHE, specifically the CKKS cryptosystem, into our FL setup. SEAL is an open-
source library that supports several FHE schemes and is optimized for several platforms,
including Android applications [34]. By incorporating SEAL into our FL system, we
maintain a platform-agnostic solution that can be deployed across a wide range of devices
and applications without compromising security or performance.

FLORA employs a trusted secure server for key generation for consistency and in-
tegrity in key management. Specifically, the following workflow is implemented:

1. A trusted secure server generates a public–private key pair for the CKKS cryptosystem
using the SEAL library.

2. The private key is securely transmitted to clients that participate in the FL process via
a secure channel, with end-to-end encryption during transmission.

3. The public key is stored both on the server and the clients, allowing for encrypted aggregation.
4. After local model training, each client encrypts the model parameters using the

provided public key.
5. The encrypted parameters are sent to the FL orchestrator for aggregation. Note that

no plaintext data leave the client device.
6. The FL server aggregates the encrypted updates using homomorphic operations,

i.e., it performs blind aggregation using the weighting averaging technique of the
FedAvg algorithm [9]. The CKKS natively supports operations on floating-point
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numbers, enabling computations of encrypted neural network weights, which is ideal,
in our context.

7. The aggregated encrypted global model is transmitted to the clients selected for the
subsequent federated round. The clients then decrypt the aggregated model using
their shared private key. Steps 4–7 are repeated until model convergence.

A single point of failure could be the trusted secure server. To prevent possible
unauthorized access, this server is isolated and protected by access control mechanisms
to ensure that private keys remain confidential. In addition, periodic key rotation is
implemented to improve security and minimize risks associated with compromised keys.

2.6.2. Differential Privacy

While secure aggregation techniques using FHE or similar approaches enable blind
aggregation, which enhances client privacy, the risk of inferring additional information
from the aggregated global model still persists [35]. To further strengthen data privacy and
mitigate these risks, differential privacy (DP) techniques are employed. DP techniques may
add noise at different stages of the machine learning pipeline; either to the original data,
during model training, after training, after aggregation, or using a combination of these
methods [36]. However, the introduction of noise can hinder convergence, and finding the
optimal balance between privacy and model utility (accuracy) remains a challenge.

DP has gained significant attention due to its strong mathematical foundation and
theoretical privacy guarantees. In the context of FL, Yang et al. [37] introduced a novel
approach that balances model accuracy with privacy through an adaptive DP mechanism.
Similarly, Wei et al. [38] proposed a DP-based federated framework focused on optimizing
the trade-off between convergence and privacy levels. Hidayat et al. [39] introduced an
adaptive Gaussian clipping method in FL to enhance privacy while maintaining model
accuracy, which complements the goals of dynamic adaptive differential privacy. However,
many recent studies have attempted to optimize the trade-off between privacy and utility
using simulation approaches and re-executing federated training from scratch, which is
impractical in real-world applications. In our context, we will first simulate DP scenarios
and then deploy the most viable one based on the privacy-utility trade-off, prioritizing
approaches that require minimal effort (i.e., avoiding extensive hyper-parameter search).

In our approach, we started by simulating different combinations of DP techniques to
identify the most suitable for our practical application. We explored both local DP (LDP)
methods, where noise is added under the client’s control on the model parameters during
training, and central DP (CDP) methods, where the server introduces noise to the aggre-
gated output, as well as combinations of both approaches. Based on the insights gained
from these simulations, particularly the measurements of the privacy-utility trade-off, we
selected LDP as the mechanism for ensuring differential privacy, which provides stronger
privacy guarantees than CDP. From the experiments, it is evident that LDP improves pri-
vacy without heavy costs on the model’s predictive performance. Specifically, we employed
several frameworks, each with unique characteristics, to integrate the following DP mecha-
nisms: OpenMined’s PyDP for noise addition into the original data, IBM’s Diffprivlib for
integrating DP into simple models like linear regression, and PyTorch’s Opacus for noise
addition during neural network model training.

2.6.3. Proxy Re-Encryption

Data transmission and secure storage are critical aspects of data management, espe-
cially in scenarios requiring stringent security measures. Ensuring that data are encrypted
during transmission and that only the data owner can access the data later (e.g., in the case
of lost access to local data) is essential for maintaining continuous application usability.
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Traditionally, when only secure storage is required, symmetric encryption algorithms
like AES are commonly used. In this approach, the client generates a secret key derived
from a personal secret, such as the user’s password. The data are then encrypted and the
ciphertext is transmitted to the server. The server cannot infer any additional information
from the ciphertext and only the user can decrypt it using the underlying secret key.

However, in more complex scenarios, such as those where users can choose whether
another entity, e.g., a service provider or another user can access their data with their
consent, traditional symmetric encryption approaches are insufficient, since clients have to
share their private key, breaking the concept of key confidentiality. In our context, users
have the option to participate in the Sharing4Good mode, where they can send their data,
and with their consent, clinicians might access the data for further analysis. The data
must remain encrypted to prevent potential data leakage that could reveal sensitive user
information. Clinicians can only access the data with the user’s explicit consent.

To address this challenge, we utilize proxy re-encryption [13], a public-key cryptosys-
tem that allows data encrypted on the user’s side to be transformed into another ciphertext
that can be decrypted under a different secret key (in this case, the FLORA backend’s key).

To this end, users generate a public–secret key pair, with the secret key kept local
and never transmitted. They encrypt their data and send them to the server, where the
data remain secure as they cannot be decrypted without the secret key. When the FLORA
backend or another entity needs access to specific user data, they request the user’s consent.
If the user agrees, they generate a re-encryption key using their secret key and the entity’s
public key. This re-encryption key does not reveal any information about the original secret
key but allows the third party to access the data. The re-encryption key, along with the
encrypted data, can be transmitted to a proxy for re-encryption. This process does not
expose any details about the underlying plaintext; the re-encrypted ciphertext can only be
decrypted by the entity that requested access using its secret key.

In recent years, PRE has been used for both secure storage and to secure transac-
tions in machine and FL pipelines. Keshta et al. [40] proposed a blockchain-based data-
sharing scheme using PRE to enhance privacy protection and access control in distributed
environments. The proposed system divides blockchain nodes into different roles that
independently manage re-encryption key parameters, thus facilitating the dynamic and
secure updating of access rights. In the context of FL, Shen et al. [41], introduced a
privacy-preserving multiparty deep learning scheme leveraging a novel homomorphic
PRE approach to ensure user privacy in deep learning processes. The scheme is primarily
designed to thwart collusion between semi-honest servers by employing a fog node as
a proxy, which utilizes a one-way homomorphic proxy re-encryption scheme to securely
transform user-end ciphertext into server-end ciphertext. Finally, Zhang et al., in the context
of homomorphic encryption-based aggregation in FL, presented a method that allows for
fine-grained control over users who can access re-encrypted homomorphic encryption keys,
ensuring that only authorized participants can access underlying keys [42].

In the FLORA project, we implemented PRE using NuCypher’s Umbral PRE library,
which supports modern elliptic-curve cryptography. Specifically, the workflow for the PRE
mechanism in FLORA is as follows:

1. Each user generates a public–private key pair, automatically, during app registration.
2. The private key is securely stored on the user’s device and never transmitted, while

the public key is directly sent to the FLORA server. Note that the public key does not
expose any information about the associated private key.

3. When a third party (e.g., a clinician) requests access to a user’s data, the user is
presented with a notification to provide their explicit consent. If the user declines
the request, the process stops and the third party cannot observe any user’s data.
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On the other hand, if the user accepts the data access request, a re-encryption key is
generated locally using their private key and the third party’s public key.

4. The re-encryption key is transmitted to the FLORA proxy server. Note that this key
does not reveal anything about the user’s private key.

5. The proxy server re-encrypts the ciphertext without accessing the plaintext and trans-
forms it into a format that can be decrypted using the third party’s private key.

6. The proxy server transmits the re-encrypted ciphertext and then, the third party
decrypts the re-encrypted data using their private key.

2.7. Blockchain Integration

FLORA leverages blockchain technology as a robust solution to enhance transparency
and foster user trust. The blockchain framework is centered around three components: a
secure model vault to store the FL server’s global models, an advanced consent manage-
ment system, and a blockchain-based reward system for incentivizing users to participate
in the FL process.

The Model Vault is designed to be a secure, blockchain-based repository for storing,
managing, and sharing ML models within the context of FL. The primary objective of the
Model Vault is to provide a tamper-proof environment where ML models can be stored
securely and shared among authorized participants. By using blockchain technology, we
ensure that every model version is recorded immutably, offering an auditable history of
model development. This solution will facilitate secure collaboration among researchers
and developers, ensuring that models can be trusted and used across different stages of
federated learning processes. This feature is particularly critical in medical applications,
where it is essential to ensure that models used in healthcare decisions have not been
tampered with. The application of blockchain technology in managing and securing
ML models, particularly within federated learning frameworks, is an emerging area of
research. Blockchain has been increasingly adopted to ensure the integrity, traceability, and
immutability of stored models. For instance, Kleinaki et al. [43] introduced a blockchain-
based notarization service specifically aimed at providing secure and verifiable storage
of biomedical data. This approach is especially relevant in healthcare, where maintaining
the integrity of machine learning models is critical to ensuring reliable patient outcomes.
However, when considering the storage of models on public blockchains, several factors
must be taken into account. Refs. [44,45] highlights the trade-offs between cost and
performance in Ethereum-based decentralized applications, particularly when dealing with
high-volume data like machine learning models. While blockchain offers unparalleled
security and transparency, the cost of transactions and storage can be a challenge. For this
reason, the use of a hybrid approach, where off-chain storage solutions like distributed
file systems such as IPFS or Swarm are combined with on-chain hash verification, is
recommended to balance security with cost-effectiveness. This approach emphasizes
the need to carefully select the blockchain infrastructure based on specific application
requirements. In our system, we have implemented both a solution where everything is
stored on the blockchain, which can be used in private EVM-based systems where the cost
does not affect us, as well as a hybrid architecture utilizing IPFS and Ethereum, to adapt to
the needs of each different case.

Moreover, FLORA introduces a blockchain-based reward system designed to incen-
tivize user participation and data contributions within collaborative ML and FL frameworks.
Blockchain-based reward systems have emerged as a promising solution for incentiviz-
ing participation in FL and ML [46]. These systems use blockchain tokens to reward
participants based on their contributions, such as data provision and computational re-
sources. Smart contracts automate the issuance and management of these tokens, ensuring
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transparency and fairness in reward distribution. In healthcare, blockchain rewards are par-
ticularly valuable, promoting user participation in a transparent and incentivized manner.
For instance, Chen et al. [47] explored blockchain’s role in FL to incentivize patient data
contributions, which are crucial for developing accurate ML and FL models while main-
taining data privacy. Similarly, Refs. [48,49] highlight the potential of blockchain tokens
in rewarding participants fairly in FL setups, ensuring that contributors are compensated
based on the value of their input. Additionally, the integration of blockchain in FL systems
helps prevent dishonest behavior, such as data tampering or unfair token distribution, by
ensuring accurate records and fair rewards, thereby enhancing trust in FL applications.
To ensure that, FLORA evaluates user contributions using a reputation-based mechanism
inspired by Shapley Value approximations [49,50]. This system dynamically measures the
impact of individual contributions on the overall model performance, preventing misuse
and ensuring that rewards are distributed fairly based on data quality. In FLORA, each
participating user is rewarded with a blockchain token as evidence of their contribution,
whether through engaging in FL or sharing data with a doctor or server for ML purposes.
These tokens are non-exchangeable and include mechanisms for revocation in cases of dis-
honest behavior. Users can later redeem these tokens for third-party services, such as free
appointments with doctors. To preserve user anonymity in reward transactions, FLORA
employs a “use-and-burn” token mechanism, where tokens are immediately burned upon
usage, ensuring no persistent on-chain record exists that could reveal user activity patterns.
These transactions are conducted within a zk-rollup environment on Polygon zkEVM [51],
an off-chain aggregation solution that uses cryptographic proofs to validate transactions
on-chain. Specifically, each token is minted within this environment and burned instantly
upon redemption, while a corresponding zero-knowledge proof is generated and submitted
to Ethereum. This approach confirms the validity of the transaction without exposing sen-
sitive details, leveraging the low-cost batch processing capabilities of zk-rollups. FLORA’s
blockchain implementation utilizes a customized ERC-20 token called FLORA Token (FLT).
FLT has no subdivisions, ensuring each token represents an indivisible unit of contribution.
Additionally, FLT is designed with non-transferable functionality, inspired by the concept
of soulbound tokens (SBTs), ensuring tokens remain bound to their original recipients.

FLORA will also integrate ConInSe [52], a blockchain-based consent system, to manage
and record user consent securely and transparently. ConInSe, developed as part of the
TRUSTCHAIN project, is designed to empower users with full control over their data-
sharing preferences, ensuring that their consent decisions are immutably recorded on the
EVM-based blockchain. To further enhance user anonymity and prevent potential data
leaks, we deployed it on Polygon’s zkEVM. This architecture processes consent transactions
off-chain, generating zero-knowledge proofs that validate these actions without exposing
sensitive details. This consent system empowers users to make informed choices about
their data, fostering trust in the app’s privacy policies. In medical applications, the use of
blockchain-based consent management systems has been proposed [53], allowing doctors or
researchers to request user data while ensuring that users maintain full control over whom
they grant access to and for what duration, ensuring both transparency and alignment with
GDPR requirements. In our application, doctors or researchers can request access to user
data or participate in FL models. Users decide whom to grant access to and for how long,
thus maintaining full control over their data-sharing decisions. By providing a transparent
and auditable record of consent transactions, FLORA enhances user accountability and
prevents unauthorized data usage. Our integration of ConInSe also includes features such
as allowing users to select specific data they wish to share, as well as incorporating the
data in our reward system. All of these options are seamlessly integrated into the mobile
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application via an easy-to-use interface, enabling users to manage their consents effortlessly
and reinforcing FLORA’s user-centric approach.

2.8. Integration and System Architecture

The FLORA architecture adopts a modular design based on microservices, ensuring
flexibility, scalability, and ease of integration. The system integrates key components such
as federated learning, privacy-enhancing technologies, blockchain, and mobile applications
through well-defined APIs and containerized environments. Figure 6 provides an overview
of the system’s flow and interactions among its components.
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Figure 6. FLORA interaction flow diagram.

The system is designed as a collection of microservices, each responsible for a specific
functionality, including:

• Federated learning orchestrator: Manages the distribution of models to user devices,
aggregation of local updates, and synchronization of the global model.

• Cryptographic engine: Implements privacy-enhancing technologies (PETs) such as dif-
ferential privacy (DP), fully homomorphic encryption (FHE), and proxy re-encryption
(PRE) to secure data and model parameters.

• Blockchain layer: Handles user consent management, model storage (via the Model
Vault), and token-based reward distribution through smart contracts.

This microservices architecture allows independent development, deployment, and
scaling of each component, ensuring the system can evolve and adapt to future requirements.

Each microservice is containerized using Docker, enabling consistent environments
across development, testing, and production. Docker containers encapsulate the required
dependencies, libraries, and runtime, ensuring seamless deployment across different infras-
tructure setups. This approach enhances the system’s portability and reliability, particularly
when scaling across multiple servers or cloud environments.

The integration between components is facilitated by RESTful APIs, providing clear
interfaces for communication in the following ways:

• The federated learning orchestrator interacts with user devices via APIs to distribute
models, receive encrypted updates, and provide global model feedback. Specifically,
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the users are connected via WebSocket, so the server can be aware of the users’
availability. The orchestrator samples at least three clients or the 10% of available (if
more than 3) and sends them a trigger message in the WebSocket. Then clients receive
the model via an API endpoint, train it locally, and distribute it into an API endpoint.

• The blockchain layer exposes APIs for recording consent transactions, retrieving model
metadata, and processing token rewards.

• The cryptographic engine communicates with the orchestrator through APIs to apply
encryption, decryption, and re-encryption processes seamlessly.

These APIs ensure interoperability and simplify the integration of new functionalities or
third-party services.

2.9. Privacy and Security Analysis

As mentioned in the previous sections, FLORA integrates advanced PETs, i.e., FHE,
DP, and PRE to minimize user data exposure.

FHE is integrated to ensure that local model updates are never exposed to the aggre-
gator server, enabling blind aggregation and minimizing potential inference attacks.

Formally, let wt
i represent the model weights in plaintext format for client i at federated

round t. The encryption function is denoted as Ek(·), where k is the public key from the
CKKS cryptosystem, and the decryption function as Dc(·), where c is the shared private
key. FHE ensures the following:

Dc( f (Ek(wt
i ), Ek(wt

j), . . .)) ≈ f (wt
i , wt

j , . . .),

where f represents a computation, in our context, the aggregation function. In FLORA, the
server receives encrypted updates Ek(w) from each client, aggregates them blindly, and
returns Ek(wglobal), where wglobal is the updated global model.

Hence, the orchestrator or any other intermediate adversary cannot infer Wt
i or any

intermediate computation without the decryption key c, ensuring confidentiality in local
model updates. Since FHE enables the aggregation of encrypted data, it effectively mitigates
inference attacks that exploit intermediate model updates.

DP provides an additional layer of protection against information leakage by intro-
ducing statistical noise into the local models, just before encryption, on the clients’ side.
Note that we selected this approach after experiments with the CDP and LDP approaches.

In general, DP ensures that the inclusion or exclusion of any single data point x ∈ D
for a D does not significantly modify the output of a function f (D). For any two datasets,
D and D′, differing by at most one element (∥D −D′∥1 ≤ 1), and for all possible outputs
S ⊆ Range( f ):

Pr[ f (D) ∈ S] ≤ eϵ Pr[ f (D′) ∈ S] + δ,

where ϵ > 0 is the privacy budget, and δ > 0 accounts for the probability of failure.
The FLORA system employs LDP, where noise is added to model updates on the client

side before encryption and transmission to the central server.

• Noise η ∼ N (0, σ2) to the local model parameters wt
i , resulting in (wt

i )
′
= wt

i + η.
• The variance σ2 is calibrated based on ϵ and the sensitivity ∆w of the model updates

the following:

σ2 =
2 ln(1.25/δ)∆w2

ϵ2 .

In our context, DP ensures that individual user contributions are obfuscated within the
aggregated model. Thus, DP effectively guarantees that adversaries attempting to extract
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individual-level information from the global model cannot infer any additional knowledge
about individual contributions, bounded by (ϵ, δ).

Beyond FHE and DP, which minimize privacy risks during the FL process, FLORA
integrates PRE, which allows users to participate in the ‘Sharing4Good’ mode. In this mode,
users willing to contribute to the community by providing additional data for algorithmic
development or users who wish to provide data to their clinicians (e.g., for health-related
reasons), are allowed to share their submitted data from the app with their selected external
party under strong security guarantees.

PRE allows encrypted user data to be transformed into ciphertexts, which are decrypt-
able by authorized third parties, such as clinicians, only with the user’s explicit consent.
Specifically, let the user generate a key pair (sku, pku), and an external party, e.g., a clinician,
owns a different key pair (skc, pkc). The user encrypts their data D as follows:

Cu = Epku(D).

The third party (clinician) sends a data access request to the user. To allow the access,
the user generates a re-encryption key ru→c using:

ru→c = f (sku, pkc),

where f is a cryptographic function that binds sku and pkc. The proxy uses ru→c to transform
Cu into Cc = Epkc(M), which is decryptable under the third party’s key skc.

Without sku or skc, neither the proxy nor any adversary can decrypt Cu or Cc, ensuring
data confidentiality and controlled sharing. The above mechanism ensures that sensitive
user data remain inaccessible to unauthorized parties and enables secure data sharing with
trusted entities.

The combination of FHE, DP, and PRE measures ensures that the FLORA application
effectively protects user privacy and mitigates risks associated with data sharing and
collaborative learning in a federated environment.

3. Results
This section presents the outcomes of machine learning experiments comparing cen-

tralized and federated learning (FL) approaches for a multi-class classification task. Key
metrics include prediction accuracy and convergence, as well as an analysis of FL’s practical
deployment characteristics such as latency and resource efficiency.

3.1. ML Predictive Accuracy-Simulation Mode

The centralized learning setup achieved an accuracy of 81%, compared to 78% for
standard federated learning, without any use of extra encryption techniques. While the
centralized approach benefits from direct access to the entire dataset, FL demonstrated
comparable performance despite its decentralized nature, highlighting its potential as a
privacy-preserving alternative.

The experiments utilized 20 epochs for centralized learning and 10 federated rounds of
2 local epochs to ensure an equal number of data accesses across both setups. This ensured
a fair comparison of the two approaches under similar training conditions.

Figure 7 presents the convergence curves for the different learning setups. The key
points that can be identified are as follows:

• Centralized learning: Exhibited faster and more stable convergence, with both train-
ing and testing loss curves stabilizing by epoch 15.
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• Federated learning: Showed a slightly slower convergence rate, with minor fluctuations
in test loss across the federated rounds. This can be attributed to the non-IID (non-
independent and identically distributed) nature of local data on participating devices.
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Figure 7. Loss curves for centralized and federated setups.

Despite these differences, the small accuracy gap (3%) between centralized and
federated learning underscores FL’s viability for real-world applications where privacy
is paramount.

3.2. FL Framework Performance-Actual Deployment

The FL framework was deployed in a real-world environment involving four end-
user devices. The deployment setup was designed to mimic realistic conditions, ensuring
that the results provide valuable insights into the framework’s practical feasibility. The
evaluation focused on key performance metrics, including training time and predictive
accuracy. This section compares the performance of centralized learning, standard FL, and
FL with FHE and DP.

Each client device was assigned an equal share of the dataset, ensuring a balanced
distribution of data instances across the four devices. Specifically, each client processed
approximately 25% of the total dataset, which included artificially generated data to address
the limited availability of real-world instances.

The deployment assumed a theoretical uniformity in hardware specifications across
all devices. While the devices were not physically distinct, the framework emulated a
consistent computational environment, including processing speed, memory availability,
and network latency, to ensure fairness in the evaluation. This theoretical uniformity
allowed the results to focus on the performance of the FL framework itself, independent of
hardware variability.

Table 3 summarizes the performance metrics, including execution time per epoch and
predictive accuracy, for the four configurations. Centralized learning demonstrated the
fastest execution time, achieving 0.10 s per epoch with a predictive accuracy of 81%. Plain
federated learning incurred a marginal increase in execution time, reaching 0.12 s per epoch
with accuracy ranging from 78%. Federated learning with FHE required 0.14 s per epoch
due to the additional computational overhead of encryption and decryption processes,
achieving an error rate of 77%, very close to the standard FL. As anticipated, FL with DP
performed worse (74%), due to the associated inserted noise.
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Table 3. Execution time per epoch and error rate comparison in real deployment.

Configuration Execution Time per Epoch Accuracy

Centralized Learning 0.10 s ± 0.01 s 81%
Standard Federated Learning 0.12 s ± 0.02 s 78%
Federated Learning with FHE 0.14 s ± 0.02 s 77%
Federated Learning with DP 0.12 s ± 0.03 s 74%

Execution time per epoch reflects the computational demands of each configuration.
Centralized learning achieved the shortest execution time because it directly accessed
the entire dataset without the need for distributed updates or encryption. Federated
learning added latency due to its reliance on local training and server aggregation, while
federated learning with FHE and DP introduced further delays as a result of encryption and
decryption operations. Despite these differences, the training times for all configurations
remained efficient and suitable for practical deployment.

The accuracy across the configurations indicates the robustness of the models. Fed-
erated learning configurations achieved comparable predictive accuracy to centralized
learning, while FHE and DP introduced a slight performance degradation due to the
computation noise.

The capacity of the FL framework to handle varying workloads was tested by increas-
ing the number of participating devices from two to four. The results demonstrated a linear
increase in latency per round as the number of devices grew, indicating the framework’s
ability to manage additional devices efficiently. Importantly, this behavior was achieved
without significant degradation in accuracy or computational performance, validating the
system’s design for practical real-world applications.

In conclusion, the FL framework demonstrated strong performance across all key
metrics, balancing accuracy, efficiency, and privacy preservation. Centralized learning
achieved the fastest execution times, while FL configurations offered comparable accuracy
with added privacy guarantees. The integration of FHE and DP enhanced security but
with a slight increase in computational overhead. These findings confirm the feasibility of
federated learning as a practical and scalable solution for privacy-preserving applications
in real-world health settings. The system’s performance metrics highlight its potential to
address privacy concerns while maintaining robust predictive capabilities.

4. Discussion
The results of the FLORA project illustrate its innovative approach to addressing

privacy concerns in digital health applications through the integration of federated learning
(FL), privacy-enhancing technologies (PETs), and blockchain. These results reveal signif-
icant insights into the balance between privacy preservation and functionality and the
practical challenges and opportunities presented by deploying FL in real-world settings.

4.1. Implications of the Proposed Architecture

FLORA successfully demonstrates the feasibility of utilizing federated learning to
preserve user privacy without sacrificing predictive performance. The decentralized nature
of FL ensures that sensitive personal data remain on user devices, mitigating the risks
associated with centralized data storage. Furthermore, including PETs, such as fully
homomorphic encryption (FHE) and differential privacy (DP), enhances data security
by protecting model updates against potential privacy attacks. Blockchain integration
further bolsters transparency by providing immutable consent tracking and verifiable
model update histories.
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These features collectively highlight the potential of FLORA’s architecture to address
longstanding challenges in digital health. The framework’s dual operational modes allow
users to tailor their privacy preferences, fostering trust and engagement. Additionally, the
real-world deployment of FLORA illustrates that advanced privacy-preserving technologies
can achieve practical scalability while maintaining acceptable latency and overhead.

4.2. Challenges and Areas for Improvement

The computational overhead introduced by FHE and other cryptographic measures
remains a significant challenge. While strategies such as compression and hardware opti-
mization mitigated these issues, further work is required to streamline these technologies
for broader, large-scale applications. Additionally, the variability in device capabilities and
network conditions occasionally affected the consistency of local model training during
real-world tests. This highlights the need for adaptive algorithms capable of dynamically
adjusting training workloads.

Another challenge encountered was user education. Privacy-preserving technologies
are often complex, and many users lack familiarity with terms like federated learning or
homomorphic encryption. Simplified explanations and interactive interfaces could bridge
this knowledge gap, ensuring informed participation and greater trust in the system.

4.3. Broader Implications

FLORA’s design demonstrates that it is possible to combine privacy preservation
and practical application in digital health, setting a benchmark for the development of
privacy-friendly systems across other domains. The framework is particularly relevant for
applications involving sensitive data, such as mental health monitoring or chronic disease
management, where privacy concerns are paramount.

Moreover, the token-based reward system highlights an ethical model for incentiviz-
ing user participation. By aligning user benefits with collective goals, FLORA offers a
sustainable approach to data sharing that avoids commodification or exploitation.

5. Conclusions
FLORA represents a significant step forward in the development of privacy-preserving

health applications. By combining federated learning, advanced cryptographic techniques,
and blockchain, the project demonstrates that it is possible to deliver predictive functionality
while safeguarding user privacy. The system’s flexibility and scalability, validated through
real-world deployment, underscore its potential as a viable solution for sensitive digital
health domains.

While FLORA achieved promising results, its challenges underscore the need for fur-
ther refinement. Reducing the computational demands of privacy-preserving technologies,
improving user interfaces for privacy education, and enhancing system adaptability are
critical next steps. Additionally, integrating FLORA with broader healthcare infrastructures,
such as electronic health records and clinical systems, could expand its utility and impact.

Beyond ovulation tracking, FLORA’s architecture provides a framework for other
privacy-critical applications. The project’s results illustrate how ethical and secure data
practices can be aligned with advanced functionality, offering a roadmap for the future
of digital health technologies. In a landscape increasingly defined by the trade-offs be-
tween data utility and user privacy, FLORA sets a standard for how both goals can be
achieved simultaneously.
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