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Abstract: High-definition (HD) maps aim to provide detailed road information with
centimeter-level accuracy, essential for enabling precise navigation and safe operation
of autonomous vehicles (AVs). Traditional offline construction methods involve several
complex steps, such as data collection, point cloud generation, and feature extraction, but
these methods are resource-intensive and struggle to keep pace with the rapidly changing
road environments. In contrast, online HD map construction leverages onboard sensor data
to dynamically generate local HD maps, offering a bird’s-eye view (BEV) representation of
the surrounding road environment. This approach has the potential to improve adaptability
to spatial and temporal changes in road conditions while enhancing cost-efficiency by
reducing the dependency on frequent map updates and expensive survey fleets. This survey
provides a comprehensive analysis of online HD map construction, including the task
background, high-level motivations, research methodology, key advancements, existing
challenges, and future trends. We systematically review the latest advancements in three
key sub-tasks: map segmentation, map element detection, and lane graph construction,
aiming to bridge gaps in the current literature. We also discuss existing challenges and
future trends, covering standardized map representation design, multitask learning, and
multi-modality fusion, while offering suggestions for potential improvements.

Keywords: high-definition map; online high-definition map construction; autonomous
vehicle; autonomous driving

1. Introduction
High-definition (HD) maps aim to provide highly accurate digital representations of

the road environment with centimeter-level precision and multi-dimensional data [1,2].
These maps typically consist of several key layers [3,4]: (1) base map layer, which offers a
3D representation of the environment created from sensor data; (2) geometric map layer,
which defines lane-level geometric features such as the layout of roads, lanes, sidewalks,
and traffic elements; (3) semantic map layer, which offers semantic context, including
road features such as traffic signs, signals, and pedestrian crossings; (4) road connectivity
layer, which describes topological relationships between road features, supporting lane
connectivity and intersection layouts; (5) prior map layer, which uses historical data to
predict road participant behavior and dynamic traffic scenarios; and (6) real-time data layer,
which provides live updates, including traffic conditions, weather, and road closures. HD
maps serve as long-range sensors for AVs and overcome the limitations of on-board sensors,
such as visual occlusion and time constraints. They enhance AVs’ ability to perceive and
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understand complex traffic scenes, supporting tasks such as localization, path planning,
decision-making, and control [5,6]. HD maps can be global, offering broad coverage,
or local, providing detailed regional information.

Specifically, traditional global HD maps are built offline, involving three main steps:
data collection, point cloud map generation, and feature extraction [7–11]. During data
collection, survey vehicles equipped with advanced sensor systems—such as light detection
and ranging systems (LiDARs), cameras, radars, global navigation satellite system (GNSS)
receivers, and IMUs—are deployed to acquire multimodal environmental data with high
precision. Then, the multimodal data are processed through algorithms such as simultaneous
localization and mapping (SLAM) [12,13], point cloud registration [14,15], and sensor fusion [16,
17] techniques to construct a detailed 3D point cloud representation of the environment.
Finally, relevant features such as road networks, lane markings, traffic signs, and traffic
lights are extracted from the point cloud map using manual methods or machine learning
techniques [120].

While the traditional offline HD map construction method can integrate data from
multiple sources and support complex computation and analysis, it also faces some sig-
nificant drawbacks. Firstly, the process is very costly. The data collection phase requires
survey vehicles equipped with advanced sensors, which are expensive to purchase and
maintain. Additionally, the feature extraction phase incurs further costs due to the need
for personnel for manual labeling or high-performance computing equipment for running
machine learning algorithms [7]. Secondly, it is challenging to maintain the accuracy and
relevance of HD maps in dynamic environments. Environmental changes, such as new
road construction, altered traffic signs, or unexpected accidents, can lead to discrepancies
between the map and current conditions. As a result, static maps quickly become outdated,
necessitating frequent and costly updates [3,18].

In this context, researchers have proposed algorithms [19–22] that leverage large-
scale data and learning-based methods to construct HD maps online, attracting increasing
attention. Concisely, we define the corresponding task as Online HD Map Construction,
which takes raw data from vehicle-mounted sensors as input and generates local HD maps
as output. The raw data consist of multimodal sensor outputs, including camera images,
LiDAR and radar point clouds, and IMU and GNSS data. The resulting HD map is a bird’s-
eye view (BEV) representation of the surrounding road environment, primarily in rasterized
or vectorized formats. This map includes information about static traffic elements, such as
lane dividers, road boundaries, pedestrian crossings, traffic lights, and traffic signs.

The online method has the potential to offer two advantages: improved generalization
capability and increased cost efficiency. For generalization capability, it adapts well, both
spatially and temporally. Spatially, it can extend knowledge from annotated maps to
partially annotated or unannotated areas, predicting road features and structures in unseen
regions. Temporally, it adapts to dynamic traffic environments by processing real-time
sensor data and updating maps promptly to reflect current conditions [22]. Regarding
cost efficiency, the online method can reduce resource demands during map creation and
maintenance. During map creation, it streamlines data collection by prioritizing areas
with complex road layouts while reducing effort in regions with repetitive or sparse road
information, such as highways or remote regions. During map maintenance, it reduces the
need for frequent updates by generating maps that reflect real-time conditions, thereby
reducing the dependence on costly survey fleets and labor-intensive data annotation [23].
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1.1. Comparison to Related Surveys

Although online HD map construction is an emerging and promising research area,
comprehensive reviews on this topic are still limited. Recent reviews on BEV percep-
tion [24,25] have examined key perception tasks for AVs, such as 3D object detection, map
segmentation, and sensor fusion, but have not sufficiently addressed the task of online
HD map construction. Further, recent HD map reviews [1,3,7,26] have focused on map
structure, functionality, offline construction, and maintenance methods, whereas the tech-
niques of online HD map construction are overlooked in these surveys. Moreover, while
some surveys [23,27] have examined online methods for HD map construction, their em-
phasis on traditional offline techniques might potentially limit the applicability of their
findings, given the rapid advancements in this dynamic field. To fill these gaps, we aim to
comprehensively review the latest progress in online HD map construction and provide a
thorough analysis of the latest achievements, existing challenges, and future trends.

1.2. Contributions

In summary, this study makes three key contributions:

1. We provide a comprehensive analysis of online HD map construction for the first
time, covering task background, high-level motivations, research methodology, key
advancements, existing challenges, and future trends. We advocate that dynamically
generating local HD maps using real-time vehicle sensor data can improve mapping
algorithms’ generalization and cost efficiency.

2. We systematically review the latest advancements in online HD map construction,
focusing on three key sub-tasks: map segmentation, map element detection, and lane
graph construction. For each sub-task, we describe method classifications and criteria,
discussing the strengths and weaknesses of each approach.

3. We discuss existing challenges and future trends in online HD map construction.
We focus on standardized map representation design, multitask learning, and multi-
modality fusion while suggesting potential improvements.

1.3. Structure

Figure 1 presents the structure of our survey. Section 1 introduces online HD map
construction, highlighting its significance and research motivations. Section 2 outlines
the research methodology, covering the search strategy, selection criteria, review process,
and survey results. Section 3 presents background information, including task defini-
tions, commonly used datasets, and evaluation metrics. Section 4 discusses the latest
advancements categorized by the output map format—map segmentation, map element
detection, and lane graph construction—analyzing various methods and their strengths
and weaknesses. Section 5 addresses current challenges and identifies potential future
research directions. Section 6 concludes this paper.
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Figure 1. Structure of this survey.

2. Research Methodology
This section presents the research methodology for surveying online HD map construc-

tion, focusing on the search strategy, selection criteria, review process, and survey results.

2.1. Search Strategy

The authors conducted a literature search on online HD map construction across
several scientific databases, including Scopus, IEEE Xplore, ACM Digital Library, and Web
of Science. These databases cover fields such as computer science, electrical engineering,
and intelligent transportation systems, ensuring a diverse range of academic sources.
The search query used was: (((online OR construction OR reasoning) AND ((hd AND
map) OR (lane AND graph) OR (lane AND topology))) AND (“autonomous vehicle” OR
“autonomous vehicles” OR “autonomous driving”)) OR ((bev OR “bird’s eye view” OR
“bird’s-eye view” OR “bird’s-eye-view”) AND segmentation). Only papers published
between January 2020 and January 2025 were included to ensure relevance and timeliness.

2.2. Selection Criteria

To ensure the relevance and quality of the papers in this survey, the authors applied
inclusion and exclusion criteria to the articles obtained through the search strategy.

Inclusion criteria:

1. Focuses on online HD map construction;
2. Published between January 2020 and January 2025;
3. Published in peer-reviewed journals or conferences;
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4. Written in English;
5. Full-text access available.

Exclusion criteria:

1. Research on offline HD map construction;
2. Duplicates;
3. Review, survey, data papers, book chapters, newsletters, or abstracts only;
4. Papers without experimental validation or contribution assessment;
5. Papers lacking comparison with existing literature.

2.3. Review Process

The authors used Rayyan [28], a web-based systematic review tool, to collaboratively
screen literature from scientific databases. The process began with deduplication, arranging
articles alphabetically, and reviewing title similarities to remove duplicates. The remaining
articles were classified as ’INCLUDE’, ’UNCERTAIN’, or ’EXCLUDE’ based on the title and
abstract reviews, with reasons documented and disagreements resolved through discussion.
Then a full-text review was conducted to refine the selection.

To expand the review, the authors used Google Scholar for citation tracing and ref-
erence tracking. Citation tracing uncovered studies missed in database searches, while
reference tracking identified recent or unpublished works citing the selected studies.

The team independently analyzed and synthesized the selected literature, relying on
their collective expertise without external input. The authors systematically reviewed the
objectives, method, findings, and relevance of each study to the research focus. Regular
discussions integrated diverse perspectives and insights from the literature, while mutual
feedback and consensus building minimized biases in research findings.

2.4. Survey Results

Figure 2 presents the research methodology pipeline. The process began by retrieving
relevant papers from multiple databases using search queries, yielding 854 records: 443
from Scopus, 116 from IEEE Xplore, 16 from ACM Digital Library, and 279 from Web
of Science. The authors then performed a systematic screening to refine the selection.
Specifically, 147 records were excluded because they did not meet the selection criteria, 242
were identified as duplicates, 247 were considered less relevant based on the review of
the title and abstract, and 19 were excluded due to a lack of access to full text. After this
screening, 199 records were subjected to a full-text review. Additionally, citation tracking
and reference tracking were performed, resulting in the inclusion of 27 additional papers.
In the end, 72 papers were finalized for inclusion in this survey study.

Publications 
retrieved from

scientific databases
(n = 854)

Publications after
applying the 

selection criteria
(n = 707)

Scopus: 443
IEEE Xplore: 116

ACM Digital
Library: 16 

Web of Science: 279 

Publications 
after title and 

abstract reviews
(n = 218)

Publications after
duplication removal

(n = 465)

Publications after 
the full-text review 

(n = 199)

IDENTIFICATION SCREENING INCLUDED

Publications not 
meeting the 

selection criteria
(n = 147)

Publications 
identified as
duplicates
(n = 242)

Publications less
relevant to the
research topic

(n = 247)

Publications without
 full-text access

(n = 19)

Publications included
in the survey 

(n = 72)

Publications retrieved
from citation and

reference tracking
(n = 27)

Figure 2. Pipeline of research methodology.

3. Background
This section provides background knowledge on online HD map construction. For a

comprehensive overview, we cover task definitions, commonly used datasets, and prevalent
evaluation metrics.
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3.1. Task Definitions

We defined three sub-tasks in online HD map construction: Map Segmentation
methods produce rasterized maps. In contrast, Map Element Detection and Lane Graph
Construction methods generate vectorized maps.

Map Segmentation: This task leverages sensor observation data as input to dynami-
cally create a rasterized map Mr ∈ RH×W , which depicts the surrounding road environ-
ment of the ego vehicle as a grid of map pixels. Each pixel Mi,j

r ∈ Mr corresponds to a
square area in the BEV and is assigned a map semantic category C that identifies the type
of traffic control element present at that location. Here, H and W denote the height and
width of the grid, respectively, while i and j represent spatial indices for each map pixel.
This representation offers the ego vehicle the most fine-grained semantic and geometric
information, allowing it to navigate and comply with traffic regulations.

Map Element Detection: This task leverages sensor observation data to dynamically
create a vectorized map Mv = {Mi

v | i = 1, 2, ..., Nv}, detecting map elements within
the ego vehicle’s surrounding road environment. Each element is represented by an
ordered point sequence S to capture its geometric attributes and assigned a map semantic
category C. Here, Nv denotes the total number of vectorized map elements within Mv.
This representation provides the ego vehicle with instance-level semantic and geometric
information for each map element, serving as an efficient sparse representation of the
surrounding road environment.

Lane Graph Construction: This task leverages sensor observation data to dynamically
create a vectorized map Mv = {V, E}, depicting the ego vehicle’s surrounding road
environment as a directed lane graph. This lane graph comprises a set of vertices V = {Vi |
i = 1, 2, ..., Nv} and directed edges E{Vi | i = 1, 2, ..., Ne}, with each edge connecting two
vertices and indicating a direction from one vertex to another. Here, Nv and Ne denote the
number of vertices and edges, respectively. The representation of the lane graph varies
based on specific requirements, particularly regarding vertex and edge definitions. We will
now introduce three common representations:

• Representation 1: Each vertex represents a point on the lane graph, defined by a
vectorized sequence Sv that encodes its coordinates and attributes. Each edge is a
directed line segment connecting two vertices and is characterized by an ordered point
sequence Sp describing its geometric shape.

• Representation 2: Each vertex represents a lane, capturing its geometric shape with an
ordered point sequence S. The edges are represented by an adjacency matrix I, where
I[Vi, Vj] = 1 indicates that lane Vi connects to lane Vj, with the termination of lane Vj

aligned to the beginning of lane Vi. Here, i and j are the indices of the lane vertices.
• Representation 3: Each vertex represents a lane or a traffic element, capturing its

geometric shape with an ordered point sequence S. The edges are represented by
two adjacency matrices: the first, Ill , denotes the connectivity between lanes, where
Ill [Vi, Vj] = 1 indicates that lane Vi connects to lane Vj, with the termination of lane
Vj aligned to the beginning of lane Vi. The second adjacency matrix, Ilt, describes the
correspondence between lanes and traffic elements, where Ilt[Vi, Vk] = 1 signifies that
lane Vi is related to traffic element Vk. Here, i and j are the indices of the lanes, and k
is the index of the traffic elements.

3.2. Datasets

Table 1 shows common datasets for online HD map construction, among which
nuScenes [29], Argoverse 2 [30], and Openlane-V2 [31] are the three most influential.
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NuScenes Dataset. NuScenes [29] is a comprehensive multimodal autonomous driv-
ing dataset launched in 2019. It features 1000 driving scenes recorded in Singapore and
Boston, each lasting 20 s. The dataset is divided into 700 scenes for training, 150 for valida-
tion, and 150 for testing. NuScenes is notable for being the first dataset to include a full
suite of AV sensors: 6 cameras with a resolution of 1600 × 900, a 32-beam spinning LiDAR,
and 5 radars with a detection range of up to 250 m, offering 360-degree environmental
perception for AVs. In addition, NuScenes provides high-precision, human-annotated
semantic maps in both rasterized and vectorized formats. The original rasterized maps
cover only roads and sidewalks with a resolution of 10 px/m. In contrast, the vectorized
maps offer more detailed information with 11 semantic classes, including road dividers,
lane dividers, and pedestrian crossings. These maps are instrumental as strong priors for
downstream tasks such as prediction and planning.

Table 1. Datasets for online HD map construction. Under Region, “AS” is Asia, and “NA” is North
America. Under Data, “# Scenes” refers to the number of data segments, and “# Scans” represents the
number of point clouds. Under Map Annotation, “# Layers” indicates the number of map semantic
layers, and “3D” indicates whether the map is represented in 3D format. The symbol “–” denotes
that the statistic is unavailable.

Dataset Year Region Sensor Data Map Annotation

# Scenes # Images # Scans # Cities # Layers Resolution 3D

Waymo [32] 2019 NA 1150 12 M 230 k 6 7 – ✗

NuScenes [29] 2019 NA/AS 1000 1.4 M 390 k 2 11 10 px/m ✗

Argoverse 1 [33] 2019 NA 113 490 k 22 k 2 3 – ✓
Argoverse 2 [30] 2021 NA 1000 2.7 M 150 k 6 4 100 px/m ✓
OpenLane-V2 [31] 2023 NA/AS 2000 466 K – 8 3 – ✓

Argoverse 2 Dataset. Argoverse 2 [30] is a comprehensive dataset for autonomous
driving perception and prediction research, released in 2023 as an upgrade to the Argo-
verse [33] dataset. It features 1000 diverse driving scenarios from six U.S. cities, each
consisting of a 15 s multimodal data sequence, divided into 700 scenarios for training,
150 for validation, and 150 for testing. The dataset has an advanced sensor suite that
provides a full panoramic field of view, including seven cameras with 2048 × 1550 pixel
resolution, two roof-mounted 32-beam spinning LiDARs, and two stereo cameras of the
same resolution. It also provides detailed 3D local HD maps in vectorized and rasterized
formats. The vectorized maps include lane-level details such as lane boundaries, markings,
crosswalks, and drivable areas, while the rasterized maps offer dense ground surface height
data. This 3D map representation enhances lane geometry details, aiding AVs in better
perceiving surrounding static traffic infrastructure.

OpenLane-V2 Dataset. OpenLane-V2 [31] is the first dataset designed to advance HD
map construction through topology reasoning of traffic scene structures, launched in 2023.
Building upon the existing nuScenes and Argoverse 2 datasets, it includes 2000 diverse
annotated road scenes divided into two subsets of 1000 scenes each, with 700 scenes for
training, 150 for validation, and 150 for testing. The dataset offers detailed annotations
featuring vectorized HD maps and traffic elements. HD maps provide comprehensive
information on lane segments, including centerlines, boundaries, marking types, and lane
connectivity. Traffic elements such as traffic lights, road markings, and road signs are
annotated within 2D bounding boxes on front-view images, and their relationships to lanes
are represented as adjacency matrices for each frame. These detailed annotations and their
relationships improve AVs’ comprehension of complex road environments, supporting
more accurate navigation and decision-making.
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3.3. Evaluation Metrics

Evaluating online HD map construction requires a comprehensive assessment frame-
work due to its complex nature. Here, we group existing metrics into three categories: (1)
Geometric Quality Evaluation measures the precision of spatial and geometric attributes;
(2) Topology Reasoning Evaluation examines the connectivity and correspondence be-
tween map elements; and (3) Comprehensive Evaluation provides an overall performance
assessment by integrating multiple metrics.

3.3.1. Geometric Quality Evaluation

Intersection over Union (IoU). The most common metric to evaluate pixel-level
localization performance in detection and segmentation tasks is the Intersection over Union
(IoU) [23,34]. It assesses the similarity between the predicted representation (DP) and the
ground-truth geometry (DG) by calculating the ratio of the intersection of the two areas
(DP ∩ DG) to their combined areas (DP ∪ DG). Accordingly, IoU is mathematically defined
as:

IoU(DP, DG) =
DP ∩ DG
DP ∪ DG

, DP, DG ∈ RH×W×D, (1)

in which H and W refer to the height and width of the constructed map, respectively, and D
corresponds to the category amount involved in the map. The value of IoU ranges from 0
to 1, where higher values signify better alignment.

Mean Intersection over Union (mIoU). Various improvements have been proposed to
enhance the clarity of IoU. For instance, by taking the different semantic category of each
detected or segmented map element into account, mIoU is computed by averaging the IoU
values across all classes. The corresponding mathematical definition is:

mIoU =
1
D

D

∑
d=1

IoUd, (2)

where D is the number of classes considered in the map.
Chamfer Distance (CD). CD is a Lagrangian metric that quantifies the spatial similar-

ity between two vector geometric shapes, the predicted curve CP and the ground-truth one
CG. It computes the average minimum squared distances between the constituent points
on CP and CG, in both forward and backward directions [35]. Specifically, CDP refers to the
directional calculation from prediction to ground-truth, while CDG denotes the directional
calculation from ground-truth to prediction [35]. Hence, CD is mathematically defined as:

CDP(CP, CG) =
1
P ∑

p∈P
min
g∈G

p − g2, (3)

CDG(CG, CP) =
1
G ∑

g∈G
min
p∈P

g − p2, (4)

CD = CDP(CP, CG) + CDG(CG, CP), (5)

in which P and G represent the sets of points sampled on CP and the CG, respectively.
Mean Average Precision (mAP). mAP serves as a classical metric to evaluate the

accuracy of HD map construction [23]. It quantifies the true positives in predictions
compared to the ground truths. Specifically, while conceptually similar to AP in 2D object
detection, AP in HD map construction adopts CD or Frechet distance rather than IoU as
its matching criterion. Only when the corresponding distance is smaller than the threshold
t will the prediction be conceived as a true positive [23]. This adaptation accounts for the
vector-based, geometric nature of HD map elements compared to pixel-based 2D images.
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Further, the threshold usually takes a value from the set T = {0.5, 1.0, 1.5} [23]. Then,
mAP is computed by averaging the AP computed across all adopted thresholds. Hence,
the corresponding mathematic definition is written as:

mAP =
1
T ∑

t∈T
APt. (6)

Centerline Identification Metrics (M-P, M-R, M-F, Detect). Similar to 2D classifi-
cation tasks, fundamental evaluation metrics, precision, recall, and F1-score, have also
been adapted to assess the accuracy of centerline identification in lane graph extraction.
Specifically, these adapted metrics, denoted as M-P, M-R, and M-F, evaluate how closely
predicted centerlines align with the ground truths within a predefined distance thresh-
old [19,36]. Meanwhile, since these metrics do not penalize cases where a ground truth
centerline lacks any matching prediction, the Detection Ratio (Detect) is proposed. It mea-
sures the fraction of ground truth centerlines that have at least one matching estimated
centerline [19,36]. Hence, a low Detect score combined with high scores on the other three
metrics indicates a significant number of false negatives despite a satisfying performance
in identifying true positives.

3.3.2. Topology Reasoning Evaluation

Connectivity Metrics (C-P, C-R, C-F). Given the crucial role of relation in graph
interpretation, connectivity metrics are proposed to assess the accuracy of edge construction
in the lane graph. These metrics, C-P, C-R, and C-F, are also adapted from standard
precision and recall, while focusing on how well the connectivity pattern of the predicted
graph complies with that of the ground-truth graph [19,36].

3.3.3. Comprehensive Evaluation

OpenLane-V2 Score (OLS). OLS incorporates four metrics to comprehensively
evaluate the performance across three main subtasks supported by the OpenLane-V2
dataset [31]. Specifically, DETl , as a modified mAP metric, assesses 3D lane detection
performance, where Frechet distance serves as the matching criterion with the threshold set
T = {1.0, 2.0, 3.0} meters. Similarly, DETt appraises traffic element detection performance
while using (1 − IoU) with a threshold of 0.75 as the affinity measure to better align with
the small-scaled nature of traffic elements. Further, TOPll and TOPlt evaluate topology
reasoning performance among centerlines or between lane centerlines and traffic elements,
respectively. Hence, OLS is mathematically defined as:

OLS =
1
4

[
DETl + DETt + f (TOPll) + f (TOPlt)

]
(7)

where f is a scale function that weights the topology reasoning task.

4. Online HD Map Construction Methods
This section explores various perspectives on online HD map construction. We catego-

rize the methods into three sub-tasks based on the output map format: Map Segmentation
in Section 4.1, Map Element Detection in Section 4.2, and Lane Graph Construction in
Section 4.3.

Table 2 offers an overview of existing research on online HD map construction, aiming
to help readers quickly understand the evolution and innovations of different methods.
It organizes the studies into three sections based on the specific sub-tasks and provides
key details, including venue, sensor modality, task, dataset, and contributions. Each entry
highlights major contributions, such as new network architectures, view transformation
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techniques, or sensor fusion strategies. The table shows a growing trend in publications
at top conferences and journals, indicating the research field’s rapid development and
increasing importance.

Table 2. Literature on online HD map construction. Under Modality, “SC” is single-camera, “MC”
is multi-camera, and “L” is LiDAR. Under Task, “MapSeg” means map segmentation, “MapEle”
means map element detection, and “LaneGra” is for lane graph construction. Under Dataset, “nuS”
is for nuScenes [29], “AV” is for Argoverse [33], “K360” is for Kitti-360 [37], “AV” is for Argoverse
2 [30], and “OL2” is for OpenLane-V2 [31].

Method Venue Modality Task Dataset Contribution

PON [38] CVPR 2020 SC MapSeg nuS/AV MLP for Depth Axis Expansion
LSS [39] ECCV 2020 MC MapSeg nuS CNN for Pixel-Wise Depth Prediction
Cam2BEV [40] ITSC 2020 MC MapSeg Synthetic IPM for VT on 2D Feature Maps
VPN [41] RA-L 2020 MC MapSeg Synthetic MLP to Learn Projection for VT
PYVA [42] CVPR 2021 SC MapSeg AV Cycled View Projection for VT
STA-ST [43] ICRA 2021 SC MapSeg nuS Temporal Fusion After VT
CVT [44] CVPR 2022 MC MapSeg nuS Camera-Aware Embedding to Enhance VT
BEVFormer [45] ECCV 2022 MC MapSeg nuS Transformer and Projection for VT
Ego3RT [46] ECCV 2022 MC MapSeg nuS Ego 3D Representation to Enhance VT
LaRa [47] CoRL 2022 MC MapSeg nuS Ray Embedding to Enhance VT
PanopticSeg [48] RA-L 2022 SC MapSeg nuS/K360 Hybrid VT with IPM and Depth Expansion
M2BEV [49] arXiv 2022 MC MapSeg nuS 3D Voxel Grid Projected onto 2D Features
BEVerse [50] arXiv 2022 MC MapSeg nuS Spatio-Temporal Fusion after VT
BEVSegFormer [51] WACV 2023 MC MapSeg nuS Transformer to Learn Projection for VT
BEVFusion [52] ICRA 2023 MC/L MapSeg nuS Camera–Lidar Fusion on BEV after VT
Simple-BEV [53] ICRA 2023 MC/L/R MapSeg nuS Bilinear Sampling for Voxel Quality
HFT [54] ICRA 2023 SC MapSeg nuS/AV Mutual Learning to Enhance Hybrid VT
PETRv2 [55] ICCV 2023 MC MapSeg nuS 3D Position Embedding to Enhance VT

HDMapNet [21] ICRA 2022 MC/L MapEle nuS FCN with Post-Processing for MD
VectorMapNet [22] ICML 2023 MC/L MapEle nuS/AV2 Transformer for Vectorized MD
MapTR [56] ICLR 2023 MC MapEle nuS Single-Stage Transformer for Parallel MD
BeMapNet [57] CVPR 2023 MC MapEle nuS Piecewise Bezier Curve for MD
NMP [58] CVPR 2023 MC MapEle nuS Global Neural Map Prior for MD
InstaGraM [59] CVPRW 2023 MC MapEle nuS CNNs and GNN for Graph-Based MD
PivotNet [60] ICCV 2023 MC MapEle nuS/AV2 Pivot-Based Representation for MD
ScalableMap [61] CoRL 2023 MC MapEle nuS Hierarchical Sparse Map Representation
MapVR [62] NeurIPS 2023 MC/L MapEle nuS/AV2 Rasterization for Geometric Supervision
StreamMapNet [63] WACV 2024 MC MapEle nuS/AV2 Streaming Temporal Fusion for MD
DPFormer [64] AAAI 2024 MC MapEle nuS Douglas–Peucker Point Representation
SuperFusion [65] ICRA 2024 MC/L MapEle nuS Multi-Level LiDAR–Camera Fusion for MD
HIMap [66] CVPR 2024 MC MapEle nuS/AV2 Integrated HIQuery for MD
MGMap [67] CVPR 2024 MC/L MapEle nuS/AV2 Mask-Guided Learning for MD
InsMapper [68] ECCV 2024 MC/L MapEle nuS/AV2 Inner-Instance Information for MD
GeMap [69] ECCV 2024 MC MapEle nuS/AV2 Geometric Invariant Representation
HRMapNet [70] ECCV 2024 MC MapEle nuS/AV2 Global Historical Rasterized Map for MD
MapDistill [71] ECCV 2024 MC MapEle nuS Cross-Modal Knowledge Distillation
SQD-MapNet [72] ECCV 2024 MC MapEle nuS/AV2 Stream Query Denoising for Consistency
MapTracker [73] ECCV 2024 MC MapEle nuS/AV2 Strided Memory Fusion for MD
ADMap [74] ECCV 2024 MC/L MapEle nuS/AV2 Anti-Disturbance MD Framework
MapQR [75] ECCV 2024 MC MapEle nuS/AV2 Scatter-and-Gather Query for MD
MapTRv2 [76] IJCV 2024 MC/L MapEle nuS/AV2 Advanced Baseline Method for MD
DTCLMapper [77] T-ITS 2024 MC MapEle nuS/AV2 Dual-Stream Temporal Consistency Learning
P-MapNet [78] RA-L 2024 MC/L MapEle nuS/AV2 SD and HD Map Priors for MD
PrevPredMap [79] WACV 2025 MC MapEle nuS/AV2 Temporal Fusion with Previous Predictions
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Table 2. Cont.

Method Venue Modality Task Dataset Contribution

STSU [19] ICCV 2021 SC LaneGra nuS MLP to Infer Lane Connectivity
TPLR [20] CVPR 2022 SC LaneGra nuS/AV Minimal Cycles for Lane Graph Topology
CenterLineDet [80] ICRA 2023 MC LaneGra nuS Transformer for Iterative TR
VideoLane [81] ITSC 2023 SC LaneGra nuS/AV Temporal Aggregation to Enhance TR
LaneWAE [82] ITSC 2023 SC LaneGra nuS/AV Dataset Prior Distribution to Enhance TR
ObjectLane [83] ICCV 2023 SC LaneGra nuS/AV Object–Lane Clustering to Enhance TR
RoadNetTransformer [84] ICCV 2023 MC LaneGra nuS RoadNet Sequence Representation for TR
TopoNet [85] arXiv 2023 MC LaneGra OL2 GNN to Refine Lane Graph Topology
LaneGraph2Seq [36] AAAI 2024 MC LaneGra nuS/AV2 Graph Sequence Representation for TR
LaneSegNet [86] ICLR 2024 MC LaneGra OL2 Lane Segment Representation for TR
TopoMLP [87] ICLR 2024 MC LaneGra OL2 Robust Detectors to Enhance TR
SMERF [88] ICRA 2024 MC LaneGra OL2 SD Maps to Enhance TR
LaneMapNet [89] IV 2024 MC LaneGra nuS Curve Region-Aware Attention
CGNet [90] ECCV 2024 MC LaneGra nuS/AV2 GNN and GRU to Optimize Lane Graph
RoadPainter [91] ECCV 2024 MC LaneGra OL2 Points-Mask Optimization
LaneGAP [92] ECCV 2024 MC LaneGra nuS/AV2/OL2 Post-Processing to Restore Lane Topology
TopoMaskV2 [93] ECCVW 2024 MC LaneGra OL2 Mask-Based Formulation to Enhance TR
TopoLogic [94] NeurIPS 2024 MC LaneGra OL2 Lane Geometry and Query Similarity for TR

4.1. Map Segmentation for Rasterized Maps

Map segmentation algorithms dynamically generate rasterized maps representing
the road environment around the ego vehicle as a pixel grid with semantic information.
In this semantic understanding process, the camera captures visual details such as color,
texture, and shape [95,96]. A key challenge in converting images to rasterized maps is that
the input and output exist in different spaces: the former in the image plane and the latter
in the BEV plane. To address this, mainstream vision-based map segmentation algorithms
propose various view transformation (VT) methods to convert images or features from the
2D image plane to the 3D world space, decoding rasterized maps in the BEV.

Recent research [38,39,44,45,48] has focused on enhancing this VT module, leading us
to categorize map segmentation methods into three main types based on VT techniques.
The first category, “Projection-based Methods”, employs the projection model defined
by the camera’s intrinsic and extrinsic parameters to implement VT. The second category,
“Lift-based Methods”, involves a VT module that elevates images or features to 3D space
by recovering depth information. The third category, “Network-based Methods”, achieves
VT implicitly through neural networks.

4.1.1. Projection-Based VT for Map Segmentation

Projection-based methods utilize the camera projection model for VT to generate
rasterized maps. These methods trace back to inverse perspective mapping (IPM) [97],
which converts perspective images into BEV images to eliminate distortion. It assumes that
inverse-mapped points lie on a horizontal reference plane and employs the camera’s intrin-
sic and extrinsic parameters for converting pixels to world coordinates. While effective for
preprocessing image-like data [98–101], IPM can introduce distortions when handling 3D
objects. To address this, Cam2BEV [40] employs deep learning to correct these distortions.
The method applies IPM for VT on feature maps from various cameras, followed by deep
learning refinement to enhance the accuracy of the rasterized maps.

Other methods enhance the quality of rasterized maps by constructing 3D voxel
features that retain high-dimensional information during VT. They initialize a voxel grid in
world space and populate it with 2D feature maps, guided by the projection relationships
defined by the camera’s intrinsic and extrinsic parameters. For example, M2BEV [49]
assumes a uniform depth distribution, filling the depth-direction voxels along the camera
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rays with corresponding 2D features, which are then height-compressed and decoded into
a rasterized map. Simple-BEV [53], as depicted in Figure 3a, improves voxel quality by
using bilinear sampling on the feature map for more effective grid filling.

Inspired by Transformer architecture, methods combining camera projection relation-
ships and cross-attention for constructing 3D voxel features have recently gained traction.
BEVFormer [45] introduces a spatial cross-attention mechanism to generate BEV features
adaptively. It first projects predefined grid-like BEV queries onto the 2D camera view, then
uses a deformable attention mechanism [102] for interaction with sampled features in the
regions of interest, and finally aggregates multi-view features to decode them into a raster-
ized map. Similarly, Ego3RT [46] (Figure 3b) introduces a multi-view adaptive attention
mechanism that dynamically extracts key features from multi-view feature maps to gener-
ate 3D voxel features. By constructing BEV queries in a polarized coordinate system, this
approach better aligns with the geometric distribution of the ego vehicle’s surroundings.
F2BEV [103] introduces a distortion-aware spatial cross-attention mechanism to generate
BEV features from fisheye images. It employs a unified projection model derived from
fisheye camera parameters to correct radial and tangential distortions, accurately projecting
3D reference points from the BEV plane to the fisheye camera’s 2D views.

(a)

(b)
Figure 3. Comparison of the VT module in two projection-based map segmentation methods.
(a) Simple-BEV [53] projects voxel grid points onto feature maps and uses bilinear sampling to extract
features for constructing 3D voxel features. (b) Ego3RT [46] projects polarized grid queries onto
feature maps and uses attention to extract features for constructing 3D voxel features.
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4.1.2. Lift-Based VT for Map Segmentation

Lift-based methods generate rasterized maps by recovering depth information from
images for VT. Initially proposed by PON [38] (Figure 4a), this approach employs dense
transformation layers made of multi-layer perceptrons (MLP). It begins with compressing fea-
ture maps along the height axis, then unfolds bottleneck features along the depth axis to create
BEV features in polar coordinates. These features are resampled into an orthogonal coordinate
system using camera parameters and then decoded into rasterized maps. ViT-BEVSeg [104]
adopts the hierarchical vision Transformer blocks and introduces a vision Transformer as the
backbone. Similarly, STA-ST [43] adopts this VT methodology and enhances it with temporal
information and multi-scale supervision to improve map quality. BEVStitch [105] also uses
temporal information by mapping features from different time frames to a common BEV
coordinate system and aggregating them into a unified feature map.

Other methods utilize convolutional neural networks (CNNs) to recover depth infor-
mation from images at a granular level, enhancing the quality of rasterized maps. LSS [39],
as shown in Figure 4b, was the first to use CNNs to predict depth probability distributions
and contextual features for each pixel in the feature map. These are combined using an
outer product to create frustum features with depth information. Finally, these frustum
features are projected onto a unified BEV grid for fusion and decoded into a rasterized map.
Subsequent methods adopted a similar VT approach, enhanced through deep supervision,
spatiotemporal fusion, sensor fusion, and multitask learning. BEVerse [50] aligns past BEV
features with current ones, feeding them into decoders for three distinct tasks to improve
joint learning and optimization efficiency. In contrast, BEVFusion [52] integrates data from
multi-view cameras and LiDAR, enabling the fused BEV features to support both 3D object
detection and BEV map segmentation tasks effectively.

(a)

(b)
Figure 4. Comparison of the VT module in two lift-based map segmentation methods. (a) PON [38]
uses MLP to expand bottleneck features along the depth axis. (b) LSS [39] uses CNN to predict
pixel-wise depth probability distributions.
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4.1.3. Network-Based VT for Map Segmentation

Network-based methods achieve VT by implicitly encoding camera projection rela-
tionships with neural networks. They originate from VPN [41], which uses an MLP to learn
spatial dependencies between pixel and BEV coordinate systems. The process involves map-
ping feature maps to BEV space with a two-layer MLP and fusing multi-view feature maps
to decode a rasterized map. However, the significant perspective differences between the
perspective view and BEV can lead to information loss during direct feature mapping. To align
features before and after mapping, PYVA [42] (Figure 5a) introduced cycled view projection.
This method uses two MLPs for bidirectional transformations between the two spaces and
employs cyclic consistency loss to ensure feature coherence during the conversion process.

Other methods utilize the Transformer architecture to capture the camera projection
relationship, significantly improving the quality of rasterized maps. Tesla [106] was the first
to implement the cross-attention mechanism from this architecture to model the projection
relationship. This approach constructs dense BEV queries and uses cross-attention to
refine these queries through interaction with feature maps, ultimately decoding outputs for
various perception tasks. However, the computational cost of traditional cross-attention
increases quadratically with input size, leading to significant overhead when processing
high-dimensional data. To address this, BEVSegFormer [51] (Figure 5b) utilizes deformable
cross-attention [102], a sparse variant that generates 2D reference points for each BEV query
using an MLP. It then dynamically samples the nearby regions of feature maps to refine the
BEV queries for decoding the rasterized map.

(a)

(b)
Figure 5. Comparison of the VT module in two network-based map segmentation methods.
(a) PYVA [42] uses two MLPs to enable bidirectional projection of feature maps between pixel
space and BEV space. (b) BEVSegFormer [51] uses deformable cross-attention [102] to predict 2D
reference points for sampling feature maps to refine BEV queries.
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Various methods integrate camera geometric information into image features during
VT to enhance the model’s ability to capture geometric correspondences and improve
cross-view fusion. CVT [44] pioneers camera-aware positional embeddings, converting
pixel coordinates into 3D direction vectors that link geometric information across camera
views. LaRa [47] follows a similar approach with ray embeddings. In contrast, PETRv2 [55]
employs 3D position embeddings to enhance image features. The method maps points
from the camera’s frustum space to the 3D space. The 3D coordinates of these points are
utilized to generate positional embeddings that integrate with image features, enhancing
the model’s perception of three-dimensional object information.

4.1.4. Discussion on Map Segmentation Methods

Map segmentation methods can be classified into three types based on VT techniques,
each with unique advantages and limitations. First, projection-based methods explicitly
establish the coordinate transformation between pixels and BEV space using a camera
projection model. While they offer strong interpretability through clear geometric frame-
works, their performance heavily relies on the accuracy of camera parameters, which can
be affected by factors like vibration and temperature changes during dynamic driving.
Second, lift-based methods recover lost depth information from the camera to elevate
images into 3D space. Although they provide an intuitive VT solution, they depend on the
accuracy of depth estimation and often require additional sensors, such as stereo cameras
or LiDAR, for improved depth precision. Lastly, network-based methods employ neural
networks to learn camera projection relationships for VT implicitly. This straightforward
approach reduces reliance on precise camera parameters but tends to converge more slowly
and requires substantial data to achieve optimal performance. Therefore, an important
research direction is effectively leveraging the complementary advantages of different VT
techniques to enhance map segmentation performance.

Some methods combine various VT techniques to enhance the quality of rasterized
maps. PanopticSeg [48] introduces an architecture with two VT modules for handling verti-
cal and horizontal regions. The horizontal Transformer uses IPM and an error correction
module, while the vertical Transformer lifts feature maps into a 3D voxel grid and resam-
ples them using camera intrinsic parameters. This approach fuses the BEV features from
both modules to produce the rasterized map. HFT [54] later adopts a similar dual-stream
architecture, incorporating a mutual learning mechanism that enables the Transformers to
share information through feature imitation, improving overall accuracy.

Table 3 shows the results of map segmentation methods on the nuScenes [29] vali-
dation set, revealing two key observations. First, network-based methods significantly
underperform other methods. For instance, in the single-camera setting, the mIoU of
VED [107] and VPN [41] is only 25.2% and 31.8%, respectively. In the multi-camera setting,
CVT [44] also performs poorly with an mIoU of just 40.2%. This may result from network-
based methods not explicitly utilizing camera geometric information during the VT process.
Second, incorporating LiDAR point clouds significantly enhances vision-based methods.
For example, BEVFusion [52] saw a 6.1% increase in mIoU in a multi-camera setup after
integrating LiDAR data. This improvement is likely due to the complementary information
from cameras and LiDAR: cameras provide rich color and texture, while LiDAR offers
precise distance measurements.
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Table 3. Performance comparison of map segmentation methods on the nuScenes [29] validation set.
Under Modality, “SC” is for single-camera, “MC” is multi-camera, and “L” is for LiDAR. Under VT
Type, “Projection”, “Lift”, and “Network” denote three types of map segmentation methods based on
view transformation techniques. The symbol * indicates results from [43], † denotes results from [52],
and “–” denotes that the statistic is unavailable.

Method Modality VT Type Drivable Ped. Cross. Walkway Stop Line Carpark Divider mIoU

VED * [107] SC Network 54.7 12.0 20.7 – 13.5 – 25.2
VPN * [41] SC Network 58.0 27.3 29.4 – 12.3 – 31.8
PON * [38] SC Lift 60.4 28.0 31.0 – 18.4 – 34.5
STA-ST * [43] SC Lift 71.1 31.5 32.0 – 28.0 – 40.7

CVT † [44] MC Network 74.3 36.8 39.9 25.8 35.0 29.4 40.2
OFT † [108] MC Projection 74.0 35.3 45.9 27.5 35.9 33.9 42.1
LSS † [39] MC Lift 75.4 38.8 46.3 30.3 39.1 36.5 44.4
M2BEV † [49] MC Projection 77.2 – – – – 40.5 –
BEVFusion† [52] MC Lift 81.7 54.8 58.4 47.4 50.7 46.4 56.6

BEVFusion † [52] MC & L Lift 85.5 60.5 67.6 52.0 57.0 53.7 62.7

4.2. Map Element Detection for Vectorized Maps

Map element detection algorithms dynamically generate a vectorized map that in-
cludes traffic-related elements in the surrounding road environment, providing detailed
geometric and semantic information. A key challenge in this process is detecting and
classifying diverse map elements as ordered point sequences with semantic categories.
This requires the algorithm to extract geometric shapes and classifications while managing
occlusions from vehicles and pedestrians under varying lighting and weather conditions.
To tackle this challenge, leading map element detection algorithms propose various map
decoding (MD) techniques to transform image or BEV features into precise vectorized
representations, reconstructing the surrounding environment’s structure and semantics.

Recent research [21,22,56,63] has focused on enhancing this MD module, enabling
the classification of map element detection methods into two main categories based on
the decoder architecture. The first category, “CNN-based methods”, employs CNN to
process image or BEV features hierarchically, capturing local details and spatial structures
for accurate map element detection. The second category, “Transformer-based methods”,
leverages the Transformer’s self-attention mechanisms to capture long-range dependencies
and global context in image or BEV features, enabling precise map element detection in
complex road environments.

4.2.1. CNN-Based MD for Map Element Detection

CNN-based methods utilize CNN to process image or BEV features for detecting map
elements. These methods were first introduced by HDMapNet [21] (Figure 6a), which uses a
fully convolutional network [109] to detect map elements. Its decoder features three branches
for semantic segmentation, instance embedding, and direction prediction. The outputs from
the decoder are then post-processed through clustering and non-maximum suppression
(NMS), resulting in accurate and well-structured map elements. Building on this, SuperFu-
sion [65] adopts a similar decoding approach and introduces a multi-level LiDAR–camera
fusion mechanism to enhance long-range detection. The method includes data-level fusion us-
ing LiDAR depth to enhance images, feature-level fusion where image features guide LiDAR’s
BEV features, and BEV-level fusion that aligns and merges BEV features from both modalities.
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(a)

(b)
Figure 6. Comparison of the MD module in two CNN-based map element detection methods. (a)
HDMapNet [21] uses an FCN [109] to decode semantic, instance, and direction masks, which are
then post-processed into vectorized representations. (b) InstaGraM [59] uses two CNNs to detect
vertices and edges, then employs an attentional GNN to associate the vertices, generating vectorized
representations in an end-to-end manner.

Some methods have introduced end-to-end CNN decoding strategies that streamline
workflows and improve map element detection accuracy by reducing post-processing steps.
InstaGraM [59], as depicted in Figure 6b, combines CNNs and a graph neural network
(GNN) to extract and relate map elements. The method uses two CNNs to detect vertices
and edges, then employs an attentional GNN to associate the vertices, ultimately generating
vectorized representations that conform to road topology.

4.2.2. Transformer-Based MD for Map Element Detection

Transformer-based methods leverage Transformer’s self-attention mechanisms to
capture long-range dependencies for precise map element detection. VectorMapNet [22]
first employs a two-stage framework to decode the vectorized representation of map
elements. The method first uses a DETR-like Transformer [110] to extract key points from
BEV features, followed by an autoregressive Transformer that generates the vertex sequence
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for each map element. To address the efficiency bottleneck of autoregressive decoding
in [22], MapTR [56] (Figure 7a) employs a single-stage decoder for parallel decoding. It
initializes hierarchical queries with instance-level and point-level embeddings. It uses a
DETR-like Transformer to enhance their interaction, producing an ordered point sequence
for the detected elements. The follow-up work [76] introduces a one-to-many matching
mechanism to speed up convergence and employs auxiliary dense supervision to enhance
the performance of map element detection. MapVR [62] introduces rasterization to help the
model capture intricate map details. It features a differentiable rasterizer that provides fine-
grained geometric shape supervision for vectorized outputs. MapDistill [71] introduces a
three-level cross-modal knowledge distillation framework that transfers knowledge from a
camera–LiDAR fusion model to a camera model using a teacher–student approach.

(a)

(b)
Figure 7. Comparison of the pipelines of two Transformer-based map element detection methods. (a)
MapTR [56] uses a single-stage DETR-like Transformer [110] for parallel decoding of ordered point
sequences for map elements. (b) MGMap [67] uses instance masks to enhance element queries for
precise localization and uses mask patches to refine point position predictions.
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Several methods improve the query and decoder designs in Transformer to enhance
the accuracy of map element detection. HIMap [66] introduces HIQuery, a hybrid repre-
sentation that integrates point-level and element-level information for map elements. Its
hybrid decoder employs a point-element interaction module that iteratively fuses these
information types, enabling accurate prediction of point coordinates and element shapes.
In contrast, MapQR [75] proposes a “scattering and aggregation” mechanism to enhance
instance queries. This mechanism distributes each query into sub-queries with distinct
positional embeddings to gather features from different locations, which are then recom-
bined into a unified instance query for enriched map element representations. MGMap [67],
as shown in Figure 7b, leverages learned masks to enhance the detection of map elements.
The method integrates global structural information from instance masks for accurate
localization. It then extracts local semantic features from mask patches around predicted
points to adjust point positions. Additionally, InsMapper [68] leverages point-wise correla-
tions within map element instances to improve detection accuracy. The method enables
information sharing and strengthens feature associations within each instance, resulting
in smoother and more coherent map element detection in complex scenes. ADMap [74]
reduces jitter in vectorized point sequences during map element detection.

Other methods improve the vectorized representation of map elements to enhance
detection accuracy and efficiency. BeMapNet [57] employs piecewise Bezier curves to
capture the shapes of complex map elements. The representation decomposes a curve into
low-degree Bezier segments, each efficiently capturing local geometry with fewer control
points to represent diverse map structures. PivotNet [60] introduces a pivot-based vector-
ized representation that selects key geometric points on map elements to create a compact
and precise vectorized map. Additionally, ScalableMap [61] proposes a hierarchical sparse
map representation that samples map elements at varying densities to balance compu-
tational cost and accuracy. DPFormer [64] introduces a compact Douglas–Peucker point
representation. It selects key points based on curvature, increasing point density in curved
sections while reducing points in straight sections, effectively minimizing redundancy and
preserving map element structure. GeMap [69] proposes G-Representation. This approach
uses displacement vectors between adjacent points to describe local geometric features of
map instances, ensuring invariance to rotation and translation.

Several methods leverage short-term temporal information to improve map element
detection’s accuracy and temporal consistency. StreamMapNet [63], as shown in Figure 8a,
introduces a streaming temporal fusion mechanism that employs two strategies. Query
propagation retains high-confidence element queries to the next frame, while BEV fu-
sion aligns and fuses BEV features from consecutive frames. Building on this, SQD-
MapNet [72] proposes a stream query denoising mechanism to improve the temporal
consistency. The mechanism adds random noise to previous frame elements and then
recovers the geometric shapes for the current frame through denoising, enhancing the
model’s ability to capture temporal changes. In contrast, MapTracker [73] adopts a stacking
strategy and introduces a dual-memory mechanism. The BEV memory module selects
BEV features from historical frames by geometric distance and fuses them with current
frame information. In contrast, the vector memory module filters historical map element
queries by distance and refines current frame elements via per-instance cross-attention. Pre-
vPredMap [79] integrates high-level information from previous predictions—such as map
element categories, confidence, and location—into current frame predictions, improving
the quality of map element detection.
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(a)

(b)
Figure 8. Comparison of temporal fusion (short-term and long-term) in two Transformer-based map
element detection methods. (a) StreamMapNet [63] aligns and fuses BEV features from consecutive
frames and propagates high-confidence element queries to the next frame. (b) HRMapNet [70]
fuses BEV features with rasterized map features to enrich information and rasterizes vectorized map
predictions to maintain a global historical map.

Another direction is to leverage long-term temporal information derived from histori-
cal maps to enhance map element detection. NMP [58] introduces the concept of “neural
map prior”. The method employs cross-attention to integrate BEV features with global
prior features, generating enhanced BEV features for improved detection. It then utilizes
a gated recurrent unit (GRU) to dynamically update the global “neural map prior” with
the enhanced BEV features. Similarly, HRMapNet [70] (Figure 8b) adopts a strategy that
utilizes historical rasterized maps. The method designs a feature aggregation module to
fuse BEV features with rasterized map features, enriching for improved map element detec-
tion. It then rasterizes the vectorized map predictions and maps them to the global map to
facilitate continuous updates. Additionally, DTCLMapper [77] introduces a dual-temporal
consistent module that leverages short- and long-term information. Using contrastive
learning enhances temporal consistency by aligning same-category features across frames
while distinguishing different ones. It also projects vectorized map predictions onto a
global rasterized map, using occupancy constraints to ensure spatial consistency across
frames. P-MapNet [78] introduces two map prior modules to improve distant map element
detection. SDMap provides road skeleton information integrated with BEV features via
cross-attention, while HDMap uses a masked autoencoder to learn HD map distribution
patterns, refining predictions and correcting structures.
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4.2.3. Discussion on Map Element Detection Methods

Map element detection methods can be classified into two types based on MD tech-
niques, each with unique advantages and limitations. First, CNN-based methods utilize
CNN to process the image or BEV features hierarchically, producing dense outputs trans-
formed into vectorized representations of map elements via post-processing or association.
While effectively extracting local features and reducing model complexity via weight
sharing, they struggle with long-range dependencies, making them less suitable for map
elements with long spatial spans like lanes and sidewalks. Second, Transformer-based
methods utilize self-attention to capture relationships between patches in image or BEV
features, enabling direct generation of vectorized representations through parallel or au-
toregressive decoding. This approach enhances understanding of long-range dependencies
in geometric structures but also increases model complexity and computational demands,
requiring significant training data for effective generalization in unseen road environments.

Table 4 shows the results of map element detection methods on the nuScenes [29] vali-
dation set, revealing two key observations. First, Transformer-based methods significantly
outperform CNN-based methods. In the multi-camera setup, the worst Transformer-based
method, InsMapper [68], has an mAP 11.6% higher than the best CNN-based method,
InstaGraM [59]. In the multi-camera and LiDAR setup, InsMapper’s mAP exceeds that
of HDMapNet [21] by 30.0%. This superiority is likely due to Transformers’ self-attention
mechanism, which effectively captures long-range dependencies and global context, en-
hancing their ability to detect map elements that span large distances. Second, integrating
LiDAR input modality significantly improves vision-based methods. For example, HDMap-
Net [21] achieves an 8.0% increase in mAP, ADMap [74] improves by 7.9%, and MGMap [67]
rises by 6.9%. This enhancement results from Supplementary Information provided by
LiDAR point clouds, including (1) 3D geometric information, such as vehicle points in
lanes that offer context for map element detection, and (2) reflectance intensity, where
the high reflectance of lane markings sharply contrasts with the low reflectance of rough
road surfaces.

Table 4. Performance comparison of map element detection methods on the nuScenes [29] vali-
dation set. Under Backbone, “EB0” is for EfficientNet-B0 [111], ”R50” is for ResNet-50 [112], “PP”
is PointPillars [113], and “Sec” is SECOND [114]. Under Modality, “MC” is for multi-camera and
“L” is for LiDAR. Under MD Type, “CNN” and “Transformer” denote two types of map element
detection methods based on map decoding techniques. The symbol * indicates results from original
papers, and † denotes results from [56].

Method Backbone Epochs Modality MD Type APped. APdiv. APbou. mAP

HDMapNet † [21] EB0 30 MC CNN 14.4 21.7 33.0 23.0
InstaGraM * [59] EB0 30 MC CNN 40.8 30.0 39.2 36.7
InsMapper * [68] R50 24 MC Transformer 44.4 53.4 52.8 48.3
MapTR * [56] R50 24 MC Transformer 46.3 51.5 53.1 50.3
MapVR * [62] R50 24 MC Transformer 47.7 54.4 51.4 51.2
PivotNet * [60] R50 30 MC Transformer 53.8 55.8 59.6 57.4
BeMapNet * [57] R50 30 MC Transformer 57.7 62.3 59.4 59.8
MapTRv2 * [76] R50 24 MC Transformer 59.8 62.4 62.4 61.5
ADMap * [74] R50 24 MC Transformer 63.5 61.9 63.3 62.9
SQD-MapNet * [72] R50 24 MC Transformer 63.0 62.5 63.3 63.9
MGMap * [67] R50 30 MC Transformer 61.8 65.0 67.5 64.8
MapQR * [75] R50 30 MC Transformer 63.4 68.0 67.7 66.4
HIMap * [66] R50 30 MC Transformer 62.6 68.4 69.1 66.7

HDMapNet † [21] EB0 & PP 30 MC & L CNN 16.3 29.6 46.7 31.0
InsMapper * [68] R50 & Sec 24 MC & L Transformer 56.0 63.4 71.6 61.0
MapVR * [62] R50 & Sec 24 MC & L Transformer 60.4 62.7 67.2 63.5
MapTRv2 * [76] R50 & Sec 24 MC & L Transformer 65.6 66.5 74.8 69.0
ADMap * [74] R50 & Sec 24 MC & L Transformer 69.0 68.0 75.2 70.8
MGMap * [67] R50 & Sec 24 MC & L Transformer 67.7 71.1 76.2 71.7
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4.3. Lane Graph Construction for Vectorized Maps

Lane graph construction algorithms dynamically generate vectorized maps that depict
the road environment around the ego vehicle as directed lane graphs, enriched with detailed
geometric and topological information. A key challenge in this process is reasoning about
the topological relationships between lanes and traffic elements within complex road envi-
ronments. This encompasses the connectivity and adjacency of lanes (such as intersections,
forks, and merges) and the correspondence between traffic elements and lanes. To tackle this
challenge, leading lane graph construction algorithms propose various topology reasoning
(TR) methods to effectively identify and analyze the intricate relationships within road scene
structures, enhancing the accuracy and practicality of the generated lane graphs.

Recent research [19,36,84,85,94] has focused on enhancing this TR module, leading us
to categorize lane graph construction methods into two main types based on TR techniques.
The first category, “Single-step-based Methods”, completes the TR of the entire lane graph in
a single step using information from the driving scene. The second category, “Iteration-based
Methods”, conducts TR over iterative steps, where each step analyzes, reasons, and adjusts
specific sections of the lane graph, resulting in a more refined topological structure.

4.3.1. Single-Step-Based TR for Lane Graph Construction

Single-step-based methods complete the TR of the lane graph in a single step, deducing
the relationships between all lanes and traffic elements in the driving scene. These methods
trace back to STSU [19], which infers lane connectivity in a lane graph in a single step using
an association head. It first employs a DETR-like Transformer [110] to process feature maps
and extract lane queries. Then, MLP-based task heads decode the geometric and topological
information from these queries, outputting lane existence probabilities, Bézier curve control
points, and connection probabilities between lane pairs to construct a directed lane graph.
LaneSegNet [86] adopts a similar TR approach to generate lane graphs from lane segment
representations, simultaneously providing geometric, semantic, and topological information.
In contrast, LaneGAP [92] adopts a post-processing strategy to convert individual lane predic-
tions into a complete lane graph. This method discretizes lane predictions into vertices and
merges nearby vertices to restore the topological structures of lane forks and merges.

High-quality detection is crucial for the TR of lane graphs, with some methods en-
hancing lane and traffic element detectors to achieve this. TopoMLP [87], as shown in
Figure 9a, presents an efficient lane graph construction pipeline. It first uses a PETR-like
Transformer [115] to detect lanes and then integrates YOLOv8 as an auxiliary detector to
enhance small traffic element detection. Finally, two MLP heads infer two types of topology
relationships to generate a complete lane graph. Some methods [81,89] employ temporal
aggregation with multi-frame information to address occlusion, enhancing the quality
of generated lane graphs. LaneMapNet [89] introduces a curve region-aware attention
mechanism, which learns curve-shape features to improve lane regression. Additionally,
RoadPainter [91] introduces a point-mask optimization mechanism that generates instance
masks from initial lane predictions, samples representative points, and fuses them with the
original lane points to refine predictions.

Other methods enhance the topological accuracy of lane graphs by incorporating
auxiliary supervision signals based on prior knowledge. TPLR [20] (Figure 9b) introduces
minimal cycles in the lane graph—the smallest closed curves formed by lane intersec-
tions—to accurately capture its topological structure. The method employs a Transformer
to process lane and cycle queries simultaneously, followed by an MLP to output the cover
of minimal cycles, helping the model learn the correct order of lane intersections. Similarly,
ObjectLane [83] models the relationship between traffic objects and lanes as a clustering
problem, with lanes as cluster centers and traffic objects as data points. It uses a Trans-
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former to generate association information, assigning each detected object a probability
distribution for its most likely corresponding lane. This approach ensures that the lane
graph reflects road geometry and traffic participants’ distribution. LaneWAE [82] leverages
the dataset’s prior distribution to enhance lane graph predictions. It uses a Transformer-
based Wasserstein autoencoder to capture a latent space representation of lane structures.
The method then refines initial predictions by optimizing latent space vectors to align with
the learned prior.

(a)

(b)
Figure 9. Comparison of the pipelines for two single-step-based lane graph construction methods.
(a) TopoMLP [87] uses two Transformers for lane and traffic element queries, followed by MLPs to
predict the topological relationships between paired queries. (b) TPLR [20] uses a Transformer to
process lane and minimal cycle queries simultaneously, followed by joint decoding of the lane graph
and the cover of minimal cycles.

4.3.2. Iteration-Based TR for Lane Graph Construction

Iteration-based methods conduct the TR of the lane graph in iterative steps, where
each step analyzes, reasons, and adjusts specific relationships between lanes and traffic
elements, gradually refining the overall structure. TopoNet [85], as depicted in Figure 10a,
first leverages a scene GNN for the iterative refinement of lane graph topologies. It
begins with a DETR-like Transformer [110] to extract queries for lane and traffic elements,
forming two initial graphs. A graph convolutional network (GCN) then performs iterative
message passing and feature updating, refining the queries with spatial and semantic
context from neighboring nodes, ultimately creating a comprehensive lane graph. Similarly,
TopoLogic [94] employs an iterative TR pipeline that integrates two lane topologies to
enhance reasoning in complex driving scenes. The method first calculates the geometric
distances between predicted lanes to assess their connectivity, and then evaluates the
similarity of lane queries in semantic space to address geometric reasoning limitations.
Finally, it fuses the adjacency matrices from both topologies to create a more accurate lane
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graph. Additionally, CGNet [90] combines GCN with GRU to iteratively optimize the lane
graph. The GRU’s memory mechanism retains information from previous layers, allowing
TR to leverage both current data and accumulated knowledge. SMERF [88] combines road
topology from SD maps with vehicle sensor data to enhance lane topology reasoning.

Recently, researchers have developed various mask-based mechanisms to improve lane
detection. One significant approach is TopoMaskV2 [93], which employs a masked attention
mechanism. The method generates Bezier control points and mask embeddings from lane
queries, then focuses on the masked regions to update these queries effectively. It integrates
the outputs from the mask head and Bezier head to achieve smoother and more accurate
lane predictions.

(a)

(b)
Figure 10. Comparison of the TR module in two iteration-based lane graph construction methods. (a)
TopoNet [85] uses two Transformers for lane and traffic element queries, followed by a GCN for iterative
message passing and feature updating. (b) RoadNetTransformer [84] (semi-autoregressive) first predicts
lane key points in parallel and then autoregressively generates local sequences for lane graphs.

Some methods perform local TR in a sequential manner to construct a complete lane
graph. CenterLineDet [80] mimics expert annotators to construct a lane graph vertex by
vertex. It utilizes the VT network to generate a BEV heatmap and extract the initial vertex set,
while a DETR-like Transformer [110] then iteratively predicts the next vertex position based
on the ROI heatmap. Finally, the local lane graphs are combined to create a comprehensive
global lane graph. In contrast, RoadNetTransformer [84] (Figure 10b) introduces the
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RoadNet Sequence representation, effectively capturing the topological structure of the
lane graph for sequential TR. It features three Transformer-based decoder architectures
with distinct strategies: the semi-autoregressive version predicts lane key points in parallel
and autoregressively generates the local sequences, while the non-autoregressive version
performs full parallel predictions on the masked sequence and iteratively refines low-
confidence tokens to enhance sequence quality. Similarly, LaneGraph2Seq [36] introduces a
graph sequence representation for lane graphs. It employs an autoregressive Transformer
to sequentially generate the vertex and edge sequences, ultimately reconstructing them
into the complete lane graph structure.

4.3.3. Discussion on Lane Graph Construction Methods

Lane graph construction methods can be categorized into two types based on TR
techniques, each with distinct advantages and limitations. First, single-step-based methods
perform the TR of the entire lane graph in one step using driving scene information.
They are easy to implement and have short processing times, but one-step reasoning
lacks flexibility, often leading to suboptimal performance in complex traffic scenarios.
For example, in large intersections with intricate topological structures, a single-step
approach may struggle to accurately capture the relationships among multiple lanes, turn
lanes, and traffic signals. Second, iteration-based methods perform TR by reasoning and
refining specific parts of the lane graph through multiple steps. While this approach allows
for fine-tuning predictions and offers greater flexibility, it also incurs higher computational
costs and longer processing times, making it challenging to respond effectively to sudden
obstacles or changing traffic patterns. Therefore, a key research direction is to balance
the accuracy and speed of TR to meet real-time demands while ensuring high-quality
lane graphs.

Tables 5 and 6 present the results of lane graph construction methods on the
nuScenes [29] validation set and the OpenLane-V2 [31] dataset, revealing two key observa-
tions. First, iteration-based methods significantly outperform single-step-based methods.
For example, LaneGraph2Seq [36] achieves the highest C-F score of 63.2 in Table 5, while
TopoLogic [94] and TopoMaskV2 [93] secure the best OLS scores in Table 6—41.6 and 41.7
for subset A, and 39.6 and 43.9 for subset B, respectively. This superiority likely arises
from their ability to iteratively analyze and refine lane graphs, enhancing TR in complex
traffic scenes. Second, incorporating the SD map as an additional data source markedly
improves the model’s TR ability. In Table 6, all three methods show significant OLS score
increases after integrating the SD map—SMERF [88] (TopoNet) by 3.8, RoadPainter [91]
by 3.7, and TopoLogic [94] by 3.5. This improvement stems from the SD map’s provision
of crucial topological information, enhancing the model’s understanding of global road
layouts and boosting accuracy in distant and occluded areas.

Table 5. Performance comparison of lane graph construction methods on the nuScenes [29]
validation set (PON [38] split). Under TR Type, “Single-step” and “Iteration” denote two types of
lane graph construction methods based on topology reasoning techniques. The symbol * indicates
results from original papers, and “–” denotes that the statistic is unavailable.

Method TR Type M-Prec M-Recall M-F-score Detect C-Prec C-Recall C-F-score

STSU * [19] Single-step 60.7 54.7 57.5 60.6 60.5 52.2 56.0
TPLR * [20] Single-step – – 58.2 60.2 – – 55.3
ObjectLane * [83] Single-step – – 64.2 70.6 – – 57.2
VideoLane * [81] Single-step – – 59.0 60.3 – – 61.7
LaneWAE * [82] Single-step – – 57.0 61.2 – – 62.9
LaneMapNet * [89] Single-step 71.5 64.8 67.9 – 63.2 62.9 63.0
LaneGraph2Seq * [36] Iteration 64.6 63.7 64.1 64.5 69.4 58.0 63.2
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Table 6. Performance comparison of lane graph construction methods on the OpenLane-V2 [31]
dataset (v1.0 metrics). Under TR Type, “Single-step” and “Iteration” denote two types of lane
graph construction methods based on topology reasoning techniques. SD Map indicates the use of a
standard-definition map. The symbol * indicates results from original papers, and † denotes results
reproduced by [85].

Data Method TR Type SD Map DETl DETt TOPll TOPlt OLS

su
bs

et
_A

STSU † [19] Single-step ✗ 12.7 43.0 0.5 15.1 25.4
TopoNet * [85] Iteration ✗ 28.5 48.1 4.1 20.8 35.6
TopoMLP * [87] Single-step ✗ 28.3 50.0 7.2 22.8 38.2
RoadPainter * [91] Single-step ✗ 30.7 47.7 7.9 24.3 38.9
TopoLogic * [94] Iteration ✗ 29.9 47.2 18.6 21.5 41.6
TopoMaskV2 * [93] Iteration ✗ 34.5 53.8 10.8 20.7 41.7

SMERF * [88] (TopoNet) Iteration ✓ 33.4 48.6 7.5 23.4 39.4
RoadPainter * [91] Single-step ✓ 36.9 47.1 12.7 25.8 42.6
TopoLogic * [94] Iteration ✓ 34.4 48.3 23.4 24.4 45.1

su
bs

et
_B

STSU† [19] Single-step ✗ 8.2 43.9 0.0 9.4 21.2
TopoNet * [85] Iteration ✗ 24.3 55.0 2.5 14.2 33.2
TopoMLP * [87] Single-step ✗ 26.6 58.3 7.6 17.8 38.7
RoadPainter * [91] Single-step ✗ 28.7 54.8 8.5 17.2 38.5
TopoLogic * [94] Iteration ✗ 25.9 54.7 15.1 15.1 39.6
TopoMaskV2 * [93] Iteration ✗ 41.6 61.1 12.4 14.2 43.9

5. Challenges and Future Trends
This section presents the challenges and future trends in online HD map construction, fo-

cusing on standardized representation design, multi-task learning, and multi-modality fusion.

5.1. Standardized Representation Design

A challenge in online HD map construction is the lack of a standardized representation.
The three main representations, each with its strengths and limitations are the following:
(1) map pixel grids in map segmentation, which capture fine-grained details but cannot
distinguish between instances like lanes and crosswalks and are costly in storage and
computation; (2) vectorized lane lines in map element detection, which efficiently represent
road geometry but lack topological information, such as lane relationships at intersections;
and (3) centerlines and traffic elements in lane graph construction, which effectively capture
road network topology but lack detailed lane features like type, direction, and width.
Therefore, representation design is crucial for online HD map construction, affecting
the description of the surrounding road environment and the transmission of structured
information to the decision-making module.

An important research direction is to develop a unified map representation that com-
bines the strengths of existing methods while addressing their limitations. LaneSegNet [86],
as depicted in Figure 11, introduces lane segment representation, integrating vectorized
lane lines, centerlines, and road attributes to capture geometric, semantic, and topological
information. Specifically, it includes (1) geometric information, such as lane centerlines and
boundaries, with offsets defining boundary positions and polygons delineating drivable
areas; (2) semantic information, including lane types (e.g., traffic lanes, pedestrian cross-
ings) and boundary line types (e.g., solid, dashed, invisible) to encode lane characteristics
and traversability; (3) topological information, represented as a lane graph with nodes
for lane segments and edges for connectivity, stored in an adjacency matrix to model lane
relationships like merging and diverging.
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(a) BEV of the region of interest (b) Vectorized lane lines
(c) Centerlines
and topology (d) Lane segment

Figure 11. Comparison of lane segment representation [86] with two alternative map representations.

Another research direction is enhancing map representations by adding 3D structures
(e.g., interchanges, elevated roads) and dynamic features (e.g., traffic lights, road signs) to
better capture complex road environments. For example, OpenLane-V2 [31] expands the
centerline lane graph with 13 types of traffic elements, including traffic lights, directional
signs, restrictive signs, and special maneuver signs, while defining their relationships with
lanes. Future research could analyze the diverse and heterogeneous elements within traffic
scenes and their intricate interactions to provide more detailed structured information for
scene understanding.

The third research direction is designing map representations that integrate seam-
lessly with downstream modules. Gu et al. [116] (Figure 12) propose an uncertainty-based
map representation that uses probabilistic modeling to output map elements’ positions,
categories, and uncertainties. This approach significantly enhances its utility in trajectory
prediction tasks. Specifically, positional uncertainty is modeled with a Laplace distribu-
tion to capture prediction errors, while categorical uncertainty reflects confidence levels
via probability distributions. These uncertainties enable trajectory prediction models
to dynamically adjust the weighting of map elements, improving accuracy, robustness,
and training efficiency.

(a) (b) (c) (d) (e)

Figure 12. Comparison of uncertainty-based map representations [116] integrated into various online
HD map construction methods. (a) Ground truth. (b) MapTR [56]. (c) MapTRv2 [76]. (d) MapTRv2-
CL [76]. (e) StreamMapNet [63].
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5.2. Multi-Task Learning

Multi-task learning (MTL) trains a single model to perform multiple related tasks
simultaneously, providing distinct advantages over separate task-specific models. First,
MTL reduces computational and storage demands by sharing model structures and param-
eters, reducing the need for multiple models and lowering inference costs. Second, MTL
improves generalization by capturing complementary information across tasks, which
helps prevent overfitting and enhances performance on new data [117]. Consequently, MTL
is well-suited for online HD map construction, as it can effectively integrate complementary
information from related tasks to create more comprehensive local HD maps.

Some methods integrate other perception and prediction tasks to enhance online HD
map construction. These tasks include (1) semantic segmentation [73–76], which classifies
different regions in an image to provide insights into their categories and boundaries,
helping the model understand the scene’s semantic structure; (2) depth estimation [73–76],
which infers the distance between image pixels and the camera, offering information
on the spatial location and geometric shapes of objects for accurate 3D modeling; (3)
3D object detection [19,45,46,49,50,52,53,55], which identifies and locates traffic-related
objects, providing details on their categories, sizes, and relative positions, thus contributing
contextual information; and (4) motion prediction [50], which estimates future trajectories
of objects, enhancing the model’s understanding of complex and dynamic traffic scenarios.

Another direction is integrating multiple map-related tasks to enhance online HD
map construction. BeMapNet [57] (as depicted in Figure 13b) and PivotNet [60] intro-
duce map segmentation and instance segmentation of map elements, addressing sparse
supervision in map element detection. HIMap [66] adopts a similar MTL strategy, while
MGMap [67] and MapTracker [73] each focus on one of the tasks. MapTRv2 [76] enhances
map element detection by incorporating map segmentation, semantic segmentation, and
depth estimation from a perspective view. Later works [69,74,75] follow similar approaches.
To combine map element detection with lane graph construction, LaneSegNet [86] intro-
duces lane segment representation that captures both geometric boundaries and topologi-
cal relationships. TopoMaskV2 [93] enhances lane detection with instance segmentation.
SemVecNet [118] integrates map segmentation to generate an intermediate representation,
enhancing adaptability to different sensor platforms and preventing overfitting to specific
sensor configurations. Mask2 Map [119] also uses BEV segmentation masks to refine map
element detection. It introduces a positional query generator and geometric feature extrac-
tor to extract local contextual information within the masks, enhancing the query features
to improve detection accuracy.

However, integrating perception and prediction tasks for multi-task learning in on-
line HD map construction does not always improve performance and can even result
in “negative transfer”. For instance, as shown in Table 7, M2BEV [49], BEVFormer [45],
and PETRv2 [55] experience a decrease in map segmentation mIoU by 1.7%, 2.2%, and 2.3%,
respectively, after integrating 3D object detection, while Ego3RT [46] sees a 9.3% increase.
Similarly, BEVerse [50] shows a 4.5% drop in mIoU after integrating both 3D object detec-
tion and motion prediction. In contrast, Table 8 demonstrates that MapTRv2 [76] achieves
increases of 5.1%, 6.4%, and 7.0% in map element prediction mAP by progressively inte-
grating depth estimation, map segmentation, and semantic segmentation. Future research
could explore the relationships between online HD map construction and other tasks to
drive performance improvements.
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(a)

(b)

Figure 13. Comparison of the MTL pipeline in two online HD map construction methods. (a)
BEVerse [50] presents a unified framework for map segmentation, 3D object detection, and mo-
tion prediction. (b) BeMapNet [57] presents a unified framework for map segmentation, map element
detection, and instance segmentation.

Table 7. Performance comparison of MTL map segmentation methods on the nuScenes [29]
validation set. Under Task Head, “MapSeg” is map segmentation, “ObjDet” is 3D object detection,
and “MotPre” is motion prediction. The symbol * indicates results from [43], † denotes results
from [24], and “–” denotes that the statistic is unavailable.

Method Task Head Map Segmentation

MapSeg ObjDet MotPre Drivable Lane Ped. Cross. Walkway Carpark Divider Boundary mIoU

M2BEV * [49] ✓ ✗ ✗ 77.2 40.5 – – – – – 58.9
M2BEV * [49] ✓ ✓ ✗ 75.9 38.0 – – – – – 57.0

BEVFormer * [45] ✓ ✗ ✗ 80.1 25.7 – – – – – 52.9
BEVFormer * [45] ✓ ✓ ✗ 77.5 23.9 – – – – – 50.7

PETRv2 † [55] ✓ ✗ ✗ 80.5 47.4 – – – – – 64.0
PETRv2 † [55] ✓ ✓ ✗ 79.1 44.3 – – – – – 61.7

Ego3RT * [46] ✓ ✗ ✗ 74.6 – 33.0 42.6 44.1 36.6 – 46.2
Ego3RT * [46] ✓ ✓ ✗ 79.6 – 48.3 52.0 50.3 47.5 – 55.5

BEVerse * [50] ✓ ✗ ✗ – – 44.9 – – 56.1 58.7 53.2
BEVerse * [50] ✓ ✓ ✓ – – 39.0 – – 53.2 53.9 48.7
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Table 8. Performance comparison of MTL MapTRv2 [76] on the nuScenes [29] validation set. Under
Task Head, “MapEle” is map element detection, “DepEst” is for depth estimation, “MapSeg” is map
segmentation, and “SemSeg” is for semantic segmentation. The symbol * indicates results from the
original paper.

Method Task Head Map Element Detection

MapEle DepEst MapSeg SemSeg APped. APdiv. APbou. mAP

MapTRv2 * [76] ✓ ✗ ✗ ✗ 44.9 51.9 53.5 50.1
MapTRv2 * [76] ✓ ✓ ✗ ✗ 49.6 56.6 59.4 55.2
MapTRv2 * [76] ✓ ✓ ✓ ✗ 52.1 57.6 59.9 56.5
MapTRv2 * [76] ✓ ✓ ✓ ✓ 53.2 58.1 60.0 57.1

5.3. Multi-Modality Fusion

Multi-modality fusion (MMF) combines data from different modalities—such as im-
ages, point clouds, and SD maps—for processing and analysis. Each AV sensor has unique
strengths and limitations [120]: (1) cameras capture rich visual details like color and texture
but are sensitive to lighting, weather, and lack depth; (2) LiDAR provides precise depth
data and functions in day or night but lacks color/texture and can be affected by extreme
weather; and (3) radar is robust to lighting and harsh weather, detects object velocity,
but has lower resolution and cannot capture precise shapes. In addition, SD maps offer
basic road structures with broad coverage and low cost but lack high-precision traffic
details, such as lane markings, traffic signs, and signals. Consequently, MMF is well-suited
for online HD map construction, as it can effectively integrate complementary information
from multi-modal data to create more accurate local HD maps.

Some methods integrate data from multiple sensors to enhance online HD map con-
struction. BEVFusion [52], as depicted in Figure 14a, pioneers the fusion of camera and
LiDAR data in the BEV space. The method projects camera and LiDAR features into a
unified BEV space, concatenates them, and uses a convolutional BEV encoder to resolve
local misalignment. Subsequent studies [21,67,74,76,78] adopt a similar middle fusion strat-
egy. Simple-BEV [53] enhances performance by fusing camera and radar data, achieving
near-LiDAR accuracy without relying on LiDAR. Additionally, SuperFusion [65] introduces
a multi-level fusion technique to combine LiDAR and camera inputs, enabling long-range
map element detection at distances up to 90 meters.

Another direction is to integrate SD maps and other prior maps to enhance online
HD map construction. SMERF [88] uses road topology from SD maps to improve lane
graph construction. The method first encodes polyline sequences from SD maps, then
extracts road topology using a Transformer encoder, and finally fuses SD map features
with BEV features through multi-head cross-attention. Subsequent works [91,94] adopt
a similar strategy for integrating SD map data. In contrast, P-MapNet [78] rasterizes
SD maps, encodes them with CNNs, and adaptively fuses SD map features with BEV
features. NMP [58], as shown in Figure 14b, constructs global neural map priors from BEV
features of previous traversals, enhancing local map inference. Similarly, HRMapNet [70]
uses historical rasterized maps to complement online perception data. DTCLMapper [77]
maintains a grid map and uses occupancy states to ensure the geometric consistency of
map elements.

As shown in Table 9, combining online HD map construction with global prior maps
significantly boosts performance. For example, HDMapNet [21] improves by 3.0% mAP
with SD maps, VectorMapNet [22] gains 3.9% with a neural map prior, and StreamMap-
Net [63] and MapTRv2 [76] see 5.9% and 5.7% increases with historical rasterized maps.
These results highlight the importance of prior maps in enhancing local map inference.
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Future research could explore more efficient integration of various prior maps with online
HD map construction to optimize performance in complex driving scenarios.

(a)

(b)
Figure 14. Comparison of the MMF pipeline in two online HD map construction methods. (a)
BEVFusion [52] fuses camera and LiDAR features in the unified BEV space. (b) NMP [58] fuses BEV
features with neural map priors from previous traversals.

Table 9. Performance comparison of MMF map element detection methods (prior maps) on the
nuScenes [29] validation set. Under Prior Map, “SD Map” is standard-definition map [78], “NMP”
is neural map prior [58], and “HRMap” is historical rasterized map [70]. The symbol ‡ indicates
results from [78], * denotes results from [58], and † represents results from [70].

Method Prior Map Map Element Detection

SD Map NMP HRMap APped. APdiv. APbou. mAP

HDMapNet ‡ [21] ✗ ✗ ✗ 10.3 27.7 45.2 27.7
HDMapNet ‡ [21] ✓ ✗ ✗ 11.3 32.1 48.7 30.7

VectorMapNet * [22] ✗ ✗ ✗ 36.1 47.3 39.3 40.9
VectorMapNet * [22] ✗ ✓ ✗ 42.9 49.6 41.9 44.8

StreamMapNet † [63] ✗ ✗ ✗ 60.4 61.9 58.9 60.4
StreamMapNet † [63] ✗ ✗ ✓ 63.8 69.5 65.5 66.3

MapTRv2 † [76] ✗ ✗ ✗ 59.8 62.4 62.4 61.5
MapTRv2 † [76] ✗ ✗ ✓ 65.8 67.4 68.5 67.2

6. Conclusions
This study provides a comprehensive analysis of online HD map construction, cover-

ing task background, high-level motivations, research methodology, key advancements,
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existing challenges, and future trends. It is defined as the task of dynamically generat-
ing local HD maps from real-time vehicle sensor data, with the potential for improved
generalization capability and increased cost efficiency.

The study systematically reviews the latest achievements in online HD map construc-
tion, classifying them into three key subtasks: map segmentation, map element detection,
and lane graph construction. Specifically, map segmentation methods are classified into
projection-based, lift-based, and network-based methods, depending on view transfor-
mation techniques from 2D to 3D. Map element detection methods are categorized into
CNN-based and Transformer-based methods, based on how the map element point se-
quences and semantics are decoded. Lane graph construction methods are divided into
single-step and iteration-based methods, based on topological reasoning of lane and traffic
element relationships. Table 10 presents SWOT analyses of these three sub-tasks, outlining
the strengths and weaknesses of each approach.

We conclude that there are still research gaps in online HD map construction, particu-
larly in standardized map representation, multitask learning, and multimodality fusion.
The lack of standardized representation can be improved by developing unified repre-
sentations, incorporating 3D structures and dynamic features, or creating representations
that integrate seamlessly with downstream modules. Multitask learning can be advanced
by adding perception and prediction tasks or combining multiple map-related tasks. Ad-
ditionally, multimodality fusion can be enhanced by integrating diverse sensor data or
incorporating SD maps and other prior maps.

Table 10. SWOT analyses of three sub-tasks in online HD map construction.

Sub-Task Strengths Weaknesses Opportunities Threats

Map Segmen-
tation

Generates raster maps
with most fine-grained
geometric information

Computationally ex-
pensive and inefficient;
lack of instance-level
information of map
elements

Coordinates with
downstream collision
avoidance module;
combine multiple
view transformation
techniques

Possible replacement
by 3D semantic scene
completion [121,122]
or occupancy predic-
tion [123–125]

Map Element
Detection

Generates vector maps
with instance-level in-
formation of map el-
ements; computation-
ally cost-effective

Lower granularity in
describing map geome-
try; lack of topological
relationships between
instances

Coordinate with down-
stream collision avoid-
ance module; possible
integration with lane
graph construction

Possible replacement
by end-to-end al-
gorithms [126,127]
or visual question
answering of traffic
scene [128,129]

Lane Graph
Construction

Generates vector maps
with topological struc-
ture of traffic scenes;
computationally cost-
effective

Needs post-processing
to generate clean out-
put; lack of semantic
information of map el-
ements

Coordinate with down-
stream path planning
module; combine with
knowledge graph of
traffic scene [130]

Possible replacement
by end-to-end al-
gorithms [126,127]
or visual question
answering of traffic
scene [128,129]

We hope this survey provides valuable insights for researchers and practitioners in
the field while also inspiring further exploration of online HD map construction.
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