An Interdisciplinary Review of Smart Vehicular Traffic and Its Applications and Challenges
Abstract
:1. Introduction
2. Smart Traffic
2.1. Utopian Visions and Critiques
2.2. Smart Traffic Lights
2.3. Intelligent Transportation Systems
3. Infrastructural Considerations
3.1. Connectivity
3.2. Social Networks
3.3. Multiple Sensors
4. Principal Applications
4.1. Freight and Public Transit
4.2. Taxi
4.3. Smart Parking
5. Challenging Aspects
5.1. Insurance
5.2. Smart Sustainable Traffic
5.3. Simulators
5.4. Imprecise Data
5.5. Forensics
5.6. Co-Opetition
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
6LoWPAN | IPv6 over Low-Power Wireless Personal Area Networks |
ACEA | European Automobile Manufacturers’ Association |
B2C | Business to Consumer |
CPS | Cyber–Physical System |
CTMS | Cognitive Traffic Management System |
GDP | Gross Domestic Product |
GPS | Global Positioning System |
H2H | Human to Human |
IMF | International Monetary Fund |
IoT | Internet of Things |
IoV | Internet of Vehicles |
IPv6 | Internet Protocol version 6 |
ITS | Intelligent Transportation System |
IVDR | In-Vehicle Data Recorder |
LTE | Long-Term Evolution |
M2M | Machine to Machine |
OICA | Organization of Motor Vehicle Manufacturers |
PCA | Principal Components Analysis |
QR | Quick Response |
RFID | Radio-Frequency IDentification |
RSU | Road Side Units |
VANET | Vehicular Ad-Hoc Network |
WSN | Wireless Sensor Network |
References
- Duranton, M.; De Bosschere, K.; Gamrat, C.; Maebe, J.; Munk, H.; Zendra, O. The HiPEAC Vision 2017. Available online: https://www.hipeac.net/publications/vision/ (accessed on 31 December 2018).
- Florea, A.; Berntzen, L.; Johannessen, M.R.; Stoica, D.; Naicu, I.S.; Cazan, V. Low Cost Mobile Embedded System for Air Quality Monitoring. In Proceedings of the Sixth International Conference on Smart Cities, Systems, Devices and Technologies (SMART), Venice, Italy, 25–29 June 2017. [Google Scholar]
- Majumder, S.; Mondal, T.; Deen, M.J. Wearable sensors for remote health monitoring. Sensors 2017, 17, 130. [Google Scholar] [CrossRef] [PubMed]
- Nellore, K.; Hancke, G.P. A survey on urban traffic management system using wireless sensor networks. Sensors 2016, 16, 157. [Google Scholar] [CrossRef] [PubMed]
- Yue, W.S.; Chye, K.K.; Hoy, C.W. Towards smart mobility in urban spaces: Bus tracking and information application. In AIP Conference Proceedings; AIP Publishing: Melville, NY, USA, 2017; Volume 1891, p. 020145. [Google Scholar]
- Bibri, S.E.; Krogstie, J. Smart sustainable cities of the future: An extensive interdisciplinary literature review. Sustain. Cities Soc. 2017, 31, 183–212. [Google Scholar] [CrossRef]
- Tomaszewska, E.J.; Florea, A. Urban smart mobility in the scientific literature—Bibliometric analysis. Eng. Manag. Prod. Serv. 2018, 10, 41–56. [Google Scholar] [CrossRef]
- Vanolo, A. Smartmentality: The smart city as disciplinary strategy. Urban Stud. 2014, 51, 883–898. [Google Scholar] [CrossRef]
- Talari, S.; Shafie-Khah, M.; Siano, P.; Loia, V.; Tommasetti, A.; Catalão, J. A review of smart cities based on the Internet of Things concept. Energies 2017, 10, 421. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, Z.; Zhu, H.; Li, M.; Zhang, Q. A compressive sensing approach to urban traffic estimation with probe vehicles. IEEE Trans. Mob. Comput. 2013, 12, 2289–2302. [Google Scholar] [CrossRef]
- Al Nuaimi, E.; Al Neyadi, H.; Mohamed, N.; Al-Jaroodi, J. Applications of big data to smart cities. J. Internet Serv. Appl. 2015, 6, 25. [Google Scholar] [CrossRef]
- Angelidou, M. Shortcomings to smart city planning and development. TEMA J. Land Use Mobil. Environ. 2017, 10, 77–93. [Google Scholar]
- Florea, A.; Bertntzen, L. Green IT solutions for smart city sustainability. In Proceedings of the Smart Cities Conference, Brussels, Belgium, 12 January 2017. [Google Scholar]
- Kitchin, R. The real-time city? Big data and smart urbanism. GeoJournal 2014, 79, 1–14. [Google Scholar] [CrossRef]
- Townsend, A.M. Smart Cities: Big Data, Civic Hackers, and the Quest for a New Utopia; WW Norton & Company: New York, NY, USA, 2013. [Google Scholar]
- Greenfield, A. Against the Smart City (The city Is Here for You to Use Book 1); Kindle Edition; Amazon Media: New York, NY, USA, 2013. [Google Scholar]
- Vanolo, A. Is there anybody out there? The place and role of citizens in tomorrow’s smart cities. Futures 2016, 82, 26–36. [Google Scholar] [CrossRef]
- Hardoy, J.E.; Mitlin, D.; Satterthwaite, D. Environmental Problems in an Urbanizing World: Finding Solutions in Cities in Africa, Asia and Latin America; Routledge: Abington, UK, 2013. [Google Scholar]
- Aguilera, G.; Galán, J.L.; Campos, J.C.; Rodríguez, P. An accelerated-time simulation for traffic flow in a smart city. FEMTEC 2013, 2013, 26. [Google Scholar]
- Berntzen, L.; Johannessen, M.R.; Florea, A. Sensors and the Smart City. In Proceedings of the SMART, Valencia, Spain, 22–26 May 2016; pp. 31–36. [Google Scholar]
- Paroutis, S.; Bennett, M.; Heracleous, L. A strategic view on smart city technology: The case of IBM Smarter Cities during a recession. Technol. Forecast. Soc. Chang. 2014, 89, 262–272. [Google Scholar] [CrossRef]
- Lyons, G. Getting smart about urban mobility—Aligning the paradigms of smart and sustainable. Transp. Res. Part A Policy Pract. 2018, 115, 4–14. [Google Scholar] [CrossRef]
- Miz, V.; Hahanov, V. Smart traffic light in terms of the cognitive road traffic management system (CTMS) based on the Internet of Things. In Proceedings of the Design & Test Symposium (EWDTS), 2014 East-West, Kiev, Ukraine, 26–29 September 2014; pp. 1–5. [Google Scholar]
- Turkensteen, M. The accuracy of carbon emission and fuel consumption computations in green vehicle routing. Eur. J. Oper. Res. 2017, 262, 647–659. [Google Scholar] [CrossRef]
- European Automobile Manufacturers Association. Vehicles in Use, Europe 2017; ACEA Report: Brussels, Belgium, 2017. [Google Scholar]
- Smith, M.N. The Number of Cars Worldwide Is Set to Double by 2040. 2016. Available online: https://www.weforum.org/agenda/2016/04/the-number-of-cars-worldwide-is-set-to-double-by-2040 (accessed on 31 December 2018).
- Moreira-Matias, L.; Farah, H. On Developing a Driver Identification Methodology Using In-Vehicle Data Recorders. IEEE Trans. Intell. Transp. Syst. 2017, 18, 2387–2396. [Google Scholar] [CrossRef] [Green Version]
- Mangiaracina, R.; Perego, A.; Salvadori, G.; Tumino, A. A comprehensive view of intelligent transport systems for urban smart mobility. Int. J. Logist. Res. Appl. 2017, 20, 39–52. [Google Scholar] [CrossRef]
- Lin, Y.; Wang, P.; Ma, M. Intelligent Transportation System (ITS): Concept, Challenge and Opportunity. In Proceedings of the 2017 IEEE 3rd International Conference on Big Data Security on Cloud (BigDataSecurity), IEEE International Conference on High Performance and Smart Computing (HPSC), and IEEE International Conference on Intelligent Data and Security (IDS), Beijing, China, 26–28 May 2017; pp. 167–172. [Google Scholar]
- Feng, Y.; Hu, B.; Hao, H.; Gao, Y.; Li, Z.; Tan, J. Design of Distributed Cyber-Physical Systems for Connected and Automated Vehicles with Implementing Methodologies. IEEE Trans. Ind. Inform. 2018, 14, 4200–4211. [Google Scholar] [CrossRef]
- Chaturvedi, M.; Srivastava, S. Multi-modal design of an intelligent transportation system. IEEE Trans. Intell. Transp. Syst. 2017, 18, 2017–2027. [Google Scholar] [CrossRef]
- Weiskircher, T.; Wang, Q.; Ayalew, B. Predictive guidance and control framework for (semi-) autonomous vehicles in public traffic. IEEE Trans. Control Syst. Technol. 2017, 25, 2034–2046. [Google Scholar] [CrossRef]
- Wang, N.; Liu, C.; Lu, Y.; Shen, J. A Visible Light Communication (VLC) based Intelligent Transportation System for lorry fleet. In Proceedings of the 2017 16th International Conference on Optical Communications and Networks (ICOCN), Wuzhen, China, 7–10 August 2017; pp. 1–3. [Google Scholar]
- Huang, Y.S.; Weng, Y.S.; Wu, W.; Chen, B.Y. Control strategies for solving the problem of traffic congestion. IET Intell. Transp. Syst. 2016, 10, 642–648. [Google Scholar] [CrossRef]
- Chilà, G.; Musolino, G.; Polimeni, A.; Rindone, C.; Russo, F.; Vitetta, A. Transport models and intelligent transportation system to support urban evacuation planning process. IET Intell. Transp. Syst. 2016, 10, 279–286. [Google Scholar]
- Sui, P.; Li, X.; Bai, Y. A Study of Enhancing Privacy for Intelligent Transportation Systems: k-Correlation Privacy Model Against Moving Preference Attacks for Location Trajectory Data. IEEE Access 2017, 5, 24555–24567. [Google Scholar] [CrossRef]
- Soltanmohammadi, E.; Ghavami, K.; Naraghi-Pour, M. A survey of traffic issues in machine-to-machine communications over LTE. IEEE Internet Things J. 2016, 3, 865–884. [Google Scholar] [CrossRef]
- Ning, Z.; Xia, F.; Ullah, N.; Kong, X.; Hu, X. Vehicular Social Networks: Enabling Smart Mobility. IEEE Commun. Mag. 2017, 55, 16–55. [Google Scholar] [CrossRef]
- Wu, H.T.; Horng, G.J. Establishing an Intelligent Transportation System With a Network Security Mechanism in an Internet of Vehicle Environment. IEEE Access 2017, 5, 19239–19247. [Google Scholar] [CrossRef]
- Kaiwartya, O.; Abdullah, A.H.; Cao, Y.; Altameem, A.; Prasad, M.; Lin, C.T.; Liu, X. Internet of vehicles: Motivation, layered architecture, network model, challenges, and future aspects. IEEE Access 2016, 4, 5356–5373. [Google Scholar] [CrossRef]
- Dimitrakopoulos, G.; Bravos, G.; Nikolaidou, M.; Anagnostopoulos, D. Proactive, knowledge-based intelligent transportation system based on vehicular sensor networks. IET Intell. Transp. Syst. 2013, 7, 454–463. [Google Scholar] [CrossRef]
- Maglaras, L.A.; Al-Bayatti, A.H.; He, Y.; Wagner, I.; Janicke, H. Social internet of vehicles for smart cities. J. Sens. Actuator Netw. 2016, 5, 3. [Google Scholar] [CrossRef]
- Seo, T.; Bayen, A.M.; Kusakabe, T.; Asakura, Y. Traffic state estimation on highway: A comprehensive survey. Annu. Rev. Control 2017, 43, 128–151. [Google Scholar] [CrossRef]
- Herrera, J.C.; Work, D.B.; Herring, R.; Ban, X.J.; Jacobson, Q.; Bayen, A.M. Evaluation of traffic data obtained via GPS-enabled mobile phones: The Mobile Century field experiment. Transp. Res. Part C Emerg. Technol. 2010, 18, 568–583. [Google Scholar] [CrossRef] [Green Version]
- Guerrero-Ibáñez, J.; Zeadally, S.; Contreras-Castillo, J. Sensor technologies for intelligent transportation systems. Sensors 2018, 18, 1212. [Google Scholar] [CrossRef] [PubMed]
- Astarita, V.; Festa, D.C.; Giofrè, V.P. Mobile Systems applied to Traffic Management and Safety: A state of the art. Procedia Comput. Sci. 2018, 134, 407–414. [Google Scholar] [CrossRef]
- Sagl, G.; Resch, B.; Blaschke, T. Contextual sensing: Integrating contextual information with human and technical geo-sensor information for smart cities. Sensors 2015, 15, 17013–17035. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.; Mišić, J.; Mišić, V. Priority-Based Machine-To-Machine Overlay Network over LTE for a Smart City. J. Sens. Actuator Netw. 2018, 7, 27. [Google Scholar] [CrossRef]
- Bacco, M.; Franca, D.; Erina, F.; Alberto, G. Environmental monitoring for smart cities. IEEE Sens. J. 2017, 17, 7767–7774. [Google Scholar] [CrossRef]
- Borghi, F.; Spinazzè, A.; Rovelli, S.; Campagnolo, D.; Del Buono, L.; Cattaneo, A.; Cavallo, D. Miniaturized monitors for assessment of exposure to air pollutants: A review. Int. J. Environ. Res. Public Health 2017, 14, 909. [Google Scholar] [CrossRef]
- Du, R.; Santi, P.; Xiao, M.; Vasilakos, A.V.; Fischione, C. The sensable city: A survey on the deployment and management for smart city monitoring. IEEE Commun. Surv. Tutor. 2018. [Google Scholar] [CrossRef]
- Berntzen, L.; Johannessen, M.R.; Florea, A. Smart Cities: Challenges and a Sensor-based Solution. Int. J. Adv. Intell. Syst. 2016, 9, 579–588. [Google Scholar]
- Miskell, G.; Salmond, J.; Williams, D.E. Low-cost sensors and crowd-sourced data: Observations of siting impacts on a network of air-quality instruments. Sci. Total Environ. 2017, 575, 1119–1129. [Google Scholar] [CrossRef]
- Alvarez-Campana, M.; López, G.; Vázquez, E.; Villagrá, V.A.; Berrocal, J. Smart CEI Moncloa: An IoT-based platform for people flow and environmental monitoring on a Smart University Campus. Sensors 2017, 17, 2856. [Google Scholar] [CrossRef] [PubMed]
- Coelho, L.C.; Renaud, J.; Laporte, G. Road-based goods transportation: A survey of real-world logistics applications from 2000 to 2015. INFOR Inf. Syst. Oper. Res. 2016, 54, 79–96. [Google Scholar] [CrossRef]
- Rodrigue, J.P.; Comtois, C.; Slack, B. The Geography of Transport Systems; Routledge: Abington, UK, 2016. [Google Scholar]
- Gevaers, R.; Van de Voorde, E.; Vanelslander, T. Cost modelling and simulation of last-mile characteristics in an innovative B2C supply chain environment with implications on urban areas and cities. Procedia-Soc. Behav. Sci. 2014, 125, 398–411. [Google Scholar] [CrossRef]
- Luong, N.C.; Hoang, D.T.; Wang, P.; Niyato, D.; Kim, D.I.; Han, Z. Data collection and wireless communication in Internet of Things (IoT) using economic analysis and pricing models: A survey. IEEE Commun. Surv. Tutor. 2016, 18, 2546–2590. [Google Scholar] [CrossRef]
- Cheng, S.T.; Li, J.P.; Horng, G.J.; Wang, K.C. The adaptive road routing recommendation for traffic congestion avoidance in smart city. Wirel. Pers. Commun. 2014, 77, 225–246. [Google Scholar] [CrossRef]
- Ma, T.; Motta, G.; Liu, K. Delivering Real-Time Information Services on Public Transit: A Framework. IEEE Trans. Intell. Transp. Syst. 2017, 18, 2642–2656. [Google Scholar] [CrossRef]
- Omara, A.; Gulen, D.; Kantarci, B.; Oktug, S. Trajectory-Assisted Municipal Agent Mobility: A Sensor-Driven Smart Waste Management System. J. Sens. Actuator Netw. 2018, 7, 29. [Google Scholar] [CrossRef]
- Moreira-Matias, L.; Gama, J.; Ferreira, M.; Mendes-Moreira, J.; Damas, L. Predicting taxi–passenger demand using streaming data. IEEE Trans. Intell. Transp. Syst. 2013, 14, 1393–1402. [Google Scholar] [CrossRef]
- Zhang, D.; Sun, L.; Li, B.; Chen, C.; Pan, G.; Li, S.; Wu, Z. Understanding taxi service strategies from taxi GPS traces. IEEE Trans. Intell. Transp. Syst. 2015, 16, 123–135. [Google Scholar] [CrossRef]
- Lin, N.; Zong, C.; Tomizuka, M.; Song, P.; Zhang, Z.; Li, G. An overview on study of identification of driver behavior characteristics for automotive control. Math. Probl. Eng. 2014, 2014, 569109. [Google Scholar] [CrossRef]
- Work, D.B.; Blandin, S.; Tossavainen, O.P.; Piccoli, B.; Bayen, A.M. A traffic model for velocity data assimilation. Appl. Math. Res. Express 2010, 2010, 1–35. [Google Scholar] [CrossRef]
- Zhang, W.; Qi, G.; Pan, G.; Lu, H.; Li, S.; Wu, Z. City-scale social event detection and evaluation with taxi traces. ACM Trans. Intell. Syst. Technol. (TIST) 2015, 6, 40. [Google Scholar] [CrossRef]
- Hilmani, A.; Maizate, A.; Hassouni, L. Designing and Managing a Smart Parking System Using Wireless Sensor Networks. J. Sens. Actuator Netw. 2018, 7, 24. [Google Scholar] [CrossRef]
- Dokur, O.; Katkoori, S.; Elmehraz, N. Embedded system design of a real-time parking guidance system. In Proceedings of the 2016 Annual IEEE Systems Conference (SysCon), Orlando, FL, USA, 18–21 April 2016; pp. 1–8. [Google Scholar]
- Marcu, S.D.; Florea, A. Smart parking system—Another way of sharing economy provided by private institutions. In Proceedings of the Thirteenth International Conference on Digital Information Management (ICDIM), Berlin, Germany, 24–26 September 2018; pp. 18–23. [Google Scholar]
- Farah, H.; Musicant, O.; Shimshoni, Y.; Toledo, T.; Grimberg, E.; Omer, H.; Lotan, T. Can providing feedback on driving behavior and training on parental vigilant care affect male teen drivers and their parents? Accid. Anal. Prev. 2014, 69, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Trindade, E.P.; Hinnig, M.P.F.; Moreira da Costa, E.; Marques, J.; Bastos, R.; Yigitcanlar, T. Sustainable development of smart cities: A systematic review of the literature. J. Open Innov. Technol. Mark. Complex. 2017, 3, 11. [Google Scholar] [CrossRef]
- Ahvenniemi, H.; Huovila, A.; Pinto-Seppä, I.; Airaksinen, M. What are the differences between sustainable and smart cities? Cities 2017, 60, 234–245. [Google Scholar] [CrossRef]
- Yigitcanlar, T.; Kamruzzaman, M. Does smart city policy lead to sustainability of cities? Land Use Policy 2018, 73, 49–58. [Google Scholar] [CrossRef]
- Kunzmann, K.R. Smart cities: A new paradigm of urban development. Crios 2014, 4, 9–20. [Google Scholar]
- Yazdani-Damavandi, M.; Moghaddam, M.P.; Haghifam, M.R.; Shafie-khah, M.; Catalão, J.P. Modeling operational behavior of plug-in electric vehicles’ parking lot in multienergy systems. IEEE Trans. Smart Grid 2016, 7, 124–135. [Google Scholar] [CrossRef]
- Chen, L.; Yang, D.; Jakubowicz, J.; Pan, G.; Zhang, D.; Li, S. Sensing the pulse of urban activity centers leveraging bike sharing open data. In Proceedings of the 2015 IEEE 12th International Conference on Ubiquitous Intelligence and Computing and 2015 IEEE 12th International Conference on Autonomic and Trusted Computing and 2015 IEEE 15th International Conference on Scalable Computing and Communications and Its Associated Workshops (UIC-ATC-ScalCom), Beijing, China, 10–14 August 2015; pp. 135–142. [Google Scholar]
- Shen, S.; Wei, Z.Q.; Sun, L.J.; Su, Y.Q.; Wang, R.C.; Jiang, H.M. The Shared Bicycle and Its Network—Internet of Shared Bicycle (IoSB): A Review and Survey. Sensors 2018, 18, 2581. [Google Scholar] [CrossRef]
- Hanif, S.; Khedr, A.; Al Aghbari, Z.; Agrawal, D. Opportunistically Exploiting Internet of Things for Wireless Sensor Network Routing in Smart Cities. J. Sens. Actuator Netw. 2018, 7, 46. [Google Scholar] [CrossRef]
- Chen, J.; Low, K.H.; Yao, Y.; Jaillet, P. Gaussian process decentralized data fusion and active sensing for spatiotemporal traffic modeling and prediction in mobility-on-demand systems. IEEE Trans. Autom. Sci. Eng. 2015, 12, 901–921. [Google Scholar] [CrossRef]
- Schmoltzi, C.; Wallenburg, C.M. Operational governance in horizontal cooperations of logistics service providers: Performance effects and the moderating role of cooperation complexity. J. Supply Chain Manag. 2012, 48, 53–74. [Google Scholar] [CrossRef]
- Tachizawa, E.M.; Alvarez-Gil, M.J.; Montes-Sancho, M.J. How “smart cities” will change supply chain management. Supply Chain Manag. Int. J. 2015, 20, 237–248. [Google Scholar] [CrossRef]
- Marcus Wallenburg, C.; Simon Raue, J. Conflict and its governance in horizontal cooperations of logistics service providers. Int. J. Phys. Distrib. Logist. Manag. 2011, 41, 385–400. [Google Scholar] [CrossRef] [Green Version]
Vehicles (mln) | ||
---|---|---|
Year | Europe | World |
2012 | 360.2 | 1141.6 |
2013 | 364.0 | 1184.9 |
2014 | 368.7 | 1234.9 |
2015 | 374.9 | 1282.3 |
2016 | 382.8 | - |
2025 | 2007 * | |
2040 | 2750 * |
City | Singapore | Barcelona | London | San Francisco | Oslo |
---|---|---|---|---|---|
Rank | 1 | 2 | 3 | 4 | 5 |
Inhabitants | 5,638,700 | 1,620,809 | 8,825,000 | 884,363 | 673,469 |
Area (km) | 722.5 | 101.4 | 1572.0 | 600.6 | 480.8 |
Sensors for airquality and noise | Yes | Yes | No | No | No |
Smart parking | Yes | Yes | Yes | Yes | Yes |
Congestion charging | Yes | No | No | No | Yes |
Open data | Yes | Yes | Yes | No | No |
Specific app available | Traffic | – | Traffic | Parking | Parking |
Initiatives for sustainability | Yes | Yes | No | Yes | Yes |
Notes | Roadside sensors and cameras. Dynamic traffic lights. | Smart street lighting. 400 bike stations. 500 km of optical fiber. Free Wi-Fi using routers sitting on street lights. | Smart traffic lights. favour public transport. Bike-sharing. | Smart ticketing. Sensors in the pavement for smart parking. Ridesharing. | Smart street lighting. Licence plate recognition linked to the congestion charging scheme. 37 miles of cycle roads. |
Technology | Advantages | Disadvantages |
---|---|---|
Inductive-loop detectors | Most consistently accurate detector in terms of vehicle counts. Supports blocking environmental noise and improving signal to noise ratio. Low maintenance whatever the weather. Technologically mature. | High installation cost & time. Requires civil engineering. A single loop cannot monitor multiple lanes or provide multiple vehicle detection. Inability to directly measure speed. |
Video surveillance | Relatively low installation cost. Detects large groups of pedestrian, bicycles and cars. Thermal imaging sensors and infrared cameras operate at night, in the fog or through glare. Advanced object recognition can classify vehicles into categories. Capacity of sending over real-time images to a control room. | Sensitivity to strong winds and vibration Susceptible to occlusion and dirt on camera lens Performance degradation with bad weather Visible to drivers, who may change their behaviour |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fiore, U.; Florea, A.; Pérez Lechuga, G. An Interdisciplinary Review of Smart Vehicular Traffic and Its Applications and Challenges. J. Sens. Actuator Netw. 2019, 8, 13. https://doi.org/10.3390/jsan8010013
Fiore U, Florea A, Pérez Lechuga G. An Interdisciplinary Review of Smart Vehicular Traffic and Its Applications and Challenges. Journal of Sensor and Actuator Networks. 2019; 8(1):13. https://doi.org/10.3390/jsan8010013
Chicago/Turabian StyleFiore, Ugo, Adrian Florea, and Gilberto Pérez Lechuga. 2019. "An Interdisciplinary Review of Smart Vehicular Traffic and Its Applications and Challenges" Journal of Sensor and Actuator Networks 8, no. 1: 13. https://doi.org/10.3390/jsan8010013
APA StyleFiore, U., Florea, A., & Pérez Lechuga, G. (2019). An Interdisciplinary Review of Smart Vehicular Traffic and Its Applications and Challenges. Journal of Sensor and Actuator Networks, 8(1), 13. https://doi.org/10.3390/jsan8010013