
Academic Editor: Stefan Fischer

Received: 5 November 2024

Revised: 10 December 2024

Accepted: 21 December 2024

Published: 27 December 2024

Citation: Colucci, R.; Mahgoub, I.

Generalizable Solar Irradiance

Prediction for Battery Operation

Optimization in IoT-Based Microgrid

Environments. J. Sens. Actuator Netw.

2025, 14, 3. https://doi.org/

10.3390/jsan14010003

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Generalizable Solar Irradiance Prediction for Battery Operation
Optimization in IoT-Based Microgrid Environments
Ray Colucci and Imad Mahgoub *

Department of Electrical Engineering and Computer Science, Florida Atlantic University, 777 Glades Rd,
Boca Raton, FL 33431, USA; rcolucci@fau.edu
* Correspondence: mahgoubi@fau.edu

Abstract: The reliance on fossil fuels as a primary global energy source has significantly
impacted the environment, contributing to pollution and climate change. A shift towards
renewable energy sources, particularly solar power, is underway, though these sources
face challenges due to their inherent intermittency. Battery energy storage systems (BESS)
play a crucial role in mitigating this intermittency, ensuring a reliable power supply when
solar generation is insufficient. The objective of this paper is to accurately predict the
solar irradiance for battery operation optimization in microgrids. Using satellite data
from weather sensors, we trained machine learning models to enhance solar irradiance
predictions. We evaluated five popular machine learning algorithms and applied ensemble
methods, achieving a substantial improvement in predictive accuracy. Our model out-
performs previous works using the same dataset and has been validated to generalize
across diverse geographical locations in Florida. This work demonstrates the potential of
AI-assisted data-driven approaches to support sustainable energy management in solar-
powered IoT-based microgrids.

Keywords: machine learning; solar energy; ensemble learning; cross-validation; solar
irradiance prediction; battery energy storage system; renewable energy

1. Introduction
In our previous work, we proposed to predict solar irradiance accurately to provide

input to battery operation optimization [1]. In this paper, we use cross-validation to further
enhance solar irradiation prediction results and generalize the model to predict solar
irradiance in different geographical locations in Florida.

The global shift towards renewable energy sources, including solar and wind, is
redefining the landscape of electrical power generation. Currently, the world relies heavily
on fossil fuels—natural gas, coal, and oil—which are finite resources with unsustainable
consumption levels. At the current rate of use, carbon emissions are projected to reach
between 8 and 12 gigatons by 2030, representing a 62% increase from 2002 levels [2]. This
looming increase underscores the urgent need for research to incorporate technologies that
mitigate environmental impacts and harness renewable energy.

One essential area of renewable energy research involves the prediction of solar irradi-
ance, which measures power density over a given area. Accurate solar energy forecasting
is critical for optimizing control mechanisms in energy systems that depend on inherently
intermittent power sources [3]. For instance, predicted solar irradiance values can serve
as key input constraints for optimizing battery energy storage systems (BESS), where
maintaining an adequate state of charge (SOC) is crucial to meet demand without risking
depletion [4].
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Potential applications of this research span residential and commercial buildings,
which can utilize microgrids—self-contained power grids that can optionally integrate
with the main utility grid. These microgrids, comprising renewable energy sources and
BESS, enable efficient, cost-effective energy supply solutions [5]. Additionally, determining
the optimal sizing of photovoltaic (PV) solar panels and BESS remains a critical research
focus to ensure sufficient energy while minimizing overall system costs [6]. This focus is
driven by a growing demand for precise modeling and forecasting of weather parameters
to support the broader deployment of renewable energy technologies [3].

The broader environmental impact of using fossil fuels as an energy source is sig-
nificant and multifaceted, encompassing various ecological, climatic, and health-related
challenges such as greenhouse gas emissions, climate change, air pollution, health hazards,
environmental degradation, non-renewability, resource depletion, energy inefficiency and
economic costs. However, due to the intermittency of renewable energy sources, they are
a challenge to deploy in an effective manner. A viable alternative to solve this issue is to
utilize a BESS so that when the energy input is not available, an optimized BESS operation
strategy will provide a reliable way to provide energy on demand, reduce costs, and lower
carbon emissions.

For BESS, further objectives include extending battery lifespan and reducing main-
tenance costs. Effective optimization algorithms can maximize battery life and economic
return, which are vital for the sustainability of renewable energy systems [4]. A range of
approaches has been explored, including multi-objective methods, iterative techniques,
graphical analyses, and artificial intelligence-based strategies [2].

Recent studies show that historical solar irradiance data are often used as input for
optimization, with machine learning algorithms incorporated to account for the inherent
variability in solar radiation [2]. Machine learning models have been developed for solar
irradiance prediction. These models leverage historical data and advanced algorithms
to forecast solar energy potential, aiding in the efficient operation of renewable energy
systems. By incorporating features such as temperature, humidity, wind speed, and
atmospheric clarity, these models can effectively account for the complex and nonlinear
relationships influencing solar energy generation. Advanced techniques like ensemble
learning and feature selection further enhance prediction accuracy, making these models
robust tools for renewable energy management. Accurate solar irradiance forecasts not only
optimize energy generation but also support strategic battery energy storage system (BESS)
operations, enabling better alignment of energy supply with demand. This predictive
capability plays a critical role in mitigating the challenges posed by the intermittency of
solar energy [1].

In [7], a Bayesian optimization-based regression tree algorithm was employed to
predict global horizontal solar irradiance, enabling the calculation of an optimal PV system
size for residential applications. Similarly, ref. [8] introduced a microgrid solar energy
prediction model using weather input data and a Robust Optimized Functional Link Broad
Learning System (FLBLS) enhanced by exponential trigonometric functions. However, this
approach relied on only one year of historical data. In [9], a comparison between ANN
and multiple linear regression (MLR) forecast models was conducted using PV panel and
weather data, with micro inverter technology improving power output forecasts for battery
control, although the training data spanned just six months. Additionally, ref. [10] utilized
deep neural networks and extreme gradient boosting forest algorithms with inputs such
as relative humidity, clear sky index, and temperature for solar irradiance prediction. A
bidirectional long short-term memory network combined with wavelet transform was
further proposed in [11] for enhanced GHI prediction.
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The integration of solar energy into power grids depends on accurate solar irradiance
forecasting, and a study [12] conducted in Douala, Cameroon, introduces an innovative
approach combining Bayesian Optimized Attention-Dilated Long Short-Term Memory
(LSTM) and Savitzky-Golay filtering. The proposed methodology enhances data quality
through pre-processing and optimizes deep learning models, achieving exceptional perfor-
mance with a Symmetric Mean Absolute Percentage Error of 0.6564 and a Normalized Root
Mean Square Error of 0.2250. This research not only surpasses prior studies but also offers
significant contributions through novel hybrid deep-learning architectures and benchmark
datasets, benefiting both researchers and solar energy managers.

The integration of photovoltaic (PV) systems into the energy sector has accelerated
due to environmental concerns and advancements in renewable energy technologies. Ac-
curate prediction of temperature and solar irradiance is critical for optimizing PV system
performance and grid integration, with machine learning (ML) emerging as a powerful
tool for enhancing forecast accuracy. A comprehensive review [13] compares various ML
algorithms, including decision trees, random forests, XGBoost (version 2.1.3), and support
vector machines, highlighting their advantages over traditional meteorological models in
improving PV power generation forecasts.

Photovoltaic panels offer a sustainable solution for generating electricity by converting
solar radiation into power, reducing dependence on fossil fuels. The efficiency of this
process depends on factors such as panel quality and accurate forecasting of region-specific
solar irradiance, which is essential for designing and managing effective solar power
systems. A study [14] utilizing three years of data from Izmir, Turkey, compares various
machine learning and deep learning algorithms for solar irradiance prediction, with the
multilayer perceptron emerging as the most effective model.

Managing energy produced by microgrids requires intelligent, efficient strategies that
maximize profitability while meeting consumer demand. Ideally, such strategies should
reduce reliance on the public utility grid, especially during peak demand periods, by
enabling the microgrid to sell excess energy back to the grid, thereby lowering electricity
prices. Embracing renewable energy not only fosters environmental preservation but also
provides an inexhaustible energy supply. This transition motivates the adoption of green
energy buildings, which is achievable through home energy management systems and
smart microgrid integration, which optimize resource use and operational efficiency.

2. Materials and Methods
To develop solar irradiance prediction models, we utilized time series data sourced

primarily from the NASA POWER database, which collects satellite-derived measurements.
This choice was made due to the limited accessibility of ground-based stations, and the
satellite data provided a comprehensive view by capturing varied atmospheric conditions.

While the dataset’s comprehensiveness and global coverage are significant strengths,
we acknowledge certain limitations inherent to satellite-derived data. Weather satellites rely
primarily on remote sensing technology and spatial imagery to gather weather data, enhanced
by localized ground measurements for calibration and improved accuracy. Satellite data,
including that from the NASA POWER database, often have lower spatial and temporal reso-
lution compared to ground-based measurements. This may lead to discrepancies in regions
with highly localized weather phenomena or rapidly changing atmospheric conditions.

The main output parameter was the total solar irradiance, which includes both direct
and diffuse irradiance on a horizontal or tilted plane at the Earth’s surface under all sky
conditions, measured in kW-h/m2/day. We accessed six years of data, spanning 2015 to
2020, using the POWER Data Access Viewer for the SSE-Renewable Energy Community.
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The dataset we used is from Bhopal, India and can be accessed through the following URL
https://power.larc.nasa.gov/data-access-viewer/ (accessed on 9 June 2024).

The dataset includes key atmospheric and environmental input variables found in Table 1:

Table 1. Input parameters used for machine learning algorithms.

Input Parameter Description

Temperature at 2 m average air temperature at 2 m above ground

Relative Humidity at 2 m ratio of actual partial water vapor pressure to
saturation pressure, in percent

Precipitation Corrected bias-corrected average total surface precipitation

Wind Speed at 10 m average wind speed at 10 m above ground

All Sky Insolation Clearness Index
fraction representing atmospheric clearness; the
ratio of all-sky irradiance reaching the surface to

the top-of-atmosphere solar irradiance

Earth Skin Temperature average ground surface temperature

Surface Pressure average surface atmospheric pressure

2.1. Machine Learning Algorithms

Five supervised machine learning regression algorithms were chosen for this study
to map these seven predictor variables to output solar irradiance values. The model was
trained on data from 2015 to 2019, with 2020 reserved for validation. Therefore, 83% of the
dataset was used for training and the remaining 17% for testing. One record was created
for each day of the year. The algorithms are as follows:

1. Random Forest (RF): This ensemble learning method constructs multiple decision trees
during training and averages their outputs to make predictions, reducing overfitting
and increasing accuracy. It performed exceptionally well on our dataset, generally
achieving the highest R2 value and the lowest error metrics due to its robustness in
handling nonlinear patterns and capturing feature interactions.

2. Extreme Gradient Boosting (XGBR): This method builds sequential models that correct
errors from previous iterations, making it efficient for handling complex datasets.
XGBR demonstrated strong performance, with metrics closely aligned with those of
RF, particularly in capturing subtle variations in solar irradiance data.

3. Kernel Ridge Regression (KR): KR combines ridge regression with kernel functions,
enabling it to model nonlinear relationships effectively. It performed moderately
well, reflecting its ability to generalize but with higher sensitivity to parameter tuning
compared to ensemble methods.

4. Support Vector Regression (SVR): SVR aims to find a hyperplane that fits the data
within a margin of tolerance. In this study, SVR was implemented with hyperparame-
ter tuning using GridSearchCV, optimizing parameters such as C, gamma, epsilon,
kernel, and degree to enhance its performance. After tuning, SVR achieved a strong
R-squared value of 0.927. This result demonstrates that, with appropriate parameter
optimization, SVR can effectively model the data and provide reliable predictions.
Given this performance, SVR was included in the ensemble testing phase to fur-
ther leverage its predictive capabilities within the broader framework of machine
learning models.

5. Linear Regression (LR): This simplest regression technique assumes a linear relation-
ship between inputs and outputs. While its performance was relatively modest, LR
served as a baseline to compare the more complex models.

https://power.larc.nasa.gov/data-access-viewer/
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We analyzed each algorithm using key metrics, including R2, Mean Squared Error
(MSE), Root Mean Squared Error (RMSE), and Mean Absolute Error (MAE). Random
Forest generally achieved a superior R2 value, outperforming the other algorithms by an
average of 10%. The results validate RF’s suitability for this application, given the dataset’s
complexity and the inherent variability of solar irradiance.

In our study, we utilized GridSearchCV to systematically explore the optimal combi-
nation of hyperparameters for each of the 5 models. We performed parameter tuning on
the SVR model. The parameter grid for the SVR model included:

− C: Regularization parameter with values [0.1, 1, 10, 100]
− Gamma: Kernel coefficient with values [1, 0.1, 0.01, 0.001]
− Epsilon: Tube within which no penalty is associated with the training loss function

with values [0.01, 0.1, 1, 10]
− Kernel: Types of kernel functions including [’linear’, ’poly’, ’rbf’]
− Degree: Degree of the polynomial kernel function for “poly” kernels with values [3, 6]

These ranges were selected based on common practices in SVR applications and litera-
ture to ensure thorough coverage of the parameter space. The optimization process for hy-
perparameter selection was carried out using GridSearchCV with a 5-fold cross-validation
scheme. This method ensures that the best-performing combination of hyperparameters is
chosen based on the cross-validation results, balancing bias and variance.

After the GridSearchCV process, the best hyperparameters identified for our dataset are:

− C: 10
− Gamma: 1
− Epsilon: 0.01
− Kernel: ‘poly’
− Degree: 3

These parameters were applied to the SVR model to generate predictions on the test set.
The performance of the tuned SVR model was evaluated using standard metrics:

− Mean Squared Error (MSE): 0.333
− Mean Absolute Error (MAE): 0.441
− R-squared Score (R2): 0.927

Figure 1 shows the scatterplot of the actual vs. predicted values after hyperparameter tuning.
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Tables 2–4 provide the value and range of each hyperparameter for each tuning of
the following 3 models. An optimizer was not explicitly used for Random Forest since the
model leverages decision tree-splitting heuristics.

Table 2. Random Forest.

Hyperparameters Range of Values Value Used

n estimators [10, 100, 200] 100

max depth [3, 5, 10, none] none

max features [1, 3, 5, 7] auto

min samples split [1, 2, 3] 2

min samples leaf [1, 2, 3] 1

Table 3. Kernel Ridge.

Hyperparameters Range of Values Value Used

alpha [0.1, 1.0, 10] 1.0

kernel [linear, poly, rbf] Linear

gamma [0.1, 1.0, 10] none

degree [3, 6] 3

Table 4. XGBoost.

Hyperparameters Range of Values Value Used

learning rate [0.01, 0.1, 0.3] 0.3

n estimators [100, 200, 500] 100

max depth [3, 6, 10] 6

subsample [0.6, 0.8, 1.0] 1.0

colsample bytree [0.6, 0.8, 1.0] 1.0

reg alpha [0, 0.1, 1.0] 0

Reg lambda [0.1, 1.0, 10] 1.0

An optimizer was not explicitly used for Kernel Ridge since it relies on solving linear
systems using the kernel trick. No hyperparameters were used for Linear Regression
as it fits a linear model without regularization. The optimizer used was Ordinary Least
Squares (OLS).

The optimizer used for XGBoost was the Gradient Boosting Algorithm.

2.2. Machine Learning Methods

To further enhance accuracy, we used ensemble learning techniques that combine
multiple models, improving robustness and reducing potential biases:

− Voting: combines predictions from several models to produce a final prediction.
− Stacking: learns an optimal combination of predictions from at least two models using

a meta-learner.
− Bagging: uses data resampling with replacement, which reduces model variance and

enhances stability.

Datasets were validated across different locations. First, a model was trained on a
dataset from India [15] so that we could compare results with existing work using the same
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dataset. Once we trained the model, we could check its accuracy and train the model on a
dataset with solar irradiance output from tilted solar panels in India.

Using the output parameter for tilted solar panels, All Sky Surface Shortwave Down-
ward Direct Normal Irradiance (DNI) provides more precise and relevant information
for solar energy applications, enabling better performance prediction, optimization, and
operation of solar energy systems. The output parameter for horizontal solar panels is
named All Sky Surface Shortwave Downward Irradiance (SWD).

DNI, as compared to SWD, is relevant to solar energy systems, has a higher concentra-
tion of solar energy, has better performance, has optimized tracking systems, and utilizes
standardized measurements [16].

The formula to convert solar irradiance captured by solar panels to the solar en-
ergy produced for electricity is based on the efficiency and area of the solar panels. The
relationship can be expressed as:

E = I·A·η (1)

where:

E: Solar energy produced (in kilowatt-hours or watt-hours)
I: Solar irradiance (in kilowatts per square meter or watts per square meter)
A: Area of the solar panel (in square meters)
η: Efficiency of the solar panel (as a decimal)

We then utilized an implementation of five-fold cross-validation. In our experiment,
each fold represents one year of data. Cross-validation is a valuable technique in machine
learning for improving its generalization ability. The motivation to use cross-validation is
based on its inherent advantages [17–21]. It produces more reliable performance estimates,
provides better utilization of data, reduces bias, improves model selection and hyperpa-
rameter tuning, overfitting detection, is robust to data imbalance, and allows for easier
comparison of models.

Overall, cross-validation is a valuable tool for model evaluation, selection, and im-
provement in machine learning, contributing to more reliable and robust predictive models.
Our goal is to improve the prediction results by utilizing cross-validation.

Since we’re interested in predicting solar irradiance in our geographical area and
improving performance, we built a model on the Boca Raton, Florida, dataset for tilted
panels using five-fold cross-validation. The advantage of using DNI (tilted solar panels)
over SWD (horizontal panels) lies in its ability to provide more accurate and precise
information about the solar radiation that directly impacts solar energy systems, particularly
concentrating solar power (CSP) and photovoltaic (PV) systems [22–24].

India and Florida share several climatic similarities that are relevant for developing
machine learning models for solar irradiance prediction. These similarities make them valu-
able case studies for validating predictive models across diverse but comparable conditions
such as abundant solar radiation, tropical and subtropical climates, seasonal variations,
high humidity levels, frequent cloud cover and atmospheric changes, and high solar energy
potential. By incorporating these shared climatic features into machine learning mod-
els, researchers can design predictive frameworks that are transferable between regions,
enhancing their generalizability and robustness for solar irradiance forecasting across
different geographies.

During the data pre-processing stage, we identified and removed solar irradiance
values less than −1 as outliers. Moreover, the machine learning models employed, such as
Random Forest and XGBoost, inherently exhibit robustness to outliers due to their reliance
on tree-based structures. These models divide the data into smaller subsets during decision
tree construction, minimizing the impact of individual extreme values. For the Support
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Vector Regression (SVR) model, we performed hyperparameter tuning (e.g., selecting an
appropriate kernel and regularization parameters) to mitigate the influence of outliers.

Ensuring the reproducibility of our research is a priority, as it allows for transparency
and facilitates further advancements in the field. We applied standard machine learning
models, included descriptions of the features we used, and the datasets were available to
the public. Therefore, our results can be reproduced using these NASA datasets. A detailed
description of the data pre-processing steps, model configurations, and hyperparameters is
included in the manuscript to further support reproducibility efforts.

There are uncertainties associated with solar irradiance predictions. Our future work
involves developing an algorithm that utilizes solar irradiance predictions as input to
optimize BESS operation, which will mitigate these uncertainties. The algorithm is based
on fuzzy logic, which we selected because it deals with this uncertainty. This feature is
critical for decision-making in energy systems.

After training the model on tilted solar panel datasets, we tested the model to show
generalizability by testing the model on datasets belonging to different geographical locations.

We started in a nearby location, Orlando, Florida. The same trained model was
tested again using tilted panel output in the Orlando dataset. To generalize the model, we
tested datasets belonging to different locations in Florida, namely Orlando, Miami, Tampa,
Jacksonville, and Tallahassee.

3. Results
3.1. Machine Learning Algorithms Trained on 2015–2019 Datasets from India Using Horizontal
Solar Panel Output

We originally started our experiment with solar irradiance prediction from a horizontal
solar panel in a location in India to compare our results against existing work that used
horizontal panels and the same dataset [15]. We used the 2015–2019 datasets for training
and the 2020 datasets for testing. The prediction results for our machine learning models
are presented in Figures 2–6.
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Table 5 provides four metrics used to compare the five algorithms.

Table 5. Metrics results for algorithms.

ML Algorithm MSE RMSE MAE R-Squared

Random Forest 0.100 0.317 0.228 0.952
XGBRegressor 0.101 0.318 0.231 0.951
SVRegressor 0.867 0.931 0.735 0.582
Kernal Ridge 0.126 0.355 0.289 0.939

Linear Regression 0.118 0.343 0.278 0.943

The following metrics were used to assess and compare the predictive accuracy of the
five algorithms:

− MSE (Mean Squared Error): MSE quantifies the average squared difference between
observed and predicted values, with lower values indicating fewer errors. An ideal
MSE is zero, increasing as the model’s error grows.

− RMSE (Root Mean Squared Error): RMSE is the square root of MSE, offering an
interpretable metric in the same units as the data, with lower values showing better
model performance.

− MAE (Mean Absolute Error): MAE measures the average magnitude of prediction
errors, disregarding direction, calculated as the mean absolute difference between
predicted and actual values. Lower MAE values reflect higher prediction accuracy.

− R2 (Coefficient of Determination): R2 indicates the proportion of variance in the target
variable explained by the model. An R2 close to 1 suggests that the model effectively
explains variability in the data.

To further understand the contribution of input features to the model’s predictions,
we conducted an analysis of feature importance using the Random Forest algorithm,
which inherently provides a measure of feature significance based on the decrease in
impurity (Gini importance). The results revealed that temperature at 2 m and the all-sky
insolation clearness index were the most significant predictors, as they strongly influence
solar irradiance variability. Features such as wind speed at 10 m and surface pressure
showed moderate importance, while relative humidity and precipitation had a lesser but
still notable impact. The Random Forest algorithm evaluates the significance of each input
feature by measuring its contribution to reducing impurity in the decision trees. Figure 7
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provides a summary of the metrics and their importance scores for the seven input features
used in the model:
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Figure 7. Summary of the importance scores for the input features used in the model.

3.2. Ensemble Models Trained on 2015–2019 Datasets from India Using Horizontal Solar
Pane Output

To enhance predictive performance beyond that of individual machine learning algo-
rithms, we employed ensemble methods. Rather than relying on a single model, ensemble
approaches combine multiple models to boost the accuracy of key metrics.

The stacking regressor achieved the highest performance among the three ensemble
learning methods. Stacking, or stacked generalization, integrates multiple regression
models by training a meta-regressor on their combined predictions. This approach excels
due to several factors: it leverages model diversity, effectively integrates the meta-learner,
improves overall performance, handles nonlinear and complex patterns, and enhances
robustness. Success in stacking is typically influenced by the diversity and quality of
the base models and the fine-tuning of the meta-learner, which blends the base models’
predictions effectively. The efficacy of a stacked model can vary based on the selection of
base models, data characteristics, and integration within the stacking framework. Table 6
summarizes the comparative results of our individual algorithms, ensemble methods,
and the work in [15] using the same dataset as our study sourced from NASA’s POWER
database. To the best of our knowledge, the only additional research utilizing this dataset
is the work in [15], which serves as a direct comparison to our methodology.

Table 6. Comparison Of Our Work and Other Work That Used the Same Dataset [15].

Dataset Used Method R-Squared Results

Our work using NASA
POWER

Dataset [1]

Stacking (Ensemble) 0.9546
Voting (Ensemble) 0.9536

Bagging (Ensemble) 0.9511
Random Forest 0.9513

XGBR 0.9510
LR 0.9430
KR 0.9392

SVR 0.5817
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Table 6. Cont.

Dataset Used Method R-Squared Results

Other work that used the
NASA POWER Dataset [15]

Bidirectional LSTM 0.7064
GRU 0.7032
CNN 0.7025

Attention LSTM 0.6965
LSTM 0.6906

3.3. Five-Fold Cross-Validation Using 2015–2019 Datasets from India Using Horizontal Solar
Panel Output

Five-fold cross-validation is performed in 2015–2019 datasets, with each year serving as
one-fold. Table 7 illustrates the mean R-squared values of the five folds for the four machine
learning algorithms that produced the best prediction results with five-fold cross-validation.
Random Forest gave the most accurate results of all machine learning algorithms.

Table 7. R-Squared Values for Machine Learning Algorithms With Five-Fold Cross-Validation.

Method Mean R-Squared

Kernal Ridge 0.9531
Linear Regression 0.9564

XGBoost 0.9677
Random Forest 0.9700

Table 8 illustrates the mean R-squared values of the Five folds for the three ensemble
methods with five-fold cross-validation. The stacking regressor provided the best prediction
results of the ensemble learning methods.

Table 8. R-squared values for Ensemble Methods With Five-Fold Cross-Validation.

Ensemble Method Mean R-Squared

Stacking 0.9730
Bagging 0.9698
Voting 0.9703

Figure 8 presents a graphical representation of the comparison of the mean R-squared
values of the top four machine learning algorithms and three ensemble methods using
five-fold cross-validation using the dataset from India.
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Figure 8. Comparison of R-squared scores of Machine Learning algorithms and Ensemble methods
using five-fold cross-validation.
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The figure shows that the stacking regressor ensemble method produced the best
results of the seven methods with a mean R-squared value of 0.9728.

3.4. Five-Fold Cross-Validation Trained on 2015–2019 Datasets from Boca Raton Using Tilted
Solar Panel Output

Since the models were validated with a particular dataset, we applied five-fold cross-
validation algorithms for the same four machine learning algorithms and three ensemble
methods on a different dataset from a local city, Boca Raton, FL, USA. To reflect a real-world
application, the solar irradiance output variable for this dataset was changed from mea-
surements from a horizontal solar panel to the Earth’s surface to a tilted angle. The name of
this output parameter is All Sky Surface Shortwave Downward Direct Normal Irradiance.

In practice, tilted solar panels are deployed to face the sun and increase solar irradiance.
This is demonstrated by Figure 9, which compares the actual solar irradiance captured by
both tilted solar panels and horizontal panels in New York City.
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Figure 9. Comparison of solar irradiance received by tilted and horizontally aligned solar panels in
New York City, USA, in the year 2015.

During the year 2015, New York City received 7% more solar irradiance from tilted
panels than from a horizontal installation.

Table 9 presents the comparison of the mean R-squared values of the prediction results
for each algorithm using tilted solar panels for Boca Raton, FL.

Table 9. R-Squared Values for Methods With Five-Fold Cross-Validation on The Boca Raton, Fl Dataset.

Machine Learning Method Mean R-Squared

Kernal Ridge 0.8600
Linear Regression 0.8639

XGBoost 0.9165
Random Forest 0.9165

Ensemble Method Mean R-squared
Bagging Regressor 0.9206
Voting Regressor 0.9065

Stacking Regressor 0.9190
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The table shows that the bagging regressor ensemble method produced the best results
of the seven methods with a mean R-squared value of 0.9206. Our next experiment was
to generalize the model built from the Boca Raton dataset. We tested the model using the
Orlando dataset with tilted solar panels for the year 2020. To generalize the model, we tested
it on different locations in Florida: Orlando, Miami, Tampa, Jacksonville, and Tallahassee.

Figure 10 presents the comparison of the mean R-squared values of the prediction
results for each algorithm for the Orlando dataset.
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Figure 10. Comparison of R-squared scores of Machine Learning algorithms and Ensemble methods
using five-fold cross-validation tested on Orlando, FL, dataset from 2020.

The figure shows that the bagging regressor ensemble method produced the best
results of the seven methods with a mean R-squared value of 0.9206. Then, we expanded
our experiment to other cities in the state of Florida using solar irradiance data from
tilted solar panels in 2019. Our goal is to increase the generalizability of the model. Ridge
regression was incorporated into all machine learning methods using the datasets from Boca
Raton, Florida, as the training data for our model to address the critical issue of overfitting.
In addition, five-fold cross-validation was performed on the dataset for each city. By
penalizing large coefficients, ridge regression introduces a regularization term to the loss
function, which helps to balance model complexity and generalizability. The use of ridge
regression aligns with the primary goal of this research: to develop predictive models that
generalize well to unseen data. By integrating ridge regression into all methods, this study
ensures that the models are not only accurate but also robust and interpretable. This choice
demonstrates a commitment to producing models that can withstand the complexities of
real-world data while avoiding the pitfalls of overfitting. The prediction results for the city
of Orlando using the Random Forest machine learning model are presented in Figure 11.
Random Forest produced the best results.
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The Random Forest algorithm produced an R-squared value of 0.9245. The prediction
results for the city of Miami using the XGBoost machine learning model are presented
in Figure 12.
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The XGBoost algorithm produced an R-squared value of 0.9242. The prediction results
for the city of Tampa using the Random Forest machine learning model are presented
in Figure 13.
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The Random Forest algorithm produced an R-squared value of 0.9246. Next, we
selected two major cities in Northern Florida to assess the prediction results of a region
far from the other cities tested. The prediction results for the city of Jacksonville using the
Random Forest machine learning model are presented in Figure 14.
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The Random Forest algorithm produced an R-squared value of 0.9243. The prediction
results for the city of Tallahassee using the Random Forest machine learning model are
presented in Figure 15.
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Figure 15. Prediction Results for Random Forest Model (Tallahassee).

The Random Forest algorithm produced an R-squared value of 0.9249.
Figure 16 presents the bagging ensemble regressor model using a scatter plot with

a regression line that represents a match between the forecasted and actual values for
Orlando. The stacking regressor performed the best out of the three ensemble learning
methods with an R-squared value of 0.9339.
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Figure 17 presents the bagging ensemble regressor model using a scatter plot for
Miami. The stacking regressor performed the best out of the three ensemble learning
methods with an R-squared value of 0.9263.
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Figure 18 presents the bagging ensemble regressor model using a scatter plot for
Tampa. The stacking regressor performed the best out of the three ensemble learning
methods with an R-squared value of 0.9571.
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Figure 19 presents the stacking ensemble regressor model using a scatter plot for
Jacksonville. The stacking regressor performed the best out of the three ensemble learning
methods with an R-squared value of 0.9403.
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Figure 20 presents the stacking ensemble regressor model using a scatter plot for
Tallahassee. The stacking regressor performed the best out of the three ensemble learning
methods with an R-squared value of 0.9425.
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Jacksonville, and Tallahassee. This table highlights the performance of Random Forest and
Stacking Regressor as the best-performing methods in most cities, with a key performance
metric (R-squared) value ranging from 0.92 to 0.96.

Table 10. R-squared values for the tested cities.

City Best Machine
Learning Model R-Squared (ML) Best Ensemble

Method
R-Squared
(Ensemble)

Orlando Random Forest 0.9245 Stacking Regressor 0.9339

Miami XGBoost 0.9242 Stacking Regressor 0.9263

Tampa Random Forest 0.9246 Stacking Regressor 0.9571

Jacksonville Random Forest 0.9243 Stacking Regressor 0.9403

Tallahassee Random Forest 0.9249 Stacking Regressor 0.9425

Overestimation of solar irradiance could lead to an overly aggressive reliance on solar
power, potentially depleting the battery prematurely, while underestimation could result in
missed opportunities to optimize battery usage during peak solar periods.

In our work, the predicted solar irradiance serves as a critical input to our proposed
fuzzy logic algorithm specifically designed for battery operation optimization. The fuzzy
logic algorithm processes the solar irradiance predictions along with other key variables,
such as the state of charge (SOC) and electricity price, to make real-time decisions on
charging, discharging, and energy sourcing.

4. Discussion
The global reliance on fossil fuels as a primary energy source has led to substantial

environmental concerns, including pollution and climate change. A shift toward renew-
able energy sources, particularly solar and wind, has gained momentum; however, these
alternatives present challenges due to their inherent intermittency and installation costs.
In this study, five machine learning algorithms—Random Forest, XGBR, SVR, KR, and
LR—were trained and evaluated using data from the NASA POWER satellite database.
By integrating machine learning with satellite-derived weather data, our approach pro-
vides a novel and efficient method for optimizing energy management within microgrids,
facilitating smarter and more responsive operations in renewable energy systems. This
methodology underscores the potential of remote satellite sensing to advance sustainability
in energy generation.

The novelty of this study lies in our use of a combination of machine learning and
ensemble models to enhance prediction accuracy through cross-validation and testing on
different datasets. The model still performed well in five different cities in Florida using
solar irradiance data from tilted solar panels. Additionally, we successfully applied machine
learning models to generalize solar irradiance predictions across diverse geographical
locations in Florida, achieving high accuracy with R-squared values between 0.90 and 0.9249.
Importantly, our ensemble methods, including voting, stacking, and bagging, produced
good results, with R-squared values exceeding 0.9262, outperforming previous studies on
the same dataset. This demonstrates the robustness and efficiency of our approach.

For the machine learning models, Random Forest emerged as the best-performing
individual algorithm in four out of the five cities, with improvements averaging 10% for
R-squared, 21% for MSE, 18% for RMSE, and 16% for MAE compared to other algorithms.
This success can be attributed to its ensemble structure, which effectively reduces vari-
ance and prevents overfitting. XGBoost, another ensemble method, showed competitive
performance, though its computational complexity was higher compared to Random Forest.
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Scalability and computational efficiency are critical factors when deploying machine
learning models in BESSs. In our study, we utilized a range of machine learning and
ensemble methods to balance predictive accuracy and computational efficiency. Methods
like Random Forest and XGBRegressor, while computationally intensive during training,
operate efficiently during inference, which aligns with the needs of IoT-based microgrids.

The ensemble methods we used further enhanced performance, with the stacking
regressor achieving the highest accuracy in all scenarios. These approaches integrate
multiple models to improve accuracy, and their scalability can be tailored by adjusting the
number and complexity of base learners.

Research in [25] underscores solar irradiance as the primary factor in determining
PV panel output. We plan to develop a battery optimization algorithm [26] that integrates
solar irradiance predictions to optimize battery operations effectively. Future research can
explore hybrid approaches that combine machine learning and deep learning models, which
may uncover additional opportunities to enhance prediction accuracy while maintaining
computational efficiency.
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