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Abstract: Multi-access edge computing (MEC) promises to deliver localized computing power and
storage. Coupled with low-latency 5G radio access, this enables the creation of high added-value
services for mobile users, such as in-vehicle infotainment or remote driving. The performance of
these services as well as their scalability will however depend on how MEC will be deployed in
5G systems. This paper evaluates different MEC deployment options, coherent with the respective
5G migration phases, using an accurate and comprehensive end-to-end (E2E) system simulation
model (exploiting Simu5G for radio access and Intel CoFluent for core network and MEC), taking into
account user-related metrics, such as response time or MEC latency. Our results show that 4G radio
access is going to be a bottleneck, preventing MEC services from scaling up. On the other hand,
the introduction of 5G will allow a considerable higher penetration of MEC services.
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1. Introduction

Edge computing has recently emerged as a promising evolution of cloud computing. Its benefits
include better scalability, especially when large amounts of data are involved (e.g., acquired from
sensors), as well as lower latencies, which enable time-critical services, e.g., remote sensing and actuation
or distributed gaming, and the preservation of privacy and context information (including that related to
user location and access interface). Many standardization efforts and industry groups gravitate around
edge computing [1]. In particular, Multi-access Edge Computing (MEC) is the leading international
standard introduced by ETSI ISG (Industry Standard Group) MEC to define an architecture and services
for edge computing [2,3], with particular (though not exclusive) regard to cellular network access.
This standard includes both an MEC framework and architecture [4] and a set of MEC APIs specified
following general RESTful API design principles [5]. According to the definition [2], “multi-access
edge computing offers application developers and content providers cloud-computing capabilities
and an IT service environment at the edge of the network”. This environment is characterized by
ultra-low latency and high bandwidth as well as real-time access to radio network information that
can be leveraged by applications. MEC provides a new ecosystem and value chain. This includes
mobile operators, application developers, over the top players, independent software vendors, telecom
equipment & IT platform vendors, system integrators, and technology providers, all of whom are
interested in delivering MEC-based services.

While MEC is access-agnostic, it is foreseeable that users will conveniently access MEC through
cellular networks, i.e., the existing 4G LTE-advanced [6] and mostly the new 5G network [1,7]. Moreover,
5G introduces several innovations, ranging from access to core network side. In particular, 5G New
Radio (NR) brings considerable improvements with respect to 4G: access latency is reduced, thanks to
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several modifications, e.g., duration of timeslots reduced from 1 ms to 62.5 µs, guaranteeing 16×
faster scheduling, and the available bandwidth is increased accordingly. This aspect (coupled with
the network virtualization) makes MEC adoption particularly well suited to support next-generation
services requiring very low latencies and/or high bandwidth, such as vehicular ones (from in-vehicle
infotainment to assisted/cooperative driving). In addition, operators can exploit their hosting facilities
at the edge of mobile networks and can open their radio access network (RAN) edge to authorized third
parties, allowing them to flexibly and rapidly deploy innovative applications and services towards
mobile subscribers, enterprises, and vertical segments. More specifically, when implementing MEC
in mobile networks, MEC hosts are placed at the edge of the network (e.g., close to the radio access
network of a 4G or 5G cellular network) and support MEC applications, leveraging edge services
exposed through APIs, e.g., radio network information (RNI) API or location API, helping to tailor
their computation based on the network conditions or user location. Other APIs can be exposed to
MEC applications following the general design principles of RESTful APIs, to ensure interoperability
and portability of MEC applications across different domains. For all these reasons, the focus of this
paper is on MEC deployment in mobile networks, also due to the huge business and technology impact
of 5G systems on future communications.

The deployment of the MEC infrastructure should meet different, contrasting needs. On one
hand, the infrastructure owner should ensure that its hosts are used efficiently: to this aim, it would be
preferable to pool resources relatively far from the users, so that temporal and spatial service usage
variability can be met by leveraging statistical multiplexing, aggregating fewer computing resources.
On the other hand, low-latency services should, by definition, be hosted as close as possible to the user
clients, which pulls towards a capillary distribution of computing resources. Other factors, such as
technology constraints (e.g., maximum size of MEC hosts), logistic constraints (e.g., accessibility of
sites), or cost aspects (i.e., CAPEX and OPEX), will also play a role. The optimal trade-off point will
depend on all these tradeoffs and also on the type of services considered. Finally, the actual MEC
penetration will also be influenced by the dominant type of user access technology in a specific area.

Accordingly, since 5G access is expected to dominate in the near future, there is a pressing need for
a sound evaluation of MEC services and deployments in 5G networks. Such an evaluation should factor
in user-related performance metrics, related to both the computation and communication segments of
a MEC service. For instance, the round-trip time experienced by a user for a request-response service
will include both the communication latency, i.e., both access, core, and backhaul traversing up to a
(possibly far away) MEC host, and to the computation time spent by the MEC app on the host itself,
which in turn will depend on contention of shared computing resources (e.g., CPU, memory, storage).
From this perspective, it is quite clear that deploying MEC hosts at different locations will affect both
the communication latency and the contention on resources (since it will alter the number of users
sharing those resources). For all these reasons, performance assessment is key for the evaluation of
MEC deployment options. In particular, a proper end-to-end (E2E) evaluation should include reliable
models of both the network and the computing environment. This is not easy to achieve in practice,
due to the presence of many components, from access to edge and core network, and the need to
cover not only PHY and MAC layers, but also traffic models in system-level simulations, and a proper
workload modeling of the specific MEC app, related to the use-case under evaluation.

Some existing works (e.g., refs. [8,9]) rely on numerical evaluations of the system performance,
using analytical models. Few simulation tools allow one to simulate applications and services
communicating through a 5G network, notably ns3-based 5G Lena [10] and OMNeT++-based Simu5G,
both of which quite recent. To the best of our knowledge, ns3 does not include models of MEC hosts.
Simu5G, on the other hand, does include a MEC host model [11], but the resource contention at the
latter is not modeled satisfactorily. On the other hand, there are cloud/edge computing simulators,
e.g., refs. [12,13], which model the computation part but not the communication one. Intel CoFluent [14]
is one such tool. However, a unified framework, including both communication and computation,
is missing.
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In this paper, we evaluate the performance of MEC services, specifically in-vehicle infotainment,
used by users accessing them through a 5G network in mobility. We focus on the impact of the various
5G deployment alternatives on the performance of the considered MEC service and their interplay
with the capacity provided within the MEC infrastructure. We claim that an effective performance
evaluation of MEC services cannot be achieved by analyzing the RAN part through network-only
simulation alone. Instead, we advocate that a co-simulation approach, including models of both
network and compute element, would be beneficial for the analysis. However, no simulator that we
know of models both satisfactorily. For this purpose, we realize a co-simulation framework where the
communication part is simulated through Simu5G, and the MEC host is simulated using CoFluent.
The two tools communicate via file exchange, for maximum flexibility. The above framework is used
to assess various deployment options for MEC hosts. Our results show that, as one would expect,
4G is going to be a major bottleneck, preventing MEC potential to be unleashed. On the other hand,
introducing 5G will enable MEC services to scale up to a considerably larger penetration, challenging
the capacity of the MEC infrastructure, and requesting it to scale accordingly. One contribution of
this paper also lies in the modularity of our framework: other MEC services can be evaluated by
minimally modifying a setup-namely, the application model in both Simu5G (for what concerns its
communication pattern) and CoFluent (for its computation pattern).

The rest of the paper is organized as follows. Section 2 describes MEC in the context of 4G and
5G networks, whereas Section 3 describes our co-simulation framework. Section 4 reports evaluation
results, and Section 5 concludes the paper.

2. Multi-Access Edge Computing in 4G/5G

2.1. Background on Multi-Access Edge Computing

In Figure 1 the MEC architecture, as standardized by ETSI [4], is reported. The MEC architecture
allows MEC apps to be executed in a virtualized environment, thus enabling dynamic and on-demand
allocation of computational resources in response to users request for a particular task or service.
Network operators supervising and managing an instance of a MEC system will be able to optimize
resource utilization even dynamically, e.g., by migrating and/or relocating user applications between
MEC hosts, following computation and communication requirements.
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Figure 1. Overview of the Multi-access Edge Computing Framework.

At the top of the hierarchy sits the MEC System Level, which maintains a global vision of the
state of all the MEC Hosts within the system. The MEC System Level handles several management
tasks, including handling MEC Application Instantiation requests coming from user applications,
checking application requirements (e.g., MEC-services availability, maximum allowed communication
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latency, requested computational resources), selecting and configuring the MEC host that will host and
execute the MEC application instance. In a MEC host, a MEC platform provides multiple MEC services,
as defined in ref. [15]. The latter can be used by MEC apps (acting as clients for the MEC platform),
to realize complex context-dependent behaviors. Example of MEC services are: the smart relocation
service, which allows MEC apps to migrate among MEC hosts (e.g., to follow the least-latency path
when users are mobile); the radio network information service (RNIS), which provides information
on the state of the underlying network (e.g., how many users are connected, what is the load at the
base station, etc.); the bandwidth manager, which sets data traffic priorities within the MEC host;
the location service, that can be queried to get access to the users’ position. MEC apps run on the
MEC host as virtual machines, and they can communicate both with other entities in the MEC host
(e.g., the MEC platform, to use its services) and with the outside world (e.g., users’ local applications).
This is achieved by the virtualization infrastructure.

2.2. MEC Deployment in Cellular Networks

The progressive introduction in the market of MEC technology and its use cases are subject to
many (technical and business) decision factors [16]. In particular, from a mobile network operator
(MNO) perspective, coupling MEC with their plans for progressive introduction of 5G system is a
consolidated assumption, especially for those who have a migration path to an NFV-based network
(in fact MEC is basically based on virtualized infrastructure, and possibly deployed also in NFV
environments [17]). For this reason, it is of the utmost importance to consider MEC deployment options
jointly with MNOs orientations, and coherently with their plans regarding 5G deployment phases.

A recent survey from GSMA [18] asked operators planning to launch 5G in the next two years
which of the 5G Architecture Options (defined in ref. [19]) they were considering for their deployment
plans. The survey revealed that it is widely expected that mobile operators will initially deploy 5G
using Option 3 (named as 5G NSA, non-standalone) allowing the reuse of existing evolved packet Core
(EPC) functionality (Rel. 15 early drop), and would require from infra-vendors that the subsequently
planned introduction of Option 2 (5G SA, standalone) be not delayed too much (possibly with some
intermediate steps, which can be found in the study). Overall, the main phases of the gradual 5G
introduction (after the legacy LTE network, i.e., Option 1) are considered in the sequence of Figure 2,
i.e., starting from Option 3 (5G NSA) and then moving toward Option 2 (5G SA). This paper considers
this sequence as a reference for performance comparison when evaluating MEC deployments in
5G systems.
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Another aspect to be taken into account in the evaluations is of course the use case. In fact, KPIs (key
performance indicators) and thus the related end-to-end (E2E) performance depend on the specific
use case considered. In this paper we analyze the infotainment use case for automotive scenarios
(also referred to as in-vehicle entertainment), where MEC can support immersive high-definition
entertainment for all vehicle occupants, including video streaming, gaming, virtual reality, office work,
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online education, advertisement, etc. There are several motivations for this choice, from an industrial
perspective. First, automotive is a key sector for both MEC and 5G. These technologies will open
the door to multiple use cases and services that can be monetized by 5G Automotive Association
stakeholders. Second, in addition to traditional use-cases on connected/automated cars, infotainment is
also a promising market. According to recent forecasts [20], “Intel predicts a new $7 trillion passenger
economy will emerge when passengers be-come riders”; moreover, the study showed that “drivers
spend 300 h a year behind the wheel and 5G offers entertainment opportunities to optimize that
time as we transition from drivers to riders”. Third, infotainment interests not only automotive
stakeholders, but also operators and other content providers, who may be willing to conveniently offer
their “legacy” multimedia services for a comfortable in-vehicle user experience. This could be easy to
offer, from a shorter time-to-market perspective. From a modeling point of view, infotainment services
(as described above) can be represented by many different traffic streams. In this paper, we concentrate
the evaluation on a CDN-based video-streaming traffic model.

3. Co-Simulation Based E2E Evaluation Framework

We now describe the architecture of the co-simulation framework for end-to-end simulation of
MEC-enabled cellular networks. The latter is achieved by joining the Simu5G network simulator and
the Intel CoFluent MEC host simulator. We first describe both simulators and then the framework that
joins them.

3.1. Simu5G

Simu5G [21–24] is a system-level simulator for the data plane of the 5G NR technology, based
on OMNeT++ [25]. It evolves from the well-known SimuLTE, which is a library for the simulation
of 4G networks [26,27]. By integrating the INET framework [28], Simu5G allows the evaluation of
end-to-end applications, incorporating the whole TCP/IP protocol stack and standard network devices,
e.g., routers. It is backward-compatible with SimuLTE, and thus it allows one to simulate also 4G
and mixed 4G/5G scenarios. The main components of Simu5G are the User Equipment (UE) and the
gNodeB (gNB). Both elements include a Network Interface Card (NIC) module that implements all the
layers of the NR protocol stack, as shown in Figure 3. The gNB can connect either directly to the Core
Network (CN), i.e., in a 5G SA deployment (Option 2), or act as a secondary node (SN) and connected
to a master node (MN) implemented by an LTE eNB through the X2 interface. The latter represents the
5G NSA deployment (Option 3) and enables E-UTRA/NR dual connectivity (ENDC) [29]. In an ENDC
deployment, the UE can attach to either the gNB or the eNB, or both. Within Simu5G, this is modeled
by endowing the UE with two protocol stacks, one for LTE and one for NR, sharing the packet data
convergence protocol (PDCP) layer.
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Simu5G supports carrier aggregation, where each component carrier can be configured to use
either frequency- or time-division duplexing (FDD, TDD) and different numerologies, thus allowing
maximum flexibility in building simulation scenarios. Simu5G models the effects of path loss,
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fading and inter-cell interference on message transmission, without modeling the transmission of
individual symbols, which is instead the focus of link simulators such as ref. [30]. This makes it more
scalable, hence apt to evaluate both network- and applications-related aspects in large-scale systems.

Simu5G can also run as a network emulator. In this last setting, it can be connected to real
applications and carry packets between them in real time, with the delay and bandwidth constraint
of a 5G cellular network. This is useful for rapid prototyping of MEC applications. For instance,
Simu5G can be connected to the Intel OpenNESS framework for MEC hosting [31]. Work [22] evaluates
Simu5G emulation capabilities.

3.2. CoFluent

Intel® CoFluent™ studio [14] is a modeling and simulation tool for optimizing, analyzing, and
predicting the performance of complex systems. CoFluent allows one to model and simulate the
interactions among both hardware and software elements, thus speeding up the deployment of complex
systems. It simulates computing and communication cost with high accuracy and high efficiency, thus
it can be effectively used to measure and evaluate the latency and throughput of data flows coming to
and leaving from the MEC system. Within this work, CoFluent models a MEC environment, including
the User Plane Functions (UPFs) and the MEC app within a MEC host. A high-level view of the latter
is shown in Figure 4, and is composed of two main elements: the UPF and the MEC app. Data arrive
at and leave the MEC host through the UPF element, which is further divided into two sub-elements,
respectively one for the uplink (UL) and one for the downlink (DL) directions. The processing time Tx

required by a packet of size S, traversing the UPF in direction x is Tx = S/Bx, where Bx is the data
bandwidth of the UPF in the x direction. Packets processed by the UPF are forwarded to a MEC app,
which implements the service required by the user and produces a set of data packets as a response.
These packets are forwarded back to the UPF, which processes them and sends them back to the RAN.
The communication path between the UPF and the MEC app is modeled through two packet queues,
one per direction, which have a configurable latency of traversal. The behavior and structure of the
MEC app can be customized to model the required service. In Section 4 we will describe the model of
a MEC-based infotainment application.
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3.3. Co-Simulation Framework

Our co-simulation architecture enhances the one in ref. [31], based on a 4G network,
and incorporates a 5G one. With reference to Figure 5, Simu5G and CoFluent are configured
independently, each with its own models, configuration files and simulation workflows, and also
run independently. Coordination is achieved via file exchange. Simu5G will simulate the 5G RAN,
composed of a configurable number of UEs and BSs. Each UE runs an application client, modeling the
behavior of the selected use case, and initiates service requests to the MEC infrastructure. Requests’ data
packets traverse the UL of the RAN and the CN and get to the MEC host. The latter generates responses
and sends them back to the UE through the DL path. BSs can be either eNBs of gNBs depending on the
considered deployment. The structure of the CN depends on the deployment as well. CoFluent instead
simulates the CN and the MEC environment. Service requests coming from Simu5G are processed by
the MEC host, through the UPF and the MEC app, and CoFluent generates service responses, which are
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then fed back to Simu5G. Note that Simu5G includes also a model of the EPC, which is not instantiated
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The two tools interact via file exchange as follows:

Step 1: We instantiate a scenario, complete with UE location and mobility, and we run it in Simu5G.
In the latter, UEs will generate application-level messages, to be transmitted on the UL leg of the
radio access network, destined to the collector. These messages will accumulate delay on their
way up, due to user contention, protocol delays, channel quality impairments, etc. The traffic
that arrives to the collector (i.e., that exits the RAN) leaves Simu5G as well. We timestamp the
traffic, and we log both timestamp and message sizes to Logfile#1 file. More specifically, we log
both the simulated time at which a message is generated at the UE, and the simulated time at
which it reaches the collector. These times are expressed in Simu5G’s units.

Step 2: We run CoFluent, using Logfile#1 as an input. The MEC elements modeled in CoFluent
process the requests generated by the UEs, and the MEC server generates replies accordingly.
These replies will contain a payload, which depends on the traffic model used within CoFluent.
These replies are sent back to the RAN. Similar to step 1, replies are timestamped and logged
in the Logfile#2 file. In the latter, timestamps are expressed in CoFluent’s units. During step 2,
time is spent traversing the necessary MEC elements, e.g., queueing up at contention points.

Step 3: We run Simu5G once more, using the same scenario as for step 1. More specifically, the UE
location and mobility are the same. We now use Logfile#2 to generate the replies to be transmitted
to the UEs using the DL leg of the RAN. As in step 1, replies accumulate delay due to interference,
channel issues, congestion and protocol mechanisms.

We note that file reads and writes are actually made in C++ within the co-simulation endpoints.
This is done, however, only at the beginning (read) and at the end (write) of the simulation. This allows
us to avoid unnecessary file-based operations during the execution of the simulations, thus adding a
negligible overhead to the simulation performance. Another benefit of this approach is that it allows
us to compute end-to-end delays (e.g., the round-trip time of a request—RTT) without having to
synchronize simulated times in the two frameworks. In fact, the RTT can be computed as the sum
of the delays incurred in steps 1, 2, and 3, each one of which is computed within a simulator. Thus,
if messages keep track of the delay accumulated thus far, the RTT is obtained automatically at the end
of step 3. Finally, using a file-based interaction allows us to obtain a co-simulation framework with
minimal modification of the two involved simulators, and notably without any impact on their core
functionalities. This last characteristic is particularly important in the perspective of upgradability.

The above co-simulation framework is realized by minimally modifying Simu5G and CoFluent,
coding some software tools to interface the two. In the UL direction the following elements have been
implemented:
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1. An application that issues service requests periodically at a UE, written in C++.
2. A C++ collector application that collects all the UE messages (after they have got to the respective

BSs) and prints Logfile#1.
3. A program written in python, simu2mec.py, that converts Logfile#1 to a structured JSON file, to

be used as an input to CoFluent.

Dually, some more apps have been coded to cope with the DL return trip:

1. A program written in python, mec2simu.py, that parses the MEC packet trace produced by
CoFluent, and generates a structured JSON file, which specifies for each packet, its ID, the ID of
the UE that generated it, and the timestamp.

2. A C++ application that takes the above JSON file as an input and generates a trace of DL messages
accordingly. These messages are those that will be injected at step 3, to reach the interested UEs
via their serving BSs.

3. A C++ application, running on UEs, that collects responses and generates reports (e.g., by
computing the RTT of each request and assembling it with some aggregator, say the mean value).

4. Performance Evaluation

In this section, we assess the performance of a MEC-enabled service in various system deployments.
Our aim is to highlight the impact and contribution of the different system components (i.e., RAN, CN,
MEC host) on the E2E service performance.

The application scenario we consider is an infotainment service, provided in a Cellular
Vehicle-to-Everything (C-V2X) environment, whose logical view is shown in Figure 6. Each vehicle
carries a user client that runs within a UE and connects to a MEC host through the cellular network.
The client periodically issues a request for an infotainment service. The server is realized as a MEC
app residing in a MEC host and responds to requests by sending the client a transcoded version of a
prerecorded video stream. On each request, the client specifies one of the video formats reported in
Table 1, a higher video quality corresponding to a higher bandwidth. The MEC app is composed of
two parts: a request handler and a streamer. The former receives and processes the service requests,
identifying the video and its format, and notifies the streamer. The latter transcodes and transmits
the video stream, one frame each 40 ms. Video frames are finally received at the client, which collects
them and computes metrics. In our co-simulation framework, the client is implemented as a UDP
application running on a UE on Simu5G, whereas the infotainment server is implemented as an MEC
app within CoFluent.
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We define frame latency as the time between the transmission of a video frame from the MEC app
and its reception at the UE. This measures the “age” of the information received by the user, and can
be further divided into a MEC latency, i.e., from the generation of a video frame at the MEC app
to its packets leaving the MEC server, a CN latency, i.e., the time it takes these packets to reach the
gNB/eNB, and a RAN latency, i.e., the time between the arrival of a video frame at the gNB/eNB and
its reception at the UE. We consider a RAN composed of 57 cells, deployed according to the hexagonal
tessellation shown in the left part of Figure 7 (we show only the first two tiers of cells for readability).
Each site hosts three co-located BSs and each BS radiates towards the center of the respective hexagon.
The inter-site distance is 500 m. UEs are deployed according to an urban-grid vehicular scenario,
shown in the right part of Figure 7, which corresponds to the area defined by the dashed rectangle to
the left. BSs outside that area are simulated as external cells.
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In order to assess the impact of different 4G/5G and MEC deployments, we consider three scenarios,
coherently with the phases previously described in Section 2.2:

• Baseline LTE deployment (Figure 8, top): the BSs are LTE eNBs and the MEC app is co-located
with the S-GW and the P-GW in a centralized EPC site. We assume a one-way latency between
the RAN and the MEC of 15 ms [17].

• 5G NSA deployment (Figure 8, center): the BSs are again LTE eNBs and each of the three central
cells also has a gNB placed in the center of the hexagons, connected to the corresponding eNB via
X2 and radiating power according to an omnidirectional pattern. The LTE eNBs are connected
to a distributed EPC site in proximity of the RAN. Both S-GW and P-GW, as well as the MEC,
are considered as virtual network functions (VNFs). Since the path between the RAN and the MEC
involves two VNFs, we assume a one-way latency of 200 µs [32]. For the X2 interface, we assume
5 ms latency [33,34].

• 5G SA deployment (Figure 8, bottom): the BSs are gNBs connected to a distributed 5G Core (5GC).
Again, the MEC is a VNF connected to (at least) a UPF, acting as PDU session anchor in the 5GC,
and terminating to the data network. Since there is only one VNF between the RAN and the MEC,
the considered one-way latency is 100 µs.

icograms.com


J. Sens. Actuator Netw. 2020, 9, 57 10 of 14

J. Sens. Actuator Netw. 2020, 9, x FOR PEER REVIEW 10 of 16 

 

 
Figure 8. LTE deployment with centralized EPC (top), 5G NSA deployment with distributed EPC 
(center), 5G SA deployment with distributed 5GC (bottom). 

• 5G NSA deployment (Figure 8, center): the BSs are again LTE eNBs and each of the three central 
cells also has a gNB placed in the center of the hexagons, connected to the corresponding eNB 
via X2 and radiating power according to an omnidirectional pattern. The LTE eNBs are 
connected to a distributed EPC site in proximity of the RAN. Both S-GW and P-GW, as well as 
the MEC, are considered as virtual network functions (VNFs). Since the path between the RAN 
and the MEC involves two VNFs, we assume a one-way latency of 200 μs [32]. For the X2 
interface, we assume 5 ms latency [33,34]. 

• 5G SA deployment (Figure 8, bottom): the BSs are gNBs connected to a distributed 5G Core 
(5GC). Again, the MEC is a VNF connected to (at least) a UPF, acting as PDU session anchor in 
the 5GC, and terminating to the data network. Since there is only one VNF between the RAN 
and the MEC, the considered one-way latency is 100 μs. 

The main simulation parameters are summarized in Table 2. We first run simulations with a 
varying number of UEs (24 to 40), increasing the video bitrate. Figure 9 shows the percentage of DL 
frame occupied in the 4G RAN, for the 4G and 5G NSA scenarios. The figure shows that this increases 
with the video bitrate, however keeping below 50%. In the 5G NSA case, the 4G DL is occupied even 
less, due to the gNB offloading. The difference in user experience is clarified in Figure 10, describing 
the frame latency and its breakdown. It is quite evident that, in the 4G scenario, both the RAN and 
the CN introduce a considerable delay. On the other hand, even high video bitrates are well tolerated 
in the 5G NSA scenario, and the 5G SA one exhibits negligible delays. In all the three scenarios, the 
MEC delay is negligible. Figure 11 shows the standard deviation of the frame latency, which 
measures the jitter, and is a meaningful indicator of user-perceived Quality of Experience. It is quite 
evident that, although the DL is far from being congested, in the 4G scenarios jitters comparable to 
twice the inter-packet time and more can occur, meaning that packets will need considerable 
buffering at the UE. This does not happen with either 5G NSA or 5G SA. These results show that the 
4G network is going to represent the bottleneck for MEC services such as this, and that only 
deploying 5G will alleviate that. In order to find the point at which the MEC host starts acting as a 
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Figure 8. LTE deployment with centralized EPC (top), 5G NSA deployment with distributed EPC
(center), 5G SA deployment with distributed 5GC (bottom).

The main simulation parameters are summarized in Table 2. We first run simulations with a
varying number of UEs (24 to 40), increasing the video bitrate. Figure 9 shows the percentage of DL
frame occupied in the 4G RAN, for the 4G and 5G NSA scenarios. The figure shows that this increases
with the video bitrate, however keeping below 50%. In the 5G NSA case, the 4G DL is occupied even
less, due to the gNB offloading. The difference in user experience is clarified in Figure 10, describing the
frame latency and its breakdown. It is quite evident that, in the 4G scenario, both the RAN and the CN
introduce a considerable delay. On the other hand, even high video bitrates are well tolerated in the
5G NSA scenario, and the 5G SA one exhibits negligible delays. In all the three scenarios, the MEC
delay is negligible. Figure 11 shows the standard deviation of the frame latency, which measures
the jitter, and is a meaningful indicator of user-perceived Quality of Experience. It is quite evident
that, although the DL is far from being congested, in the 4G scenarios jitters comparable to twice the
inter-packet time and more can occur, meaning that packets will need considerable buffering at the UE.
This does not happen with either 5G NSA or 5G SA. These results show that the 4G network is going
to represent the bottleneck for MEC services such as this, and that only deploying 5G will alleviate
that. In order to find the point at which the MEC host starts acting as a bottleneck, we ran simulations
with a considerably higher number of users (up to 248) in a 5G SA deployment. This time we used a
low bitrate video, to avoid saturating the RAN. The results are shown in Figure 12, and they clearly
show that the MEC host becomes congested around 200 users. However, before this occurs, the bulk of
the latency is still due to the 5G RAN.
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Table 2. Main Simulation parameters.

Video Format Bitrate

Bandwidth 20 MHz (100 Resource Blocks)
Carrier Frequency 2 GHz

6 GHz for gNBs in NSA
Numerology index (5G only) 2 (60-kHZ subcarrier spacing)
Tx Power BS: 46 dBm; UE: 23 dBm
Fading effects Enabled
Path loss model [35]
UE mobility Linear, ~U(10, 18) m/s
CN latency (one-way) LTE: 15 ms

5G: 200 µs (NSA), 100 µs (SA)
X2 latency 5 ms
Simulation time 200 s
UPF UL/DL bandwidth 100 Gb/s
UPF-APP and APP-UPF delay 5.4 µs
REQ processing time 50 µs
Frame creation time 200 µs
Frame size {2000, 12,000, 24,000} bytes
Video duration 8 s
Request period 12 s
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5. Conclusions and Future Work 

This paper presented a methodology to evaluate MEC deployments with 4G/5G access and the 
results of its application. The methodology consists in using detailed system-level simulators 
(namely, Simu5G and CoFluent) to simulate the communication and computation parts of an E2E 
service with MEC, and joining them into a flexible co-simulation framework. We have used the above 
tool to compare MEC deployment options, namely 4G, 5G non-standalone, and 5G Standalone, as for 
their suitability to support an infotainment service with MEC. Our results show that 4G radio access 
is going to be the bottleneck from a QoE perspective, allowing only a small number of users, and 
virtually leaving most of the MEC computation power untapped. With 4G, large jitters will impair 
the service even in a relatively uncongested RAN. Deploying 5G, already in NSA but especially in 
the SA option, is going to make a large difference. With 5G, the same service will be able to 
accommodate considerably more users before MEC hosts become a bottleneck. 

Due to the inherent flexibility of the above framework, this work can be extended in several 
directions. For instance, in-car task offloading from car to MEC, e.g., critical workloads to be 
offloaded to MEC in the case of sudden blade failure in the car. 
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5. Conclusions and Future Work

This paper presented a methodology to evaluate MEC deployments with 4G/5G access and the
results of its application. The methodology consists in using detailed system-level simulators (namely,
Simu5G and CoFluent) to simulate the communication and computation parts of an E2E service with
MEC, and joining them into a flexible co-simulation framework. We have used the above tool to
compare MEC deployment options, namely 4G, 5G non-standalone, and 5G Standalone, as for their
suitability to support an infotainment service with MEC. Our results show that 4G radio access is going
to be the bottleneck from a QoE perspective, allowing only a small number of users, and virtually
leaving most of the MEC computation power untapped. With 4G, large jitters will impair the service
even in a relatively uncongested RAN. Deploying 5G, already in NSA but especially in the SA option,
is going to make a large difference. With 5G, the same service will be able to accommodate considerably
more users before MEC hosts become a bottleneck.

Due to the inherent flexibility of the above framework, this work can be extended in several
directions. For instance, in-car task offloading from car to MEC, e.g., critical workloads to be offloaded
to MEC in the case of sudden blade failure in the car.
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