

  Malicious Node Detection Using a Dual Threshold in Wireless Sensor Networks




Malicious Node Detection Using a Dual Threshold in Wireless Sensor Networks







J. Sens. Actuator Netw. 2013, 2(1), 70-84; doi:10.3390/jsan2010070




Article



Malicious Node Detection Using a Dual Threshold in Wireless Sensor Networks



Sung Yul Lim and Yoon-Hwa Choi *





Department of Computer Engineering Hongik University, Seoul 121-791, Korea









*



Author to whom correspondence should be addressed; Tel.: +82-2320-1688.







Received: 8 December 2012; in revised form: 22 January 2013 / Accepted: 24 January 2013 / Published: 5 February 2013



Abstract:

 Sensor networks for various event detection applications cannot function effectively if they are vulnerable to attacks. Malicious nodes can generate incorrect readings and misleading reports in such a way that event detection accuracy and false alarm rates are unacceptably low and high, respectively. In this paper, we present a malicious node detection scheme for wireless sensor networks. Unlike others using a single threshold, the proposed scheme employs two thresholds to cope with the strong trade-off between event detection accuracy and false alarm rate, resulting in improved malicious node detection performance. In addition, each sensor node maintains the trust values of its neighboring nodes to reflect their behavior in decision-making. Computer simulation shows that the proposed scheme achieves high malicious node detection accuracy without sacrificing normal sensor nodes and outperforms the scheme using a single threshold.
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1. Introduction

Wireless sensor networks consist of a large number of tiny low-power sensor nodes, each with sensing, computation and wireless communication capabilities [1,2]. Since sensor nodes are often deployed in open and unattended environments, they are vulnerable to a wide variety of attacks. Compromised sensor nodes may report data opposite to their own readings to their neighbors or the base station, and thus, any decision based on the reports might be wrong. Such malicious nodes behaving arbitrarily might cause significant damage or shorten the network lifetime. Hence, it is necessary to detect malicious nodes in the presence of noise, faults and events and to isolate them from the rest of the network.

Various fault or anomaly detection schemes have been proposed in the literature [3,4,5,6] to enhance the reliability of wireless sensor networks. Due to the communication overhead, most schemes are developed based on either distributed or hierarchical models. As the fault or error models for detection, noise, transient and permanent faults are typically used. Sensor readings that appear to be inconsistent with the remainder of the data set are the main target of the detection.

Event detection in the presence of faults in wireless sensor networks has also been investigated in [7,8,9,10,11,12]. In [7], Bayesian fault recognition algorithms are presented, exploiting the notion that sensor errors due to faulty equipment are likely to be uncorrelated, while environmental conditions are spatially correlated. Ding et al. [8] proposed a localized fault-tolerant event boundary detection algorithm for sensor networks based on statistics. A clustering technique using the maximum spanning trees is presented in [10] to achieve fault-tolerance in event boundary detection. The importance of the discrimination between events and measurement errors in sensor networks has been emphasized in [12].

In fault, event or anomaly detection in wireless sensor networks, malicious nodes are often ignored or lightly treated, although they are likely to appear in the networks. In the case where malicious nodes generate arbitrary readings that do not conform to the defined fault model, the resulting performance might be much poorer than the estimated one. Moreover, if they behave intelligently, it would be more difficult to detect events in the face of misleading reports or to distinguish events from false alarms due to the malicious nodes.

Several schemes have been presented to detect malicious nodes in wireless sensor networks [13,14,15,16,17]. Curiac et al. [13] proposed a detection scheme using the autoregression technique. Signal strength is used to detect malicious nodes in [14], where a message transmission is considered suspicious if the strength is incompatible with the originator’s geographical position. Xiao et al. developed a mechanism for rating sensors in terms of correlation by exploring the Markov Chain [15]. A network voting algorithm is introduced to determine faulty sensor readings. Atakli et al. [16] proposed a malicious node detection scheme using weighted trust evaluation for a three-layer hierarchical sensor network. Trust values are employed and updated to identify malicious nodes behaving opposite to the sensor readings. Based on the same model, a weight recovery mechanism is introduced in [17]. Another intrusion detection scheme based on similar weighted trust evaluation was proposed in [18]. The mistaken ratio of each individual sensor node is used in updating the trust values. Trust management schemes have been proposed in routing and communications [19]. Some efforts are also being made to combine communication and data trusts [20]. However, malicious node detection in the presence of various types of misleading sensor readings due to the compromised nodes have not been deeply investigated. In addition, the problem of distinguishing malicious nodes from events has not sufficiently been taken into account.

In this paper, we present a malicious node detection scheme for fault-prone wireless sensor networks. Malicious nodes are detected in the presence of noise, sensor faults and events. Two thresholds are used to minimize false alarms while maintaining high malicious node detection accuracy. Trust values of sensor nodes are employed to reflect their past behavior in decision-making. Besides, the scheme achieves an improved event region detection accuracy, resulting in more accurate malicious node detection performance.



2. Background

Prior to presenting our malicious node detection scheme, we briefly define the models for the network, events and faults to be used throughout the paper.


2.1. Network Model and Event Model

In malicious node detection, we assume that n sensor nodes, [image: there is no content], are randomly deployed in the monitored area and have the same transmission range [image: there is no content]. Each sensor node has as its neighbors all the sensor nodes within the transmission range. To represent indirectly the density of a sensor network, we use the average node degree, d, where [image: there is no content] and [image: there is no content] is the degree of node [image: there is no content].

Events may occur anywhere in the monitored area. The event region is assumed to be a circle with radius [image: there is no content]. When an event occurs, the sensor nodes in the event region report an alarm to their neighbors. Each sensor node then makes a decision on an event based on its own reading and those of its neighbors. Sensed data in this paper are assumed to be binary, 0(normal) or 1(unusual). In the case of an event, normal sensor nodes in an event region are expected to report "1".



2.2. Fault Model

Faults, including malicious nodes, are assumed to occur randomly and independently in any nodes in the network. Three types of faults, transient, permanent and malicious, are considered in this paper. All the sensor nodes are assumed to have a permanent fault with the same probability [image: there is no content]. Both stuck-at-0(normal) and stuck-at-1(unusual) faults are assumed to be equally likely to occur. In addition, normal nodes are assumed to generate incorrect sensor readings due to transient faults with the same probability [image: there is no content]. All the sensor nodes are also assumed to be malicious, with the same probability [image: there is no content]. In the case of malicious nodes, they may report to their neighbors against the actual readings with a probability of [image: there is no content]. If [image: there is no content] = 0.8, for example, each malicious node reports 1(0) with a probability of 0.8 when the actual reading is 0(1). As [image: there is no content] approaches 0, it becomes more difficult to identify them due to the similarity in behavior of normal and malicious nodes, and it might also take a longer time to distinguish between them.




3. Malicious Node Detection Using a Dual Threshold

In this section, we present a malicious node detection scheme for wireless sensor networks, where two thresholds, [image: there is no content] and [image: there is no content], along with trust values, are used to achieve high malicious node detection performance without sacrificing normal nodes.


3.1. Representation of Node Trusts Using a Digraph

Each sensor node [image: there is no content] maintains a list of its neighbors, N([image: there is no content]), and their trust values from the viewpoint of [image: there is no content]. Trust values are updated each time a local decision on an event is made to reflect the correctness of their reports. Two nodes, [image: there is no content] and [image: there is no content], are neighbors of each other if their distance is less than or equal to [image: there is no content]. To represent the trust values we use a weighted directed graph, where the weight [image: there is no content], ranging between 0 and 1, represents the trust value of node [image: there is no content] from the viewpoint of [image: there is no content]. If [image: there is no content] = 1, for example, node [image: there is no content] totally trusts [image: there is no content]. On the other hand, if [image: there is no content] = 0, it does not trust [image: there is no content] at all. In addition, [image: there is no content] also has its own trust value, [image: there is no content], ranging from 0 to 1. Once [image: there is no content] reaches 0, a flag [image: there is no content] is set to 1, indicating that node [image: there is no content] is faulty (including malicious). An illustration is given in Figure 1, where node [image: there is no content] in the center has six neighboring nodes. The number in the node [image: there is no content] denotes [image: there is no content]. The numbers associated with the six edges represent the trust values of the neighboring nodes at [image: there is no content] (i.e., [image: there is no content]). In the figure, [image: there is no content] totally trusts [image: there is no content], while it does not give high trust to the node [image: there is no content].

Figure 1. A representation of trust values using a digraph.
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3.2. Modeling Event Detection Problem

The event detection problem is modeled as a hypothesis test problem [9], as shown in Figure 2, where each sensor node determines whether an unknown binary hypothesis is [image: there is no content] or [image: there is no content], based on its own reading and those of its neighbors. Each sensor node [image: there is no content] makes its own binary decision [image: there is no content] based on the sensor reading [image: there is no content]. These decisions from k neighboring sensor nodes are combined for the final decision. If majority voting is used, for example, [image: there is no content] in the figure will decide [image: there is no content] if ∑i=0k[image: there is no content]>⌈k2⌉. Our malicious node detection scheme is based on two threshold tests where trust values of the sensor nodes are reflected in the tests.

Figure 2. Distributed event detection.
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3.3. Event Detection Using a Dual Threshold

In event detection, each sensor node makes a local decision based on the sensor readings of itself and its neighboring nodes. Two thresholds, [image: there is no content] and [image: there is no content] ([image: there is no content]≥[image: there is no content]), along with trust values (as weights) of neighboring nodes, are used to make a final decision on an event. The results are used in updating trust values of the associated sensor nodes and identifying malicious nodes.

The threshold, [image: there is no content], is used to detect an event while maintaining low false alarm rates. Event nodes on or near the boundary of an event region are likely to fail the test if it has more neighbors outside the event region than inside. The threshold, [image: there is no content], helps them pass the test, resulting in more accurate event region detection accuracy.



After receiving the readings of all its neighbors, each sensor node computes the sum of weights of nodes reporting 1, [image: there is no content] and that of weights of nodes reporting 0, [image: there is no content]. It then applies the high and low thresholds, [image: there is no content] and [image: there is no content], to [image: there is no content][image: there is no content]+[image: there is no content] to determine which group it belongs to. The results divide all the sensor nodes into three groups: [image: there is no content], [image: there is no content] and [image: there is no content], where [image: there is no content] and [image: there is no content] are groups of nodes that pass [image: there is no content] and [image: there is no content] (but fail to pass [image: there is no content]), respectively. All the remaining nodes are in the group [image: there is no content]. Each sensor node in [image: there is no content] is reconsidered and indirectly determined to be an event node if it has a neighbor in [image: there is no content].

An illustration is given in Figure 3, where there is an event region and sensor nodes are divided into three groups ([image: there is no content], [image: there is no content], [image: there is no content]) based on the threshold tests. Some event-nodes are in [image: there is no content]. Most of them are on or near the boundary of the event region, although some of them are surrounded by sensor nodes in [image: there is no content]. Non-event-nodes in the right upper corner form a group and pass the test with [image: there is no content]. They, however, will be determined to be non-event nodes, since they do not have a neighbor in [image: there is no content]. Sensor nodes in [image: there is no content] inside the event region are likely to be determined to be event nodes with the aid of nodes in [image: there is no content]. Some non-event nodes (e.g., [image: there is no content]) near, but outside, the event region, however, might also be determined to be event nodes if they pass [image: there is no content] and have a neighbor in [image: there is no content]. An event-node, such as [image: there is no content] in Figure 3, on the other hand, can be determined to be a non-event node if it fails both tests.

Figure 3. Dividing sensor nodes into three groups, [image: there is no content],[image: there is no content] and [image: there is no content], using two thresholds.
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The role of the threshold [image: there is no content] is to minimize the false alarm rate. In most cases, a weighted majority voting (i.e., [image: there is no content] = 0.5) will achieve high performance. The threshold, however, needs to be higher, especially when the average node degree is low or fault probabilities are relatively high. An optimal value of [image: there is no content] can be determined based on the values of [image: there is no content] and [image: there is no content]. If [image: there is no content]>>[image: there is no content], a sensor node at the event boundary is likely to have the same number of event and non-event nodes within its sensing range. If [image: there is no content] = [image: there is no content], on the other hand, only about 39% of the nodes within the sensing range are event nodes. Hence, [image: there is no content] = 0.4 will be used in the simulation later.



3.4. Updating Trust Values to Detect Malicious Nodes

Two trust values (weights), [image: there is no content] and [image: there is no content], are used to represent the trustworthiness of node [image: there is no content] from the viewpoint of [image: there is no content]. Here, [image: there is no content] denotes the trust value of [image: there is no content] in the case of no-event, while [image: there is no content] denotes the trust value of [image: there is no content] in the case of an event. Employing two weights eliminates the cancellation effect due to transitions between event and no-event states. In the threshold tests of the previous subsection, min([image: there is no content],[image: there is no content]) needs to be used as the weight [image: there is no content]. Depending on the results of the tests, the following updates are performed to reflect the correctness of the current reports in the weights.

In the case of no-event, sensor nodes which are faulty or report a 1 lose their weights as follows:



[image: there is no content]=max(0,[image: there is no content]-α)for[image: there is no content]=1orFj=1min(1,[image: there is no content]+β)for[image: there is no content]=0



(1)




Similarly, the weight of node [image: there is no content] itself is also updated as follows:



wii0=max(0,wii0-α)for[image: there is no content]=1min(1,wii0+β)for[image: there is no content]=0



(2)




The above updates lower the weights of sensor nodes reporting a 1 by α. Sensor nodes with correct readings, on the other hand, recover their weights by β. During this process, nodes with a transient or stuck-at-1 fault and malicious nodes reporting 1 intentionally lose their weights. Nodes with a stuck-at-0 fault gain more weights, although their trust values are bounded above by 1.

In the case of an event, nodes in an event region are expected to report 1. Malicious nodes in an event region reporting 0 intentionally to lead to an incorrect decision, along with the nodes with a stuck-at-0 fault, are now the target of the updates. Since the exact boundary of an event region is not easy to figure out, relatively conservative updates are performed not to sacrifice normal nodes near the event boundary, unless some recovery measures are taken.

For [image: there is no content]∈[image: there is no content]∪[image: there is no content] and [image: there is no content]∈[image: there is no content],



[image: there is no content]=max(0,[image: there is no content]-α)for[image: there is no content]=0orFj=1min(1,[image: there is no content]+β)for[image: there is no content]=1



(3)




Similarly, the weight of node [image: there is no content] itself is also updated as follows:

For [image: there is no content]∈[image: there is no content]



wii1=max(0,wii1-α)for[image: there is no content]=0min(1,wii1+β)for[image: there is no content]=1



(4)




In updating the weights, two parameters α and β play an important role. It affects the detection rate and detection time of malicious nodes. Some normal nodes can be sacrificed if α becomes larger. For given [image: there is no content] and [image: there is no content], the conditional probability that a malicious node reports data opposite to the ground truth, [image: there is no content], can be written as:



[image: there is no content]=[image: there is no content](1-[image: there is no content])+(1-[image: there is no content])[image: there is no content]



(5)




Let [image: there is no content] denote the average number of no-event cycles required for detecting malicious nodes. Then, for given α and β, the response time, [image: there is no content], can be derived as follows:



[image: there is no content]([image: there is no content](-α)+(1-[image: there is no content])β)=-1



(6)




where no false alarms are assumed to occur for simplicity. At each no-event cycle, a malicious node loses its weight by α with probability [image: there is no content] or gains its weight by β with probability 1-[image: there is no content]. The node will be determined to be malicious at the time the weight [image: there is no content], initialized to 1, reaches 0.
Hence, [image: there is no content] can be given by:



[image: there is no content]=1[image: there is no content]·α-(1-[image: there is no content])β



(7)




If α = 0.1, β = 0.02, [image: there is no content] = 0.1, [image: there is no content] = 0.2, for example, [image: there is no content] = 0.26 and [image: there is no content] = 10.26×0.1-0.74×0.02≈89. That is, malicious nodes are expected to be detected in about 90 cycles on average. As [image: there is no content] increases, [image: there is no content] decreases accordingly. Doubling the values of α and β will reduce [image: there is no content] in half, while normal nodes are more likely to be determined to be faulty. In addition, the ratio [image: there is no content] plays an important role in filtering transient faults and widening the range of [image: there is no content] to be covered.
Our malicious node detection scheme consists of five steps as follows. Without loss of generality, sensor reading, [image: there is no content], is assumed to be the binary decision [image: there is no content] made at the sensor node [image: there is no content]. In Step 1, each sensor node receives the readings of all its neighbors. Each node then computes the sum of the weights of nodes reporting 1, [image: there is no content]=∑j=1d[image: there is no content]×[image: there is no content] and that of the weights of nodes reporting 0, [image: there is no content]=∑j=1d[image: there is no content]×(1-[image: there is no content]), in Step 2. Step 3 applies the two thresholds, [image: there is no content] and [image: there is no content], to [image: there is no content][image: there is no content]+[image: there is no content], to divide the nodes into three groups: [image: there is no content], [image: there is no content] and [image: there is no content], where [image: there is no content] includes all the nodes that failed both tests. In Step 4, each sensor node in [image: there is no content] is reconsidered and determined to be an event-node if it has a neighbor in [image: there is no content]. That is, sensor nodes in [image: there is no content] help sensor nodes in [image: there is no content] make a final decision indirectly. In Step 5, each sensor node updates the weights of its neighboring nodes according to the given updating policies. It also updates its own weight. Sensor nodes with the trust value of 0 (i.e., a predefined lower bound) are treated as faulty or malicious. They are logically isolated from the rest of the network, unless some recovery actions are taken.




	Malicious Node Detection Scheme



	 



	1. Obtain the sensor readings [image: there is no content] of neighbors of [image: there is no content]



	2. Compute [image: there is no content][image: there is no content]+[image: there is no content] at each node [image: there is no content]



	3. Divide the n nodes into three groups [image: there is no content],[image: there is no content] and [image: there is no content]



	 [image: there is no content]∈[image: there is no content] if [image: there is no content][image: there is no content]+[image: there is no content]>[image: there is no content]



	 [image: there is no content]∈[image: there is no content] if [image: there is no content]<[image: there is no content][image: there is no content]+[image: there is no content]≤[image: there is no content]



	 [image: there is no content]∈[image: there is no content] otherwise



	4. If |[image: there is no content]|≠0, then H = 1 (i.e., an event)



	  Determine that [image: there is no content] is an event node if ([image: there is no content]∈[image: there is no content]) or ([image: there is no content]∈[image: there is no content], [image: there is no content]∈[image: there is no content], [image: there is no content]∈N([image: there is no content]))



	 If |[image: there is no content]|=0, then H = 0 (i.e., no-event)



	5. Update weights, [image: there is no content] and [image: there is no content], accordingly








4. Performance Evaluation


4.1. Simulation Setup

Computer simulation is conducted to evaluate the performance of the proposed malicious node detection scheme. It is carried out in a sensor network, where sensor nodes are randomly deployed in a square region. The transmission range [image: there is no content] is chosen for the sensor network to have the average node degree d = 12. Event regions are assumed to be a circle with radius [image: there is no content].

Faults and malicious nodes are generated randomly and independently in accordance with predefined probabilities, [image: there is no content] (transient fault), [image: there is no content] (permanent fault) and [image: there is no content] (malicious node). If [image: there is no content] = 0.1, for example, normal nodes are expected to report incorrect readings with a probability of 0.1. In the case of permanent faults, both stuck-at-0 and stuck-at-1 are assumed to occur with the same probability. If [image: there is no content] = 0.1, for example, both stuck-at-1 and stuck-at-0 occur with a probability of 0.05 each. In addition, [image: there is no content] is increased by 0.02 every 20 cycles up to 0.1, to reflect the gradual increase in the number of nodes with a permanent fault. Malicious nodes are generated with probability [image: there is no content]. They are assumed to report opposite to their readings with probability [image: there is no content].

Six metrics, malicious node detection rate (MDR), misdetection rate (MR), false alarm rate (FAR), event detection accuracy (EDA), event region detection rate (ERDR) and boundary false alarm rate (BFAR), are used to show the effectiveness of our scheme. MDR is defined to be the ratio between the number of detected malicious nodes and the total number of malicious nodes. MR is defined to be the ratio between the number of normal nodes determined to be faulty and the total number of normal nodes. FAR is defined as the ratio of the number of false alarm nodes to the total number of nodes. EDA is the ratio of the number of events correctly detected to the total number of events generated. ERDR, the ratio of the number of event nodes correctly identified to the total number of sensor nodes in the event region, is defined to evaluate the event region detection accuracy. Finally, BFAR is used here to estimate the false alarms very close to the event region. It is defined as the ratio of the number of false alarm nodes one hop away from the event region to the total number of nodes one hop away from the event region.



4.2. Experimental Results

Malicious node detection schemes have to achieve high MDR while maintaining low MR. They also need to maintain high EDA while keeping FAR extremely low. In addition, ERDR and BFAR that help identify malicious nodes in an event region also need to be high and low, respectively.

To show the effectiveness of the proposed scheme, we first performed a simulation to estimate MDR, MR and FAR for various values of [image: there is no content] when d = 12, [image: there is no content] = 0.1, [image: there is no content] = 0.1, [image: there is no content] = 0.1, α = 0.1 and β = 0.02. The results after 100 cycles of operation are shown in Figure 4, where three different values of ([image: there is no content],[image: there is no content]), (0.5,0.4), (0.5,0.5) and (0.6,0.4) are chosen for comparison purposes.

Figure 4. Malicious node detection rate (MDR), misdetection rate (MR) and false alarm rate (FAR) for various values of [image: there is no content] when α = 0.1 and β = 0.02.
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MDR for [image: there is no content]>0.2 are very close to 1 for all the three cases under comparison, as shown in Figure 4(a) since [image: there is no content] = 5. For the chosen values of α and β, even the nodes reporting a 1 every five cycles on average lose their weights to be eventually detected. As [image: there is no content] approaches 0, malicious nodes behave similar to normal nodes. Hence, it is not easy to detect them, although they do not cause any significant harm. Further improvements in MDR, as long as [image: there is no content]>[image: there is no content], can be made by decreasing the value of β accordingly. MDR for α = 0.1 and β = 0.0125 instead is shown in Figure 5, where notable improvements in MDR are observed for relatively small values of [image: there is no content]. Since [image: there is no content]≈8 in that case, sensor nodes reporting a 1 every eight cycles still lose their weights with time to be eventually detected. If [image: there is no content] = 0.1 and [image: there is no content] = 0.1, for example, [image: there is no content] = 0.1 × 0.9 + 0.9 × 0.1 = 0.18. Hence, malicious nodes with [image: there is no content] = 0.1, when [image: there is no content] = 0.1, report a 1 every five cycles, approximately, and thus, they cannot remain undetected, although it takes more time to detect them.

Figure 5. MDR for various values of [image: there is no content] when α = 0.1 and β = 0.0125.
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As far as MR is concerned, a dual threshold of 0.6 and 0.4 outperforms the other two and shows persistent performance regardless of the value of [image: there is no content], as shown in Figure 4(b).

FAR should be kept low, since frequent alarms due to incorrect decisions shorten the network lifetime and might break the network function. FAR for a dual threshold of (0.6,0.4) is much better than that for a single threshold of 0.5, as shown in Figure 4(c). FAR for the single threshold and the dual threshold of (0.5,0.4) increases with [image: there is no content], while FAR for (0.6,0.4) is kept extremely low for the entire range of [image: there is no content].

We then performed the same simulation after changing [image: there is no content] to 0.2. Similar trends are observed for the single and dual thresholds, as shown in Figure 6. When [image: there is no content] is close to 1, however, MDR drops slightly. This is due to the fact that all the malicious nodes in the extreme case act like a faulty node with a permanent fault. Hence, doubling [image: there is no content] causes more false alarms as [image: there is no content] approaches 1. Consequently, the trust values of some malicious nodes cannot be lowered, resulting in a small decrease in MDR.

Figure 6. MDR and MR for various values of [image: there is no content] when [image: there is no content] = 0.1, [image: there is no content] = 0.2 and [image: there is no content] = 0.1.
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MR for [image: there is no content] = 0.2, shown in Figure 6(b), is much higher than that for [image: there is no content] = 0.1, although the trend is very similar. The scheme with a dual threshold of (0.6,0.4), although the small increase in MR is unavoidable, still maintains a relatively consistent performance.



The proposed scheme is designed for malicious node detection. However, the resulting event detection performance also needs to be maintained high. EDA strongly depends on the value of [image: there is no content], since at least one node in an event region must pass the threshold to detect an event. As shown in Figure 7, EDA for the single threshold of 0.5 and EDA for the dual threshold of (0.5,0.4) are better than that for the dual threshold of (0.6,0.4) when [image: there is no content] = 0.1, [image: there is no content] = 0.2 and [image: there is no content] = [image: there is no content]. As [image: there is no content] increases, however, it is almost guaranteed that at least one node can pass the test with [image: there is no content]. The resulting EDAs for [image: there is no content] = 2[image: there is no content] are almost perfect for all three cases under comparison.

Figure 7. EDA for [image: there is no content]=[image: there is no content], α = 0.1 and β = 0.02.
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Event region detection accuracy plays an important role in malicious node detection, since malicious nodes reporting 0 in an event region can be identified during the event period. To estimate the effectiveness of the scheme in detecting event regions, the simulation is extended to obtain ERDR and BFAR for various values of [image: there is no content], when [image: there is no content] = 0.1, [image: there is no content] = 0.2 and [image: there is no content] = [image: there is no content]. The results are shown in Figure 8 and Figure 9, respectively.

Figure 8. event region detection rate (ERDR) for various values of [image: there is no content], when [image: there is no content]=[image: there is no content].
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Figure 9. and boundary false alarm rate (BFAR) for various values of [image: there is no content] when [image: there is no content]=[image: there is no content].
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The scheme with a dual threshold of (0.5,0.4) performs the best among the three cases under comparison as far as ERDR is concerned. ERDR for the scheme with a single threshold of 0.5 is significantly lower than the other two, as shown in Figure 8. As far as BFAR is concerned, a dual threshold of (0.6,0.4) outperforms the other two, as shown in Figure 9. Significantly higher ERDR is observed when [image: there is no content] = 2[image: there is no content] for all three cases under comparison, as shown in Figure 10. A slight increase in BFAR is also observed for each of the three cases, as shown in Figure 11, although the trends are similar. Consequently, we suggest to use two thresholds of 0.6 and 0.4 in event region detection to correctly identify malicious nodes behaving against the ground truth. Finally, the thresholds can be dynamically adjusted depending on the applications to optimize the malicious node detection performance.

Figure 10. ERDR for various values of [image: there is no content], when [image: there is no content]=2[image: there is no content].
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Figure 11. BFAR for various values of [image: there is no content], when [image: there is no content]=2[image: there is no content].
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In the development of the proposed detection scheme, all the nodes are treated equally. It might be worth considering for a sensor node to place more weight on its own reading than those of its neighbors, as far as event boundary detection is concerned. For a malicious node in the corner of the network area or with very few neighbors, it might be easy to pass the threshold if the neighbors are faulty or malicious almost at the same time. Even when the node claims itself to be normal, it is highly likely to be isolated from the rest of the network, due to the surrounding normal nodes.








5. Conclusions

In this paper, a malicious node detection scheme using a dual threshold in wireless sensor networks is presented. Each sensor node maintains trust values of neighboring nodes to reflect their past behavior in decision-making. Two thresholds are used to reduce the false alarm rate and enhance the event region detection accuracy, resulting in more accurate malicious node detection performance without sacrificing normal nodes. Simulation results have shown that the scheme with a dual threshold outperforms that with a single threshold. The proposed scheme employs a few parameters whose values can be properly chosen depending on applications. They can also be dynamically adjusted, if necessary, to optimize the performance.
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