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Abstract: Knowledge of experimentally obtained values of elastic deformations of rubber
springs induced by applied compressive forces of known magnitudes is essential for the
selection of rubber springs with optimal properties, which are used to dampen vibrations
transmitted to the supporting parts of vibrating machines. This paper deals with the
laboratory measurement of the characteristics of rubber springs using two types of sensors
which sense the instantaneous value of the compressive force acting on the compressed
spring. When using a strain tensometric force sensor, the magnitude of the measured
pressure forces was evaluated by the DeweSoft DS-NET system, which was connected
to an ethernet LAN, so the measured data could be processed, analysed and stored by
any computer on the network. The characteristics of eight types of rubber springs were
measured in two ways on laboratory equipment, and the spring stiffnesses were calculated
from the measured data. Experiments have shown that the actual stiffnesses of rubber
springs are lower compared to the values stated by the manufacturer, in the least favourable
case, by 33.6%. It has been shown by measurements that at the beginning of the loading of
the rubber spring, its compression is gradual, and the stiffness increases slowly, which is
defined as the progressivity of the spring.

Keywords: force sensor; rubber spring; elastic deformation; spring characteristics and stiffness

1. Introduction
Spring stiffness [1], also known as spring constant or spring moment, is a measure of

how much force is required to compress a compression spring for a certain distance. Spring
stiffness [2] is a physical quantity that indicates the rate of change in length relative to the
magnitude of the external force acting during elastic deformation.

The purpose of this study is to obtain, by sensor measurements, a mathematical
relationship between the compressive forces acting on rubber springs (which are digital
inputs) and their elastic deformation. The characteristics of rubber springs obtained by
laboratory measurements [3] are a valuable asset in the selection of real springs that are
installed in vibrating machines. The benefit can be justified by the fact that the spring
stiffness values stated in manufacturers’ catalogues are often different from the stiffness
values of the actual springs.

Steel or rubber springs are widely used in industrial operations to dampen vibrations
transmitted to the substructure of vibration machines. The paper [4] presents the theoretical
calculations of the pallet brake, which is a crucial element of the pallet locking system (using
cylindrical compression springs) of the conceptual variant of the automatic parking system.
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Soliman et al. in their paper [5] investigated the effect of suspension spring stiffness
on vehicle dynamics. They used a chassis dynamometer to perform experimental work.
The predicted results were compared with experimental measurements.

The structure of a mechanical spring with adjustable stiffness was presented in the
article [6] and outlined the solution of temperature control systems. The spring was tested
in an experimental setup and compiled test results were provided. Selected results were
shown in the article for different excitations and operating temperatures. The obtained
results show that the spring built using SMA has many interesting properties.

The paper [7] examined the spatial variation of the Winkler spring stiffness constants.
Due to the need to choose the optimal stiffness of springs that support the oscillat-

ing masses of vibrating machines, it is often necessary in practice to verify whether the
stiffness of the springs corresponds to the stiffness stated in the spring manufacturers’
catalogues. The actual spring stiffness determined by measuring the compressive/tensile
force depending on compression/extension is often different from the catalogue value of
the spring stiffness [8,9]. For the purpose of determining the spring characteristics, the labo-
ratory equipment described in this article was designed at the Department of Machine and
Industrial Design, Faculty of Mechanical Engineering, VSB-Technical University of Ostrava.

Smooth-running conveying equipment—namely, vibratory conveyors with mi-
croshafts or vibrating sorters with mechanical exciter, electromagnetic vibrators or vibration
exciters consisting of a pair of vibration electric motors [10]—use the harmonic vibration of
the trough or sorting screens [11,12] to move grains of bulk material.

In Ref. [13], L.L. Howell et al. investigated the spring stiffness equivalent to a pseudo-
rigid body, and new modelling equations were proposed therein. The result is a simplified
method of modelling the force/deflection relationships of large-deflection members in
compliant mechanisms.

The articles [14,15] represented a structural design as well as a created 3D model used
for subsequent physical implementation of a validation device that allows for measuring the
force as well as the shortening of a coiled pressure spring during laboratory experiments.

In the article [16], the authors R. Lefanti et al. conducted an evaluation of the reli-
ability of the elastomeric silent block based on the shape factor, and the materials used
were developed.

The authors concluded that silent block failure is caused by radial loads and axial
displacement leading to fatigue and wear. They created a test rig to evaluate reliability.

In the article [17], J. Ziobro presented a mechanical calculation of the silent block
model. Based on the model, he performed a 3D numerical analysis using two types of
rubber bushings with different hardness. When using all-rubber bushings for silent blocks,
the author recommends optimal damping properties achieved by using a lower hardness of
these elements. A satisfactory compromise between stability and damping characteristics
can also be achieved by using specially shaped bushings that are made of harder rubber.

The following studies [18,19], for example, deal with the analysis of the characteristic
properties of silent blocks used in automobiles. The article [18] deals with an aluminium
silent block that connects the front suspension mounting and the road wheels subjected
to high technical stress. Over time, the connecting part of these products breaks due to
insufficient strength.

Fedotov et al. in the article [19] stated the test equipment and test results that were
carried out in the research laboratory of the VSGUTU Car Department. The main purpose
of the laboratory tests was to obtain experimental data for the development of mathematical
models of the functioning of car suspension silent blocks for the development of a diagnostic
method. The authors have shown in this article that the compression resistance of a silent
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block increases linearly with increasing load. Silent blocks change their compression
resistance first slowly with increasing load and then more steeply.

In the study [20], Hatekar et al. analysed using static and dynamic load cases using
virtual simulation (MSC.ADAMS) the stiffness of the casing. Based on the stiffness and
load cycle calculation, the profile of the elastomer was finalized, and the material property
was chosen to meet all the required parameters of performance and service life.

The operational reliability of vibrating machines [21–23] is largely determined by
the reliability of suspension elements that use silent blocks. In this regard, currently one
of the urgent tasks of technical diagnostics is to determine the technical condition of the
suspension in operation. Any suspension of a vibrating conveyor (sorter) contains many
details, which complicates its diagnosis and requires highly qualified personnel and special
equipment. The detection of suspension faults is often not carried out by diagnostics, but
by the structural parameters of the technical condition, determined during the disassembly
and defecation of its parts. Failure of any suspension component can reduce operational
reliability and directly affect the active safety of the vibrating machine or operator.

The main content of the paper [24] by the authors Misol, Algermissen and Monner, was
the evaluation of the excitation of the windshield, which was realized by an electrodynamic
exciter (shaker). The authors of the windshield measurements assumed that the glass
was embedded in the rubber, which acted as a spring dampening the vibrations when the
vehicle moved.

Rubber springs are widely used in industry as anti-vibration components providing
many years of service, as shown in Ref. [25]. Luo and Wu in the article [25] state that the
purpose of the FE analysis is to obtain improved fatigue life of the spring. It is shown in
the paper that a quasi-static simulation for rubber springs using nonlinear software can
provide good indication for product design and failure analysis.

M. Berg in Ref. [26] proposed a nonlinear dynamic model of a rubber spring and fo-
cused on the representation of the mechanical behaviour of rubber suspension components
in rail vehicle dynamics.

For the analysis of railway vehicle dynamics, the article [27] by R. Luo et al. designed
a simple and more accurate nonlinear rubber spring model. The characteristics of dynamic
stiffness and damping were investigated through both simulations and lab tests with
various displacement amplitude and frequency.

In the article [28] by Wu and Shangguan, a model characterizing the relations between
excitation frequencies as well as excitation amplitudes and the dynamic performances of a
rubber isolator was presented. Measurements showed that dynamic characteristics of the
rubber isolators relate to excitation amplitudes and excitation frequencies.

In the article [29], H. Shi and P. Wu created a nonlinear dynamic model for a rubber
spring and subsequently used it to describe the mechanical behaviour of rubber mounts
in the suspension system of a railroad vehicle. In this paper, the dynamic stiffness and
damping characteristics in relation to the applied displacement amplitude and frequency
were investigated by means of simulations and measurements.

In Ref. [30], Misaji et al. described a method for analysing nonlinear vibration response.
They verified the appropriateness and accuracy of this method by directly comparing the
analytical results with the experimental results for the dynamic response of a system.

Austin et al. in Ref. [31] reported that soft springs provide higher torque resolution
at the cost of system bandwidth, whereas stiff springs provide a fast response but lower
torque resolution. Nonlinear springs potentially incorporate the benefits of both soft and
stiff springs, but such springs are often large. A nonlinear spring design was recently
proposed that combines a variable radius camera with a rubber elastic element, enabling a
compact spring design.
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Based on the above-mentioned research of technical articles dealing with measuring
spring stiffness and the conclusions therein, it is necessary to use optimal types of silent
blocks in vibrating machines. Given this conclusion, the laboratory equipment presented
in this article was designed.

The main objective of this study was to use sensors to detect the magnitude of the
compressive force acting on the rubber spring, thus enabling monitoring, data collection
and storage for the purpose of the autonomous operation of vibration machines. The
ability to detect the actual instantaneous magnitudes of the applied forces by sensors in
real time and to use these digital values to communicate with the control unit allows for
increasing the safety and reliability of the operation of the vibration machine [31,32] and its
key machine parts, which can also include springs. A significant aspect is the reduction of
the risk of accidents both during maintenance and working activities and the assurance
of functionality without the need for human presence due to the use of automation and
sensor monitoring.

The novelty and innovation can be traced in the designed laboratory device. The
laboratory device allows two (independent) methods to determine the exact value of the
stiffness of a rubber spring by measurement. The measurement can obtain the value of the
compression of the rubber spring and also the value of the pressure force that deforms the
rubber spring.

2. Materials and Methods
In the technical literature, instructions are presented on how to select a suitable spring

for a given type of vibrating machine; however, often there is a lack of instructions and a
methodological procedure on how to correctly and accurately determine the stiffness of
a silent block. In this article, we have tried to present one of the options for determining
the stiffness of rubber. Stiffness is determined from the values detected by sensors. The
signals are processed by the DeweSoft DS-NET measuring system (DEWETRON Inc., East
Greenwich, RI, USA) and sent to a PC via a Wi-Fi router, which evaluates them.

Vibrating conveyors/sorters use the inertial forces on the individual grains of the
conveyed material to move/sort the material. The inertial forces are generated by the
harmonic oscillating motion of the trough (micro-rotor conveyors)—see Figure 1—in which
the material particles are separated from the trough surface at a certain phase of the
transport time (the vertical component of the acceleration of the oscillating motion is
greater than the acceleration due to gravity).
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Figure 1. Model of vibrating conveyor with asynchronous single-phase vibrating electric motor.

The source of the harmonic oscillations is the exciter, which is usually firmly connected
to the trough. The trough is supported/suspended by steel or rubber (silent block) springs.
The springs allow the trough to perform harmonic motion and at the same time prevent the
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transmission of dynamic forces to the substructure; for this reason there is an attempt to
select springs with the lowest possible stiffness ss [N·m−1]. The stiffness of the springs also
determines whether the vibration machine will operate in the sub-resonant (z < 1), resonant
(z = 0.85 ÷ 0.95) or supra-resonant (z > 1 ÷ 5) zone, where z = ω/ω0, ω = 2·π·f [s−1] is the
operating frequency of the machine, f [Hz] is the frequency of vibration generated by the
exciter, and ω0 [s−1] is the natural frequency of the machine (1). The stiffness of the springs
supporting the trough of mass m [kg] (including the mass of the conveyed material placed
on the trough) can be determined according to (1).

ss = ω0·m
[
N·m−1

]
, (1)

In many springs that are in use, especially in the case of the frequently used helical
springs or rubber springs, the dependence of the deformation (compression) x [m] due to
the applied force F [N] is almost linear [20], and in graphical expression it is a line. The
slope of this line gives the spring stiffness ss [N·m−1], which is a constant expressing the
force required to deform the spring per unit [4]. In the case of a direct proportionality
between force and deflection, such behaviour can be expressed mathematically as follows
by Hooke’s law (2):

F = ss·x[N], (2)

where F [N] is the spring force, and x [m] is the spring deflection from the resting state.
A body suspended by a spring, or supported by a spring, is one of the simplest

mechanical oscillators, i.e., a system that performs oscillations. If damping is neglected, a
body of mass m [kg] on a spring of stiffness ss [N·m−1] performs harmonic oscillations of
natural angular frequency ω0 [rad·s−1] (1).

The spring characteristic is generally a curve expressing the dependence between the
force acting on the spring and its elastic deformation. The area under the curve corresponds
to the delivered work W [J] (3) required for a certain deformation of the spring or the
accumulated potential energy Ep [J] of the loaded spring.

Ep = W = 0.5·F·x = 0.5·ss·x2[J], (3)

In order to verify the catalogue values [33,34] of the stiffness of rubber springs, a
laboratory device was designed and constructed which allows for the measurement of
the elastic deformation of rubber springs, which are called “silent blocks”, depending on
the magnitude of the applied compressive force, using sensors [35,36] and positioning
units with a digital indicator [37]. This was carried out in a laboratory at the Department
of Machine and Industrial Design, Faculty of Mechanical Engineering, VSB-Technical
University of Ostrava.

Figure 2 presents the first variation of the measurement of compression rubber spring
characteristics. The bolt of the tested silent block 3 was attached to the sled of the positioning
unit (long positioning table PT7312-PA [37]) 4. The measurements were carried out on a
total of eight types of silent blocks, made of NR/SBR rubber with a hardness of 55◦ shA,
with the bolt having an M6 thread. Four silent blocks were of diameter D = 20 mm and
lengths H0 = 10, 15, 20 and 25 mm, while the remaining four silent blocks were of diameter
D = 25 mm and lengths H0 = 15, 20, 25 and 30 mm. The positioning unit 4 was attached to
the steel frame 1 of the laboratory apparatus similarly to digital force gauge DST-220A [35],
with a measuring range of 0 ÷ 1000 N.
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Figure 2. Laboratory device detecting rubber spring characteristics—variation 1, (a) 3D model created
in SolidWorks™ Premium 2012 × 64 SP5.0 software (SOLIDWORKS Corporation.; Vélizy; France),
(b) 2D sketch created in AutoCAD 2024 software (Autodesk, Inc., Mill Valley, CA, USA). 1—steel
frame, 2—digital force gauge, 3—silent block, 4—positioning unit.

By manually rotating the locking bolt of the positioning unit 4 in the appropriate
direction, the shank of the rubber spring bolt 3 was brought closer/farther away from the
measuring surface of the digital force gauge 2. At the moment when the shank of the bolt
of the rubber spring 3 reached the measuring surface of the digital force gauge 2, the digital
indicator of the positioning unit 4 and the digital force gauge 2 were reset. By turning the
locking bolt of the positioning unit 4, the sled was moved vertically by the desired amount
Li [m]. The value of the applied compressive force Fcom,i [N] was read on the digital force
gauge 2 for the compression value Li [m] (i.e., the length of the rubber spring Hi = H0 − Li

[m]) of the rubber spring 3.
The procedure was repeated until the predetermined maximum compression

Li = Li = Lmax [m] of the rubber spring 3 was reached. By turning the locking bolt of the
positioning unit 4 in the reverse direction, the values of the compressive force Frel,i [N] at
the compression value Li [m] of the rubber spring 3 were measured on the digital force
gauge 2. The values of the measured compressive forces by the digital force gauge 2 can be
recorded using the Force Logger software [38] and saved on a computer.

Figure 3 presents the second variation of measuring the characteristics of a compres-
sion rubber spring. Tension pressure sensor C9B-1kN 2 [36] with a measuring range of 0 N
to 1000 N was mechanically attached to the sled of the horizontally positioned positioning
unit 4.
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Figure 3. Laboratory device detecting rubber spring characteristics—variation 2, created in Solid-
Works™ Premium 2012 × 64 SP5.0 software, (a) 3D model, (b) 2D sketch. 1—steel frame, 2—digital
force gauge, 3—silent block, 4—positioning unit.

By manually rotating the locking bolt of the vertically positioned positioning unit 4 in
the appropriate direction, the shank of the rubber spring screw 3 was brought closer/farther
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away from the measuring surface of the tension pressure sensor 2. Using the DEWESoft X2
SP5 software [39], the signals of the measured quantity (pressure forces Fcom,i [N]) were
recorded, having been detected by the DEWESoft DS-NET measuring apparatus [40]; see
Figure 4.
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The cable of the tension pressure sensor C9B-1 kN—see Figure 4—fitted with a D-Sub
9-pin plug, was connected to the DS NET BR4 module [40]. The RJ45 connectors of the
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Figure 5. Measurement of the rubber spring compressive force with (a) digital force gauge DST-220A,
and (b) tension pressure sensor C9B-1 kN.

3. Results
Compressive forces of compressed rubber springs ϕ20 mm, with lengths in an un-

loaded state of H0 = 10, 15, 20 and 25 mm and ϕ25 mm, H0 = 15, 20, 25 and 30 mm were
measured on the laboratory equipment; see Figure 5. All types of rubber springs were
made of NR/SBR rubber with a hardness of 55◦ shA.

The values of n times repeated measurements of compressive forces under the same
technical conditions were, for individual compression of rubber springs, displayed in the
software Force Logger [38] using the digital force gauge DST-220A, or in the software
DEWESoft X2 SP5 using the tension pressure sensor C9B and recorded in tables; see
Sections 3.1 and 3.2.

3.1. Detection of Forces Acting on Silent Blocks with a Digital Force Gauge

Table 1 shows the measured values of the compressive force Fcom,i [N] of a silent
block ϕ20 mm with a length in the unloaded state of H0 = 10 mm during its compression,



J. Sens. Actuator Netw. 2025, 14, 5 8 of 22

i.e., deformation Li [m]. Additionally presented in Table 1 are the measured values of the
compressive force Frel,i [N] when the silent block is released from the length Hi = H0 − Li

[m]. The maximum possible compression of the silent block is Li = Lmax [m], from which
the minimum silent block length HN = H0 − L.max [m] can be expressed.

Table 1. Rubber spring D = 20 mm; length when not loaded H0 = 10 mm.

i 1 2 3 4 5

Li Fcom,1 Frel,1 Fcom,2 Frel,2 Fcom,3 Frel,3 Fcom,4 Frel,4 Fcom,5 Frel,5 Fcom
1 κ5%,5 Frel

1 κ5%,5 sscom,i

mm N N·mm−1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -
0.2 31 23 34 24 34 27 32 25 32 27 32.6 2.0 25.2 2.5 181.1
0.6 119 96 126 99 124 99 121 100 124 98 122.8 3.9 98.4 2.0 204.7
0.9 201 158 193 162 194 167 191 161 193 162 194.4 4.6 162.0 3.5 216.0
1.3 287 252 286 256 287 257 283 258 285 256 285.6 2.2 255.8 2.6 219.7
1.7 369 369 371 371 373 373 371 371 372 372 371.2 1.8 371.2 1.8 218.4

1 see Figure 6.

Figure 6 presents the dependence of the compressive force acting on a rubber spring
ϕ20 mm with length in the unloaded state of H0 = 10 ÷ 25 mm and its elastic deformation.
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Figure 6. Graph of the dependence of the compressive force acting on a rubber spring ϕ20 mm with
length in the unloaded state of H0 = 10 ÷ 25 mm and its elastic deformation. H0 (•) 10 mm, (•) 15 mm,
(•) 20 mm, (•) 25 mm.

The resulting calculated compression force Fcom [N] or release force Frel [N] of the
form (4), using Student’s distribution [41], is given in Table 1

Fcom(Frel) = Fcom(Frel)± κα,n = Fcom(Frel)± κ5%,5[N], κ5%,5 = tα,n·s = t5%,5·s (4)

where Fcom(Frel) [N] is the arithmetic mean of all (n = 5—number of repeated measurements)
measured values of Fcom,i(Frel,i) [N], κα,n [-] is the marginal error, tα,n [-] (t5%,5 = 2.78) is
the Student’s coefficient for the risk α [%] (α = 5%) and the confounding coefficient P [%]
(P = 95%) [41], and s [-] is the sample standard deviation of the arithmetic mean.

Table 2 shows the measured values of the compressive force Fcom,i [N] and Frel,i [N]
when compressing and releasing a silent block ϕ20 mm with length in the unloaded state



J. Sens. Actuator Netw. 2025, 14, 5 9 of 22

of H0 = 15 mm. In Ref. [34], the maximum compression Lmax = 3.75 mm, the maximum
load Fmax = 352 N and the stiffness of the silent block ss = 94 N·mm−1 are given for this
type of silent block.

Table 2. Rubber spring D = 20 mm; length when not loaded H0 = 15 mm.

i 1 2 3 4 5

Li Fcom,1 Frel,1 Fcom,2 Frel,2 Fcom,3 Frel,3 Fcom,4 Frel,4 Fcom,5 Frel,5 Fcom
1 κ5%,5 Frel

1 κ5%,5 sscom,1

mm N N·mm−1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -
0.2 16 7 16 7 17 7 14 8 16 7 15.8 1.3 7.2 0.6 79.0
1.3 116 83 111 87 107 85 115 86 109 84 116.6 5.4 85.0 2.1 85.8
2.0 155 110 150 115 148 72 144 117 146 115 148.6 5.4 114.4 3.1 87.4
2.8 213 161 208 166 148 115 203 168 205 165 206.8 5.1 165.4 3.3 86.2
4.5 366 342 365 346 368 346 369 349 364 348 366.4 2.9 346.2 3.2 81.4
5.0 405 405 415 415 414 414 413 413 414 414 412.2 5.0 412.2 5.0 82.4

1 see Figure 6.

Table 3 shows the measured values of the compressive force Fcom,i [N] and Frel,i [N]
when compressing and releasing a silent block ϕ20 mm with length in the unloaded state
of H0 = 20 mm. In Ref. [34], the maximum compression Lmax = 5 mm, the maximum load
Fmax = 260 N and the stiffness of the silent block ss = 52 N·mm−1 are given for this type of
silent block.

Table 3. Rubber spring D = 20 mm; length when not loaded H0 = 20 mm.

i 1 2 3 4 5

Li Fcom,1 Frel,1 Fcom,2 Frel,2 Fcom,3 Frel,3 Fcom,4 Frel,4 Fcom,5 Frel,5 Fcom
1 κ5%,5 Frel

1 κ5%,5 sscom,i

mm N N·mm−1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -
1.0 81 62 84 64 81 62 82 62 81 64 81.8 1.7 62.8 1.7 81.8
2.0 159 128 163 134 159 133 159 131 158 134 159.6 2.4 132.0 3.5 79.8
3.0 239 198 242 207 238 205 237 206 236 208 238.4 2.9 204.8 4.7 79.5
4.0 319 282 323 288 319 287 318 286 319 290 319.6 2.4 286.6 3.6 79.9
5.0 397 381 411 389 405 385 406 384 407 388 405.2 5.8 385.4 4.3 81.0
5.5 452 452 458 458 455 455 454 454 458 458 455.4 3.6 455.4 3.6 82.8

1 see Figure 6.

Table 4 shows the measured values of the compressive force Fcom,i [N] and Frel,i [N]
when compressing and releasing a silent block ϕ20 mm with length in the unloaded state
of H0 = 25 mm. In Ref. [34], the maximum compression Lmax = 6.25 mm, the maximum
load Fmax = 310 N and the stiffness of the silent block ss = 50 N·mm−1 are given for this
type of silent block.

Table 4. Rubber spring D = 20 mm; length when not loaded H0 = 25 mm.

i 1 2 3 4 5

Li Fcom,1 Frel,1 Fcom,2 Frel,2 Fcom,3 Frel,3 Fcom,4 Frel,4 Fcom,5 Frel,5 Fcom
1 κ5%,5 Frel

1 κ5%,5 sscom,i

mm N N·mm−1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -
1.0 50 36 48 38 49 38 48 38 49 39 48.8 1.1 37.8 1.3 48.8
2.0 95 78 95 81 95 82 93 80 94 82 94.4 1.3 80.6 2.2 47.2
4.0 194 163 190 168 190 171 187 169 189 171 190.0 2.8 168.4 4.0 47.5
6.0 292 258 288 264 286 264 283 262 287 264 287.2 3.9 262.4 3.3 47.9
8.0 402 375 399 380 397 382 392 378 391 380 396.2 6.5 379.0 3.5 49.5
9.0 456 456 459 459 462 462 456 456 459 459 458.4 3.3 458.4 3.3 50.9

1 see Figure 6.

The resulting calculated compression force Fcom,i [N] or release force Frel,i [N] of the
form (4), using Student’s distribution [41], is given in Table 4.
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Table 5 shows the measured values of the compressive force Fcom,i [N] of a silent
block ϕ25 mm with a length in the unloaded state of H0 = 15 mm during its compression,
i.e., deformation Li [m]. Also presented in Table 5 are the measured values of the compres-
sive force Frel,i [N] when the silent block is released from the length Hi = H0 − Li [m]. In
Ref. [34], the maximum compression Lmax = 3.75 mm, the maximum load Fmax = 687 N and
the stiffness of the silent block ss = 183 N·mm−1 are given for this type of silent block.

Table 5. Rubber spring D = 25 mm; length when not loaded H0 = 15 mm.

i 1 2 3 4 5

Li Fcom,1 Frel,1 Fcom,2 Frel,2 Fcom,3 Frel,3 Fcom,4 Frel,4 Fcom,5 Frel,5 Fcom
1 κ5%,5 Frel

1 κ5%,5 sscom,i

mm N N·mm−1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -
0.4 54 42 53 43 52 42 51 42 53 42 52.6 1.5 42.2 0.6 131.5
0.8 106 89 105 91 104 91 103 90 104 90 104.4 1.5 90.2 1.1 130.5
1.2 159 139 161 139 160 138 157 141 158 140 159.0 0.1 139.4 1.5 132.5
1.6 215 192 217 194 215 193 213 191 214 193 214.8 1.8 192.6 1.5 134.3
2.0 272 252 275 251 272 251 272 253 274 252 273.0 2.1 251.8 1.1 136.5
2.4 331 310 335 312 332 313 331 314 333 313 332.4 2.2 312.4 2.0 138.5
2.8 396 379 397 378 396 382 394 382 395 382 395.6 1.5 380.6 2.9 141.3
3.2 454 454 453 453 457 457 456 456 457 457 455.4 2.6 455.4 2.6 142.3

1 see Figure 7.

Table 6 shows the measured values of the compressive force Fcom,i [N] and Frel,i [N]
when compressing and releasing a silent block ϕ25 mm with length in the unloaded state
of H0 = 20 mm. In Ref. [34], the maximum compression Lmax = 5 mm, the maximum load
Fmax = 602 N and the stiffness of the silent block ss = 120 N·mm−1 are given for this type of
silent block.

Table 6. Rubber spring D = 25 mm; length when not loaded H0 = 20 mm.

i 1 2 3 4 5

Li Fcom,1 Frel,1 Fcom,2 Frel,2 Fcom,3 Frel,3 Fcom,4 Frel,4 Fcom,5 Frel,5 Fcom
1 κ5%,5 Frel

1 κ5%,5 sscom,i

mm N N·mm−1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -
1.0 93 71 95 65 94 71 91 69 94 70 93.4 2.0 69.2 3.1 93.4
2.0 176 140 178 139 179 141 174 141 179 140 177.2 3.1 140.2 1.1 88.6
3.0 251 213 256 214 254 214 249 213 252 213 252.4 3.6 213.4 3.6 84.1
4.0 337 303 341 304 339 303 333 304 336 303 337.2 3.9 303.4 0.8 84.3
5.0 446 446 447 447 446 446 444 444 445 445 445.6 1.5 445.6 1.5 89.1

1 see Figure 7.

Table 7 shows the measured values of the compressive force Fcom,i [N] and Frel,i [N]
when compressing and releasing a silent block ϕ25 mm with length in the unloaded state
of H0 = 25 mm. In Ref. [34], the maximum compression Lmax = 6.25 mm, the maximum
load Fmax = 675 N and the stiffness of the silent block ss = 108 N·mm−1 are given for this
type of silent block.

Table 7. Rubber spring D = 25 mm; length when not loaded H0 = 25 mm.

i 1 2 3 4 5

Li Fcom,1 Frel,1 Fcom,2 Frel,2 Fcom,3 Frel,3 Fcom,4 Frel,4 Fcom,5 Frel,5 Fcom
1 κ5%,5 Frel

1 κ5%,5 sscom,i

mm N N·mm−1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -
1.0 77 60 74 58 76 61 76 61 75 60 75.6 1.5 60.0 1.4 75.6
2.0 146 123 144 122 144 125 145 122 144 124 144.6 1.3 123.2 1.8 72.3
3.0 214 189 212 191 211 192 212 192 211 191 212.0 1.4 191.0 1.4 70.7
4.0 279 256 281 259 280 261 281 262 281 262 280.4 1.3 260.0 3.5 70.1
5.0 347 331 352 335 351 334 353 334 351 332 350.8 2.6 333.2 2.4 70.2
6.0 424 424 426 426 428 428 429 429 427 427 426.8 2.5 426.8 2.5 71.1

1 see Figure 7.
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Table 8 shows the measured values of the compressive force Fcom,i [N] and Frel,i [N]
when compressing and releasing a silent block ϕ25 mm with length in the unloaded state
of H0 = 30 mm. In Ref. [34], the maximum compression Lmax = 7.5 mm, the maximum load
Fmax = 562 N and the stiffness of the silent block ss = 75 N·mm−1 are given for this type of
silent block.

Table 8. Rubber spring D = 25 mm; length when not loaded H0 = 30 mm.

i 1 2 3 4 5

Li Fcom,1 Frel,1 Fcom,2 Frel,2 Fcom,3 Frel,3 Fcom,4 Frel,4 Fcom,5 Frel,5 Fcom
1 κ5%,5 Frel

1 κ5%,5 sscom,i

mm N N·mm−1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -
1.0 66 33 62 36 64 37 61 36 64 33 63.4 2.6 35.0 2.8 63.4
2.0 118 89 122 86 117 84 116 86 113 85 117.2 3.9 86.0 2.1 58.6
3.0 169 139 176 142 168 139 174 143 172 143 171.6 5.0 141.2 3.1 57.3
4.0 223 191 227 191 219 193 229 196 218 194 223.2 6.7 193.0 2.8 55.8
5.0 279 246 276 238 282 249 286 241 281 251 280.8 4.6 245.0 7.7 56.2
6.0 357 307 349 299 354 312 355 303 351 313 353.2 4.5 306.8 8.1 55.5
7.0 381 378 383 379 392 382 398 386 394 383 389.6 10.6 381.6 4.3 55.7
7.5 419 419 412 412 423 423 426 426 428 428 421.6 8.5 421.6 8.5 56.2

1 see Figure 7.

Figure 8 presents the equations of the trend lines of the measured forces Fcom [N] (see
Tables 1–8) in an XY dot chart in Microsoft Excel. The reliability value R measures the
reliability of the trend line—the closer R2 is to 1, the better the trend line fits the data.
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3.2. Detection of Forces Acting on Force Blocks by Tension Pressure Sensor

The miniature sensor is designed for static and dynamic applications. Due to the high
natural frequency of the transducer, it can also be used for dynamic force measurements.
Characteristic mechanical quantities: natural frequence 5 KHz. Vibrational stress as per
IEC 60068-2-27: 50 Hz. A sampling frequency of 500 Hz was used in the measurements.

The following tables (Tables 9–12) show the measured values of the compressive
forces Fcom,i [N] of the silent blocks (ϕ20 mm and ϕ25 mm with unloaded length
H0 = 10 to 30 mm) during their compression, i.e., deformation Li [m]. The tables show
the values of Fcom [N], which is the arithmetic mean of all (n = 3 number of replicate
measurements) measured values of Fcom,i [N] and κα,n [-], which is the marginal error. tα,n

[-] t5%,3 = 4.30) is the Student’s coefficient for the risk α [%] (α = 5%) and the confounding
coefficient P [%] (P = 95%) [41].

Figure 9 presents measured values of the compressive force Fcom,3 [N] at compression
Li [mm] of a rubber spring of diameter D = 20 mm, with length in the unloaded state of
H0 = 10 mm.

Table 9. Rubber spring D = 20 mm; length when not loaded H0 = 10 mm and 15 mm.

i 1 2 3 i 1 2 3

Li Fcom,1 Fcom,2 Fcom,3
3 Fcom κ5%,3 ss,com Li Fcom,1 Fcom,2 Fcom,3 Fcom κ5%,3 sscom,i

mm N N·mm−1 mm N N·mm−1

0 0 0 0 0 0 - 0 0 0 0 0 0 -
0.2 52.3 1 51.5 47.5 50.4 4.6 280.2 0.2 16.2 16.8 18.3 17.1 1.9 85.5
0.6 181.6 180.3 2 176.8 179.6 4.3 299.3 1.3 108.1 4 108.5 108.8 108.5 0.6 83.4
0.9 278.3 277.8 273.5 276.5 4.7 307.3 2.0 164.1 162.9 162.6 163.2 1.4 81.6
1.3 417.9 421.4 413.1 417.5 6.8 321.1 2.8 229.4 226.6 225.8 227.3 3.3 81.2
1.7 592.8 602.0 588.0 594.3 12.0 349.6 3.6 305.1 297.3 298.4 300.3 7.5 83.4

5.0 416.1 422.4 427.5 422.0 9.2 84.4
1 see Figure 10a, 2 see Figure 10b, 3 see Figure 9, 4 see Figure 11a.
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Figure 12 presents values of the compressive force Fcom,i [N] at compression Li [mm]
of a rubber spring of diameter D = 20 mm and 25 mm, with length in the unloaded state of
H0 = 15mm and 25 mm.
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Table 11. Rubber spring D = 25 mm; length when not loaded H0 = 15 mm and 20 mm.

i 1 2 3 i 1 2 3

Li Fcom,1 Fcom,2 Fcom,3 Fcom κ5%,3 sscom,i Li Fcom,1 Fcom,2 Fcom,3 Fcom κ5%,3 sscom,i

mm N N·mm−1 mm N N·mm−1

0 0 0 0 0 0 - 0 0 0 0 0 0 -
1.2 65.8 59.6 61.0 62.1 5.7 151.0 1 98.6 95.0 93.7 95.8 4.4 95.8
2 183.8 1 178.9 181.0 181.2 4.0 158.6 2 190.7 186.0 185.5 187.4 5.1 93.7

2.8 319.9 315.0 316.9 317.3 4.1 169.2 3 278.9 2 272.7 271.9 274.5 6.8 91.5
3.2 475.6 471.6 473.7 473.6 3.2 176.2 4 379.5 367.9 366.8 371.4 12.6 92.9

5 492.9 496.8 494.7 494.8 3.1 99.0
1 see Figure 12b, 2 see Figure 13a.

Figure 13 presents values of the compressive force Fcom,i [N] at compression Li [mm]
of a rubber spring of diameter D = 25 mm, with length in the unloaded state of H0 = 25 mm
and 30 mm.
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Figure 13. Measured values of the compressive force Fcom,i [N] during compression Li [mm] of a
rubber spring of diameter D = 25 mm, length H0. (a) 20 mm, (b) 25 mm.

Table 12. Rubber spring D = 25 mm; length when not loaded H0 = 25 mm and 30 mm.

i 1 2 3 i 1 2 3

Li Fcom,1 Fcom,2 Fcom,3 Fcom κ5%,3 sscom,i Li Fcom,1 Fcom,2 Fcom,3 Fcom κ5%,3 sscom,i

mm N N·mm−1 mm N N·mm−1

0 0 0 0 0 0 - 0 0 0 0 0 0 -
1 71.3 73.6 73.1 72.7 2.1 72.7 1 72.6 69.5 71.3 71.1 2.5 71.1
2 149.0 151.0 150.4 150.1 1.8 75.1 2 136.0 133.0 134.6 134.5 2.4 67.3
3 223.9 225.6 1 224.7 224.7 1.3 74.9 3 197.6 194.8 196.1 196.2 2.2 65.4
4 298.9 299.6 299.3 299.3 0.6 74.8 4 256.5 253.9 257.6 256.0 3.3 64.0
5 374.7 379.9 375.1 376.6 5.2 75.3 5 316.9 314.4 313.9 315.1 2.8 63.0
6 462.7 466.6 464.6 464.6 3.1 77.4 6 381.4 378.6 376.2 378.7 4.1 63.1

7 448.8 447.7 447.0 447.8 1.5 64.0
7.5 482.8 486.4 482.9 484.0 3.7 64.5

1 see Figure 13b.

Figures 10 and 11 present the values of the measured compressive forces, randomly
selected from Table 9. In case of interest, it is possible, upon written request by e-mail to
the authors of this paper, to receive all measured data in data files with DXD extension
(DEWESoft software) or XLS, XLSX (Microsoft Excel software). The same applies to the
following presented tables.

Figure 14 shows the comparison of measured compressive forces Fcom,i [N] by digital
force gauge DST-220A and tension pressure sensor C9B during the compression of rubber
springs of diameter D = 20 mm with lengths in the unloaded state of H0 = 10 ÷ 25 mm.
The numerical values of the compressive forces Fcom [N]—see Tables 1–4—given for the
solid curves, correspond to measurement variant 1 (see Section 3.1); the values of the
compressive forces Fcom [N]—see Tables 9 and 10—given for the broken curves, correspond
to measurement variation 2 (see Section 3.2).
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Figure 14. Measured values of compressive forces Fcom,i [N] of rubber spring D = 20 mm by digital
force gauge DST-220A (solid curves) and tension pressure sensor C9B (dashed curves). Spring length
in the unloaded state of H0 [mm] (•) 10, (•) 15, (•) 20, (•) 25.

Figure 15 shows the comparison of measured compressive forces Fcom,i [N]
with the digital force gauge DST-220A and the tension pressure sensor C9B
during compression of rubber springs of diameter D = 25 mm with lengths
in the unloaded state of H0 = 15 ÷ 30 mm. The numerical values of the pres-
sure forces Fcom,i [N]—see Tables 5–8—given for the solid curves, correspond to
measurement variation 1 (see Section 3.1); the values of the pressure forces
Fcom,i [N]—see Tables 11 and 12—given for the dashed curves, correspond to measurement
variation 2 (see Section 3.2).
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Figure 15. Measured values of compressive forces Fcom,i [N] of rubber spring D = 25 mm by digital
force gauge DST-220A (solid curves) and tension pressure sensor C9B (dashed curves). Spring length
in the unloaded state of H0 [mm] (•) 15, (•) 20, (•) 25, (•) 30.

4. Discussion
Rubber springs made of elastic material (rubber) are used for various mechanical

applications because of their ability to be deformed and then return to their original shape.
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They can effectively absorb and dampen shocks or vibrations, making them suitable for use
in automotive, machinery or conveying equipment where vibration needs to be eliminated.

The measurements of the compressive forces acting on the rubber springs presented
in Figures 6 and 7 confirmed that the rubber springs have a progressive characteristic [42].
Progressive rubber springs [43,44] change their resistance to compression slowly at first
and then more steeply, i.e., parabolically, with increasing load.

In Tables 1–8, the stiffnesses of the rubber springs sscom,i [N·mm−1] ϕ20 mm and
ϕ25 mm are calculated from the measured values of the compressive forces with the digital
force gauge DST-220A acting on the rubber spring Fcom,i [N] and its elastic deformation Li

[m] during compression.
From the measured values, the calculated arithmetic average of the spring

stiffness ϕ20 mm and the unloaded length H0 = 15 mm—see Table 2—takes the
value sscom = 83.7 N·mm−1. In Ref. [34], it is stated that ss = 94 N·mm−1, which implies
that sscom [N·mm−1] is 89.0% of ss [N·mm−1].

The arithmetic diameter of the spring stiffness ϕ20 mm and the length in the unloaded
state of H0 = 20 mm, see Table 3, takes the value sscom = 80.8 N·mm−1. In Ref. [34], it is
given as ss = 52 N·mm−1, which implies that sscom [N·mm−1] is 155.4% of ss [N·mm−1].

The arithmetic diameter of the spring stiffness ϕ20 mm and the length in the unloaded
state of H0 = 25 mm, see Table 4, takes the value sscom = 48.6 N·mm−1. In Ref. [34], it is
given as ss = 50 N·mm−1, which implies that sscom [N·mm−1] is 97.2% of ss [N·mm−1].

The arithmetic diameter of the spring stiffness ϕ25 mm and the length in the unloaded
state of H0 = 15 mm, see Table 5, takes the value sscom = 135.9 N·mm−1. In Ref. [34], it is
given as ss = 183 N·mm−1, which implies that sscom [N·mm−1] is 74.3% of ss [N·mm−1].

The arithmetic diameter of the spring stiffness ϕ25 mm and the length in the unloaded
state of H0 = 20 mm, see Table 6, takes the value sscom = 87.9 N·mm−1. In Ref. [34], it is
given as ss = 120 N·mm−1, which implies that sscom [N·mm−1] is 73.3% of ss [N·mm−1].

The arithmetic diameter of the spring stiffness ϕ25 mm and the length in the unloaded
state of H0 = 25 mm, see Table 7, takes the value sscom = 71.7 N·mm−1. In Ref. [34], it is
given as ss = 108 N·mm−1, which implies that sscom [N·mm−1] is 66.4% of ss [N·mm−1].

The arithmetic diameter of the spring stiffness ϕ25 mm and the length in the unloaded
state of H0 = 30 mm, see Table 8, takes the value sscom = 57.3 N·mm−1. In Ref. [34], it is
given as ss = 75 N·mm−1, which implies that sscom [N·mm−1] is 76.4% of ss [N·mm−1].

When measuring the stiffness of the actual stiffness values of rubber springs on
laboratory equipment—variation 1—the largest/smallest stiffness deviation was obtained
for a rubber spring with a diameter 25/20 mm and an unloaded length of H0 = 25 mm.
Experiments have shown that the actual stiffnesses of rubber springs are lower compared
to the values stated by the manufacturer, in the least favourable case, by 33.6%.

In Tables 9–12, the stiffnesses of the rubber spring sscom,i [N·mm−1] ϕ20 mm and
ϕ25 mm are calculated from the measured values of the compressive forces of the tension
pressure sensor C9B acting on the rubber spring Fcom,i [N] and its elastic deformation Li

[m] during compression.
The arithmetic average of the spring stiffness ϕ20 mm and the unloaded length

H0 = 15 mm calculated from the measured values, see Table 9, takes the value
sscom = 83.3 N·mm−1, and in Ref. [34], it is given as ss = 94 N·mm−1, which implies
that sscom [N·mm−1] is 88.6% of ss [N·mm−1].

The arithmetic diameter of the spring stiffness ϕ20 mm and the length in the unloaded
state of H0 = 20 mm, see Table 10, takes the value sscom = 88.6 N·mm−1. In Ref. [34], it is
given as ss = 52 N·mm−1, which implies that sscom [N·mm−1] is 121.0% of ss [N·mm−1].
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The arithmetic diameter of the spring stiffness ϕ20 mm and the length in the unloaded
state of H0 = 25 mm, see Table 10, takes the value sscom = 52.2 N·mm−1. In Ref. [34], it is
given as ss = 50 N·mm−1, which implies that sscom [N·mm−1] is 104.4% of ss [N·mm−1].

The arithmetic diameter of the spring stiffness ϕ25 mm and the length in the unloaded
state of H0 = 15 mm, see Table 11, takes the value sscom = 162.1 N·mm−1. In Ref. [34], it is
given as ss = 183 N·mm−1, which implies that sscom [N·mm−1] is 88.6% of ss [N·mm−1].

The arithmetic diameter of the spring stiffness ϕ25 mm and the length in the unloaded
state of H0 = 20 mm, see Table 11, takes the value sscom = 94.6 N·mm−1. In Ref. [34], it is
given as ss = 120 N·mm−1, which implies that sscom [N·mm−1] is 78.8% of ss [N·mm−1].

The arithmetic diameter of the spring stiffness ϕ25 mm and the length in the unloaded
state of H0 = 25 mm, see Table 12, takes the value sscom = 75 N·mm−1. In Ref. [34], it is
given as ss = 108 N·mm−1, which implies that sscom [N·mm−1] is 96.4% of ss [N·mm−1].

The arithmetic diameter of the spring stiffness ϕ25 mm and the length in the unloaded
state of H0 = 30 mm, see Table 11, takes the value sscom = 65.3 N·mm−1. In Ref. [34], it is
given as ss = 75 N·mm−1, which implies that sscom [N·mm−1] is 87.1% of ss [N·mm−1].

When measuring the stiffness of the actual stiffness values of rubber springs on
laboratory equipment—variation 2—the largest/smallest stiffness deviation was obtained
for a rubber spring with a diameter 25/20 mm and an unloaded length of H0 = 25 mm.

The difference in the measured stiffness values of rubber springs compared to the
values specified by the manufacturer may be caused by repeated loading of the springs or
“aging” of the rubber, as a result of which the rubber springs present a lower stiffness value.

The measured values given in Tables 1–12 show that the stiffnesses of rubber springs
sscom,i [N·mm−1] are lower (except for the rubber spring ϕ20 mm in length in the unloaded
state of H0 = 20 mm, see Tables 3 and 10, and for H0 = 25 mm, see Table 11) than the stiffness
values of rubber springs of identical dimensions given in Ref. [34].

It is known that in the case of a linear spring, the resistance of the spring to compression
increases linearly with increasing load. Progressive springs, which include rubber springs,
first change their resistance to compression slowly with increasing load and then more
steeply, i.e., parabolically. It follows that the stiffness of a progressive spring is not a
constant, but changes (increases) depending on its compression.

It is therefore not possible to define the stiffness of a rubber spring as a constant, as
is stated, for example, in Ref. [45]. From the measured values of the compressive forces
(linear data set) Fcom,i [N] during compression of the rubber springs, linear trend lines were
plotted in Microsoft Excel; see Figure 8. The trend line is the function that best describes the
data; it is a linear function, the graphical presentation of which is a straight line. The trend
line function is found by the least squares method. It can be seen from Figure 8 that the
smaller diameter rubber springs (D = 20 mm) exhibit lower stiffness relative to the larger
diameter rubber springs (D = 25 mm). It is also true that shorter length rubber springs have
a higher stiffness than longer length rubber springs of the same diameter. Rubber springs
of shorter lengths can be subjected to less maximum compression and more maximum load
than rubber springs of a longer length of the same diameter.

Sensors applied to an actual working vibration machine are able to control its working
activity or to control certain technical parameters to a certain extent. In the case of vibration
machines, sensors can, for example, detect the load applied to the springs that support
the trough/sorting screens. The correct operation of a particular vibration machine can
be monitored automatically from the detection of spring stiffnesses determined precisely
in advance in the laboratory (e.g., according to the procedure described in Section 3 of
this paper). In vibrating machines, the instantaneous values of the compressive forces
acting on the springs can be measured during their working operations and the amount of



J. Sens. Actuator Netw. 2025, 14, 5 19 of 22

conveyed/sorted material on the trough/sorting surface can be tracked according to the
applied load.

Knowledge of experimentally obtained values of elastic deformations of rubber springs
induced by applied compressive forces of known magnitudes is essential for the selection of
rubber springs with optimal properties, which are used to dampen vibrations transmitted
to the supporting parts of vibrating machines. By sensory monitoring of the pressure forces
acting on the springs supporting the trough of vibratory conveyors—see Figure 16—it is
possible to analyse, diagnose and automate the working operation of vibration machines
in practice.
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When using a strain tensometric force sensor, the magnitude of the measured pressure
forces was evaluated by the DeweSoft DS-NET system, which was connected to an ethernet
LAN, so the measured data could be processed, analysed and stored by any computer on
the network.

5. Conclusions
The need for research can be characterized by the fact that in many vibrating machines

it is necessary to eliminate the magnitude of vibrations transmitted to the machine frames.
The optimal choice of spring (spring stiffness) in vibrating machines has a fundamental
influence on the magnitude of vibrations transmitted to the floor (subsoil) of the building.
The spring stiffness can be obtained by measuring on the laboratory equipment described
in this article. The methodology for determining the stiffness of rubber springs on the
laboratory equipment serves as input data for the machine being prepared—a vibrating
conveyor. On this conveyor, vibrations of the conveyor frame will be measured by a
vibration sensor based on the measured (precise values) of the stiffness of the rubber
springs. The measured vibration signals will be sent to a PC via a Wi-Fi router for their
analysis and verification that the conveyor is operating in the optimal mode.

Measuring the characteristics of rubber springs is an important process that involves
testing not only stiffness and elasticity, but also behaviour under long-term or cyclic loading,
which is essential to ensure the reliability and serviceability of springs in various applications.

In this paper, the compressive forces acting on rubber springs during their compression
were measured on laboratory equipment using sensors. The relationship between the
force acting on the spring and its elastic deformation can be used as an input value for
control, diagnosis and monitoring of vibrating machines. Vibrating machines in the form
of vibrating conveyors or sorters, using an electromagnetic vibration exciter as the source
of excitation force, transmit high frequency vibrations to the substrate. By supporting
the trough of vibratory conveyors with rubber springs of suitable stiffness, these springs
can capture the high frequency oscillatory motion and attenuate the noise due to the high
self-attenuation capability of the rubber.
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The measurements carried out in a laboratory at the Department of Machine and
Industrial Design, Faculty of Mechanical Engineering, VSB-Technical University of Ostrava,
confirmed the progressivity of the rubber springs. The progressivity of a spring can be
defined by the fact that its stiffness increases with increasing compression of the spring; the
characteristic of the spring is not a straight line but an exponential. It has been shown that
at half the compression, a rubber spring has less stiffness than a steel coil spring.

This is an attempt to select the most optimal spring from the actual stiffnesses of
the measured rubber springs and use it as a spring to support the trough of a laboratory
vibrating conveyor, which uses a single-phase asynchronous vibration motor to excite the
trough vibrations. On the vibrating conveyor used in the study, sensors detect and the
DEWESoft DS-NET measuring instrument monitors the pressure force acting on a selected
number (or all) of the rubber springs supporting the trough of the vibrating conveyor. The
electrical signal obtained by the tension pressure sensor will be used as an input parameter
(digital input) to administer the automated operation and control of the vibrating conveyor,
which fits with the current trend of digitalization and related automation of production
known as Industry 4.0.
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(Ministry of education youth and sports).

Data Availability Statement: Measured data of force values Fcom,i [N], which are listed from Tables 9–
12 and processed using DEWESoft® X2 SP5X software, and measured data of pressure forces Fcom,i

[N], which are listed from Tables 1–12 and processed using DEWESoft X software, can be sent in case
of interest, by prior written agreement, in *.XLSX (Microsoft Excel) format.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design
of the study, in the collection, analyses, or interpretation of data, in the writing of the manuscript, or
in the decision to publish the results.

References
1. Murray, M.M.; Howle, L.E. Spring stiffness influence on an oscillating propulsor. J. Fluids Struct. 2003, 17, 915–926. [CrossRef]
2. Navarro, H.A.; de Souza Braun, M.P. Determination of the normal spring stiffness coefficient in the linear spring–dashpot contact

model of discrete element method. Powder Technol. 2013, 246, 707–722. [CrossRef]
3. Hrabovsky, L.; Mlcak, T.; Kotajny, G. Forces generated in the parking brake of the pallet locking system. Adv. Sci. Technol. Res. J.

2019, 13, 181–187. [CrossRef] [PubMed]
4. Hrabovsky, L.; Dluhos, D. Calibration of transducers and of a coil compression spring constant on the testing equipment

simulating the process of a pallet positioning in a rack cell. Open Eng. 2019, 9, 631–640. [CrossRef]
5. Soliman, A.M.A.; Allah, S.A.; El-Beter, A.A.; Hamid, M.S. Effect of suspension spring stiffness on vehicle dynamics. Int. J. Heavy

Veh. Syst. 2001, 8, 316–334. [CrossRef]
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