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Abstract:

 This paper presents recent developments in model selection and model averaging for parametric and nonparametric models. While there is extensive literature on model selection under parametric settings, we present recently developed results in the context of nonparametric models. In applications, estimation and inference are often conducted under the selected model without considering the uncertainty from the selection process. This often leads to inefficiency in results and misleading confidence intervals. Thus an alternative to model selection is model averaging where the estimated model is the weighted sum of all the submodels. This reduces model uncertainty. In recent years, there has been significant interest in model averaging and some important developments have taken place in this area. We present results for both the parametric and nonparametric cases. Some possible topics for future research are also indicated.
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1. Introduction

Over the last several years many econometricians and statisticians have persistently devoted their efforts in finding various paths to the true model. The uncertainty in correctly specifying the regression model has resulted in a large amount of literature in two major directions: firstly, what variables are to be included and secondly, how they are related with the dependent variable in the model. Thus “what" refers to determining the variables to be included in constructing the model and “how" refers to finding the correct functional form, e.g., parametric (specifications like linear, quadratic, etc.), or in general, nonparametric smoothing methods that do not require specifying a parametric functional form but instead let the data search for a suitable function that describes well the available data, see [1,2] among others.

To determine “what", model selection was first introduced, and it has a huge literature in statistics and econometrics. In fact, in recent years, model selection (variable selection) procedures have become more popular due to the emergence of econometric and statistical models with high dimension (large number) variables. As examples, in labor economics, wage equations can have a large number of regressors [3] and in financial econometrics, portfolio allocation may be among hundreds or thousands of stocks [4]. Such models raise additional challenges of econometric modeling and inference along with the selection of variables. Different tools have been developed based on various estimation criteria. The majority of such procedures involve variable selection by minimizing penalized loss functions based on the least squares and the log-likelihood, and their variants. The adjusted R2 and residuals sum of squares are the usual variable selection procedures without any penalization. Among the penalized procedures we have Akaike information criterion (AIC) [5], Mallows [image: there is no content] procedure [6], Bayesian information criterion (BIC) by [7], cross-validation method by [8], generalized cross-validation (GCV) by [9], and the focused information criterion (FIC) by [10]. We note that the traditional AIC and BIC are based on least squares (LS), maximum likelihood (ML), or Bayesian principles, and the penalization is based on the [image: there is no content]-norm for the parameters entering in the model, with the result penalization is proportional to the number of nonzero parameters. Both AIC and BIC are variable selection procedures and do not provide estimators simultaneously. On the other hand the bridge estimator in [11,12] uses the [image: there is no content]-norm ([image: there is no content]), and for [image: there is no content] provides a way to combine variable selection and parameter estimation simultaneously. Within this class the least absolute shrinkage and selection operator (LASSO; [image: there is no content]) has become the most popular. For [image: there is no content] we get the ridge estimator [13]. For a detailed review of model selection in high dimensional modeling, see [14], and the books [15,16]. Similarly, in the context of empirical likelihood estimation and generalized methods of moments estimators, model selection criteria have been introduced by [17,18], among others.

Model selection is an important step for empirical policy evaluation and forecasting. However, it may produce unstable estimators because of bias in model selection. For example, a small data perturbation or an alternative selection procedure may give a different model. Reference [19] shows that AIC selection results in distorted inference, and [20] explores the negative impact on confidence regions. Reference [21] gives conditions under which post model selection estimators are adaptive, but see [22,23] for their comments that they cannot be uniformly estimated. For a selected model with unstable estimators, [24] provides bagging or bootstrap averaging procedure to reduce their variances for the i.i.d. data, and by [25] for the dependent time series data. But this averaging does not always work, e.g., for large samples and/or in entire parameter space.

Taking the above reasons into consideration, model averaging is introduced as an alternative to model selection. Unlike in model selection, where the model uncertainty is dealt with by econometricians selecting one model from a set of models, in model averaging, we resolve the uncertainty by averaging over the set of models. There is large recent literature on Bayesian model averaging (BMA) and more recently, on frequentist model averaging (FMA). Among the BMA contributions, model uncertainty is considered by setting a prior probability to each candidate model, see [26,27,28,29,30]; for interesting applications in econometrics, see, e.g., [31,32,33]. Also, see [10] for comments on the BMA approach. The main focus here is on the FMA method, which is totally determined by data only and assumes no priors, and it has received much attention in recent years, see [34,35,36,37,38,39,40,41]. Reference [10] provides asymptotic theory. For applications, see [16,42,43]. The concept behind the FMA estimators is related to the ideas of combining procedures based on the same data, which have been considered before in several research areas. For instance, [44] introduces forecast combination and [45,46] suggest combining parametric and kernel estimators of density and regression respectively. Other works include bootstrap based averaging (“stacking") by [24,47,48], information theoretic method to combine density by [49,50], and the mixing of experts models by [51,52]. Similar kinds of combining have been used in computational learning theory by [53,54] and in information theory by [55].

Related to “how", or rather determining the unknown functional forms of econometric models, we use data based nonparametric procedures (e.g., kernel, smoothing spline, series approximation). See, for example, [1,2,56,57], for kernel smoothing procedures, [58] for the spline methods, and [59,60] for the series methods. These procedures help in dealing with the problems of bias and inconsistency in estimation and testing due to misspecifying functional forms. Because of this recent developments on nonparametric model selection and model averaging have taken place.

The current paper is hence focused on a review of parametric and nonparametric approaches to model selection and model averaging mainly from a frequentist point of view, and for independently and identically distributed (i.i.d.) observations. Earlier [14] provides a review of parametric model selections, [61] surveys the FMA estimation, and [62] provides variable selection in semiparametric regression models. To distinguish, our paper hence concentrates on the review of frequentist model selection and model averaging under both parametric and nonparametric settings.

The paper is organized as follows. We first introduce a review of parametric model selection and parametric model averaging in Section 2. Then, in Section 3 we present nonparametric model selection and model averaging procedures. A conclusion follows in Section 4.



2. Parametric Model Selection and Model Averaging


2.1. Model Selection

Let us consider [image: there is no content] as a dependent variable and [image: there is no content] a [image: there is no content] vector of explanatory variables/covariates. Then the linear regression model can be written as



[image: there is no content]=xi′β+[image: there is no content]=∑j=1qxij[image: there is no content]+[image: there is no content],i=1,...,n



(1)




or


[image: there is no content]



(2)




where y is [image: there is no content]X is [image: there is no content], [image: there is no content], and u is [image: there is no content]
Among the well known procedures for model selection, often used routinely, we are looking at the goodness of fit [image: there is no content] adjusted [image: there is no content] ([image: there is no content]), and residuals sum of squared (RSS) given by



[image: there is no content]=1-∑[image: there is no content]∑([image: there is no content]-y¯)2,[image: there is no content]=1-(n-1)∑[image: there is no content](n-q)∑([image: there is no content]-y¯)2,RSS=∑(u^i)2



(3)




where 0≤[image: there is no content]≤1. The model with the highest [image: there is no content] (or [image: there is no content]) or smallest RSS is chosen. However [image: there is no content] increases or RSS decreases, monotonically as q increases. Further, between [image: there is no content] and [image: there is no content], Bias([image: there is no content])≤Bias([image: there is no content]) but V([image: there is no content])≥V([image: there is no content]). Thus [image: there is no content] may not always be statistically more efficient (MSE([image: there is no content])≤MSE([image: there is no content])), see [63] for further detail. Thus [image: there is no content] and RSS are not preferred measures of goodness of fit or model selection. Recently [64] develops a model selection procedure based on the “mean squared prediction error" denoted by MSPE. Consider [image: there is no content][image: there is no content] as a new observed sample in which [image: there is no content] is the “new observed value" and [image: there is no content] is such that MSPE=∑E([image: there is no content]-[image: there is no content])2/n=σu2(n+q+1)/n. When a model has [image: there is no content] (no explanatory variable), [image: there is no content]. Then, using the unbiased estimator of [image: there is no content] and of [image: there is no content] as [image: there is no content] in [64] introduces


[image: there is no content]=1-FPEFPE0=(n-1)(n+q+1)[image: there is no content]-2qn(n-q-1)(n+1)








such that [image: there is no content]≤[image: there is no content]≤[image: there is no content] where FPE represents final prediction error. The statistical properties of the bias and MSE of [image: there is no content] compared to those of [image: there is no content] and [image: there is no content] are analyzed in [65]. Reference [64] has demonstrated that one of the exciting advantages of [image: there is no content] is that it can be used for choosing a model with the best prediction ability. Furthermore, [image: there is no content] not only overcomes inflation in [image: there is no content] it also avoids the problem of selecting an overfitted model with some irrelevant explanatory variables due to using [image: there is no content]. In addition, they indicate that [image: there is no content] and AIC, discussed below, are asymptotically equivalent and in model selection [image: there is no content] is perfectly consistent with using AIC and is closest with BIC. Thus [image: there is no content] can be used simultaneously for goodness of fit as well as for model selection.

2.1.1. AIC, TIC, and BIC

Now we turn to the methods of model selection, AIC in [5], Takeuchi informaiton criterion (TIC) in [66], and BIC in [7]. For this, we first note that if [image: there is no content] is an unknown true density, and [image: there is no content] is an assumed density then the Kullback-Leibler Information Criterion (KLIC) is given by



D(f,g)=KLIC(f,g)=[image: there is no content]log([image: there is no content][image: there is no content])=[image: there is no content]logf(y)-[image: there is no content]logg(y,θ),








where [image: there is no content] is the expectation with respect to [image: there is no content] This is an expected “surprise" from knowing f is in fact the true density of [image: there is no content] We note that [image: there is no content] where equality holds if and only if [image: there is no content] almost everywhere. Further [image: there is no content]logf(y) is called the entropy of distribution f; for more on entropy and information, see [67,68].
A concept related to entropy is the quasi maximum likelihood estimator (QMLE) [image: there is no content] which maximizes the quasi log-likelihood function



[image: there is no content]








based on the random sample [image: there is no content] from [image: there is no content] Since Ln(θ)→p[image: there is no content][logg(y1,θ)], it is expected that [image: there is no content] converges in probability to the maximizer [image: there is no content] of [image: there is no content][logg(y1,θ)] under suitable conditions. Since [image: there is no content][logf(y1)] does not depend on θ, QMLE minimizes a random function which converges to


KLIC(f,g)=[image: there is no content]logf(y1)-[image: there is no content]logg(y1,θ)=D(f,g)








Thus [image: there is no content]→p[image: there is no content] where [image: there is no content]=argminθD(f,g(θ)) is often referred to as the pseudo-true value of [image: there is no content] It is well known that under some regularity conditions



n([image: there is no content]-[image: there is no content])→dN(0,G([image: there is no content])-1I([image: there is no content])G([image: there is no content])-1)








where [image: there is no content] and [image: there is no content] When f(·)=g(·,[image: there is no content]),G([image: there is no content])=I([image: there is no content]) and [image: there is no content] is the MLE and it is asymptotically efficient.
Now consider the fitted density g^(y)=g(y,[image: there is no content]) and



KLIC(f,g^)=[image: there is no content]log([image: there is no content]g^(y))=c-Eylogg(y,[image: there is no content])








where [image: there is no content] is free of the fitted model and [image: there is no content] denotes the expectation with respect to the true density of [image: there is no content]i.e., [image: there is no content] here. Then E[KLIC(f,g^)]=c-E[image: there is no content]Ey[logg(y,[image: there is no content])]=c-n-1∑E[image: there is no content]E[image: there is no content][logg([image: there is no content],[image: there is no content])] where [image: there is no content] and y are independent. The expected KLIC can be interpreted as the expected likelihood when [image: there is no content] is used for [image: there is no content], and an independent sample y (with one observation here) used for evaluation. In linear regression, the expected KLIC is the expected squared prediction error. Dropping [image: there is no content] and using second order Taylor expansion, it can be shown that


nT=E[KLIC(f,g^)]=-E[Ln(θ^)]+tr[I([image: there is no content])G([image: there is no content])-1].








Further, an asymptotically unbiased estimator of T can be written as



[image: there is no content]








where Ln(θ^)=logg([image: there is no content],θ^),[image: there is no content] is a consistent estimator of I([image: there is no content])G([image: there is no content])-1 in which I^=1n∑∂logg([image: there is no content],θ)∂θ∂logg([image: there is no content],θ)∂θ′ and G^=-1n∑∂2logg([image: there is no content],θ)/∂θ∂θ′.
When the model is correctly specified, that is g(y,[image: there is no content])=[image: there is no content], G([image: there is no content])=I([image: there is no content]) and tr(I([image: there is no content])G([image: there is no content])-1)=q,



[image: there is no content]








which is related with AIC given by [image: there is no content]


[image: there is no content]



(4)




Thus, we can think of AIC as an estimate of the expected 2KLIC based on the assumption that the model is correctly specified. Therefore, selecting a model based on the smallest AIC amounts to choosing the best-fitting model in the sense of having the smallest KLIC. A robust AIC by Takeuchi [66], known as the Takeuchi Information Criterion (TIC), is



[image: there is no content]








which, unlike AIC, does not require [image: there is no content] to be correctly specified. In general, picking models with the smallest AIC/TIC is selecting fitted models whose densities are close to the true density.
We note that in a linear regression model, the minimization of the AIC reduces to the minimization of the following



[image: there is no content]








where [image: there is no content] It can be shown that G([image: there is no content])=I([image: there is no content]) if [image: there is no content] Thus AIC is more appropriate under normality, otherwise it is an approximation for the non-normal and heteroskedastic regression cases.
Further, in a linear regression case, the minimization of TIC can be shown as the minimization of



[image: there is no content]








where [image: there is no content] and [image: there is no content] When the errors are homoskedastic and normal,


[image: there is no content]








which is close to AIC. Although differences may arise under heteroskedasticity and nonnormality. However, as we change models, typically the results [image: there is no content] and hence [image: there is no content] may not change much. In this case, TIC and AIC may give similar model selection results.
We note that the BIC due to [7] is



[image: there is no content]








in which the penalty term depends on the sample size and it is generally larger than the penalty term appearing in the AIC. BIC provides a large sample estimator of a transformation of the Bayesian posterior probability associated with the approximation model. In general, by choosing the fitted candidate model corresponding to the BIC criterion, one is selecting the candidate model with the highest posterior probability. A good property of BIC selection is that it provides consistent model selection, see for example [69]. That is, when the true model is of finite dimension, BIC will choose the model with probability tending to 1 as the sample size n increases.
In general, a penalized function can only be consistent if its penalty term ([image: there is no content] in BIC) is a fast enough increasing function of n (see [70]). Thus AIC is not consistent as it always has some probability of selecting models that are too large. However, we note that in finite samples, adjusted versions of AIC can behave much better, see for example [71]. Further, since the penalty term of BIC is more stringent than the penalty term of AIC, BIC tends to form smaller models than AIC. However, BIC provides a large-sample estimator of the transformation of the Bayesian posterior probability associated with the approximating model, and AIC provides an asymptotically unbiased estimator of the expected Kullback discrepancy between the generating model and the fitted approximating model. In addition, AIC is asymptotically efficient in the sense that it asymptotically selects the fitted candidate model which minimizes the MSE of prediction, but BIC is not asymptotically efficient. This is because AIC can be advocated when the primary goal of the model is to induce meaningful factors influencing the outcome based on relative importance.

In summary, both AIC and BIC provide well-founded and self-contained approaches to model selection although with different motivations and penalty objectives. Both are typically good approximations of their own theoretical target quantities. Often, this also means that they will identify good models for observed data but both criteria can still fail in this respect. For a detailed simulation and empirical comparison of these two approaches, see [72], and for their properties see [69,73,74]. Both the AIC and the TIC are designed for the likelihood or quasi-likelihood context. They perform in a similar way. Their relationship is similar to the relationship between the conventional and the White covariance matrix estimators for the MSE/QMLE or LS. Unfortunately, despite the merit TIC has theoretically, it does not appear to be widely used perhaps because it needs a very large sample to get good estimates.



2.1.2. FIC

Let us start from the model



[image: there is no content]=xi′β+zi′γ+[image: there is no content],i=1,...,n








or


[image: there is no content]








where X is an [image: there is no content] matrix of variables intended (focused) to be included all the time yet the variables in a [image: there is no content] matrix Z may or may not be included. From the ML estimators ([image: there is no content]), corresponding with the l-th model, the predictor for [image: there is no content] can be written as [image: there is no content] at ([image: there is no content]). In [10] provides MSE of [image: there is no content] The basic idea of FIC is to develop a model selection criterion that chooses the model with the smalllest estimated MSE. Such an MSE-based FIC for the l-th submodel is


[image: there is no content]








where [image: there is no content], [image: there is no content] where [image: there is no content][image: there is no content] and [image: there is no content] captures the projection mappings from the full model to the l-th submodel, such that ωl=[image: there is no content]ω.
In contrast, from [10],



[image: there is no content]








where [image: there is no content] is the number of uncertain parameters in the l-th submodel, shows that when the estimand [image: there is no content] such that [image: there is no content] is the probability density function of the data, the MSE-based FIC is asymptotically equivalent to AIC.


2.1.3. Mallows Model Selection

Let us write the regression model (2) as



[image: there is no content]








where [image: there is no content] Then [image: there is no content] where [image: there is no content]
The objective is to choose q such that the average mean squared error (risk) [image: there is no content] is minimum, where



[image: there is no content]








such that


[image: there is no content]








Mallows criterion for selecting q is to minimize



[image: there is no content]








where the seceond term on the right hand side is a penalty.
In fact, Mallows criterion is an unbiased estimator of the MSE of the predictive estimator [image: there is no content] of m. This is because E[L(q)|X]=E[([image: there is no content]-m)′([image: there is no content]-m)/n]=E[u′P(q)un]=[image: there is no content]trP(q)/n and [image: there is no content] But the minimization of [image: there is no content] with respect to q is the same as the minimization of [image: there is no content] since [image: there is no content] does not depend on [image: there is no content]

Alternatively,



1n([image: there is no content]-m)′([image: there is no content]-m)=1n([image: there is no content]-y+y-m)′([image: there is no content]-y+y-m)=1n[u^′u^+u′u-2u^′u]








and E[1n([image: there is no content]-m)′([image: there is no content]-m)]=1nE[u^′u^+2[image: there is no content]trP-[image: there is no content]]. So, an unbiased estimator is (u^′u^+2[image: there is no content]q-[image: there is no content])/n and its minimization is equivalent to the Mallows criterion.


2.1.4. Cross-Validation (CV)

CV is a commonly used procedure for model selection. According to this, the selection of q is made by minimizing



CV(q)=1n∑i=1n([image: there is no content]-xi′[image: there is no content])2








where [image: there is no content] is the LS estimator of β dropping the i-th observations [image: there is no content],[image: there is no content] from the sample. It can be shown that [image: there is no content] where


[image: there is no content]








is the MSE of the forecast error [image: there is no content] with [image: there is no content] Thus, CV is an almost unbiased estimator of [image: there is no content]
This can be shown by first writing the MSPE, based on an out of sample observation from the same distribution as the in sample observation, as



[image: there is no content]=E(y[image: there is no content]-x[image: there is no content]′[image: there is no content])2=Eu^[image: there is no content]2=Eu[image: there is no content]2+E[([image: there is no content]-β)′x[image: there is no content]x[image: there is no content]′([image: there is no content]-β)]=Eu[image: there is no content]2+MSE(q)








where MSE(q)=E[([image: there is no content](x[image: there is no content])-m(x[image: there is no content]))′([image: there is no content](x[image: there is no content])-m(x[image: there is no content]))]=E[([image: there is no content]-β)′x[image: there is no content]x[image: there is no content]′([image: there is no content]-β)]. Since Eu[image: there is no content]2=[image: there is no content] does not depend on q, its selection by [image: there is no content] and [image: there is no content] are equivalent.
We observe that [image: there is no content] is a prediction error based on first estimating [image: there is no content] based on in sample n observations, and then calculating the error by using the out of sample observation [image: there is no content] Therefore, [image: there is no content] is the expectation of a squared leave-one-out prediction error when the sample length is [image: there is no content] Using this idea we can also obtain a similar leave-one-out prediction error for each observation [image: there is no content] This is given by u^i=[image: there is no content]-xi′[image: there is no content] based on n observations. Thus, E[image: there is no content]=MSPE(q) for each i, and



E[CV(q)]=E[1n∑i=1n[image: there is no content]]=MSPE(q).








Further, since [image: there is no content] based on [image: there is no content] observations will be close to E[image: there is no content] based on n observations, [image: there is no content] is an almost unbiased estimator of [image: there is no content]

The [image: there is no content] written above can be rewritten as



[image: there is no content]








where u˜i=[image: there is no content]-xi′[image: there is no content],[image: there is no content] is referred to as the leverage effect and it is the diagonal element of the projection matrix [image: there is no content] see [75]. This expression is useful for calculations. Also, see [74] for a link of [image: there is no content] with AIC.


2.1.5. Model Selection by Other Penalty Functions

The issue regarding the model selection has received more attention in recent years because of the challenging problem of estimating models with large numbers of regressors, which may increase with sample size, for example, earning models in labor economics with large number of regressors, financial portfolio models with large number of stocks, and VAR models with hundreds of macro variables.

A different method of variable selection and estimating such models is penalized least squares (PLS), see [14] for a review on this. In fact in this literature estimation of parameters and variables selections are done by using a criterion function involving loss function with a penalization function. Using [image: there is no content]-penalized, the PLS estimator and variables selection problem are carried out as



minβ[∑i=1n([image: there is no content]-xi′β)2+λ(∑j=1q|[image: there is no content]|p)1/p]








where λ is a tuning or shrinkage parameter and the penalty is the restriction [image: there is no content] (another tuning parameter). For [image: there is no content] the [image: there is no content]-norm becomes [image: there is no content] with [image: there is no content] as the usual indicator function which indicates the number of nonzero [image: there is no content] for [image: there is no content] The AIC and BIC belong to this norm. For [image: there is no content] the [image: there is no content]-norm becomes ∑j=1q|[image: there is no content]|≤c, which is used in the LASSO for simultaneous shrinkage estimation [76] and for variable selection. It can be shown analytically that the LASSO method estimates the zero coefficient as zero with positive probability as [image: there is no content] Next, for [image: there is no content] the [image: there is no content]-norm uses [image: there is no content] and provides ridge type [13] shrinkage estimation but not variable selection. However, if we consider the generalized ridge estimator under [image: there is no content] then the coefficient estimates corresponding to [image: there is no content] will tend to zero, see [77].
Further, when [image: there is no content] we get the bridge estimator [11,12] which provides a way to combine variable selection and parameter estimation together with [image: there is no content] as the LASSO. For adaptive LASSO and other forms of LASSO, see [62,78,79,80]. Also, see the link of LASSO with the least angel regression selection (LARS) by [81].




2.2. Model Averaging

Let us consider m be a parametric or nonparametric model, which can be a conditional mean or conditional variance. Let [image: there is no content]l,[image: there is no content] be the set of estimators of m corresponding to the different sets of regressors considered in the problem of model selection. Consider [image: there is no content], [image: there is no content] to be the weights corresponding to [image: there is no content]l, where 0≤[image: there is no content]≤1 and ∑l=1M[image: there is no content]=1. We can then define a model averaging estimator of m as



[image: there is no content](w)=∑l=1M[image: there is no content][image: there is no content]l.








Below we present the choice of [image: there is no content] in linear regression models. For the linear regression model consider the model in (1) or (2) where the dimension of β can tend to [image: there is no content] as [image: there is no content] We take M models where l-th model contains [image: there is no content] regressors, which is a subvector of [image: there is no content]. The corresponding model could be written as



[image: there is no content]








and the LS estimator of [image: there is no content] is


[image: there is no content]l=(Xl′[image: there is no content])-1Xl′y.








This gives



[image: there is no content]l=[image: there is no content][image: there is no content]l=[image: there is no content]y








where [image: there is no content] The model averaging estimator (MAE) of m is given as


[image: there is no content](w)=∑l=1M[image: there is no content][image: there is no content]l=P(w)y








where P(w)=∑l=1M[image: there is no content][image: there is no content]. An alternative expression is


[image: there is no content](w)=∑l=1M[image: there is no content][image: there is no content]l=∑l=1M[image: there is no content][image: there is no content][image: there is no content]l=X[image: there is no content](w)








where we write β˜l=[image: there is no content]l0 such that [image: there is no content][image: there is no content]l=[[image: there is no content]X-l][image: there is no content]l0=X[image: there is no content]l0=Xβ˜l and [image: there is no content](w)=∑l=1M[image: there is no content]β˜l=∑l=1M[image: there is no content][image: there is no content]l0 is the MAE of [image: there is no content] Thus, for the linear model, the MAE of m corresponds to the MAE of β but this may not hold for the non-linear parameters model.
Now we consider the ways to determine weights.


2.2.1. Bayesian and FIC Weights

Under the Bayesian procedure we assume that there are M potential models and one of the models is the true model. Then, using the prior probabilities that each of the potential models is the true model, and considering the prior probability distributions of the parameters, the posterior probability distribution is obtained as the weighted average of the submodels where weights are the posterior probabilities that the given model is the true model given the data.

The two types of weights considered are then



[image: there is no content]=exp{-12AICl}∑l=1Mexp{-12AICl}and[image: there is no content]=exp{-12BICl}∑l=1Mexp{-12BICl}








where AICl=-2logL+2[image: there is no content] and BICl=-2logL+[image: there is no content]logn. These are known as smoothed AIC (SAIC) and smoothed BIC (SBIC) weights. While the Bayesian model averaging estimator (BMAE) has a neat interpretation, it searches for the true model instead of selecting an estimator of a model with a low loss function. In simulations it has been found that SAIC and SBIC tend to outperform AIC and BIC estimators, see [82].
As for the FIC, consider the model averaging estimator as



m˜=∑l=1M[image: there is no content][image: there is no content]l








where


[image: there is no content]=exp(-12FIClκω′Lω)/∑alllexp(12FIClκω′Lω)








and κ is an algorithmic parameter, bridging from uniform weighting (κ close to 0) to the hard-core FICC (κ is large). For this and further properties and applications of FIC, see [10] and [82].


2.2.2. Mallows Weight Selection Method

In the linear regression model, [image: there is no content](w)=P(w)y is a linear estimator with [image: there is no content] So an optimal choice of w can be found following the Mallows criterion described above. The Mallows criterion for choosing weights w is



C(w)=u^(w)′u^(w)+2[image: there is no content]tr(P(w))








where u^(w)=y-[image: there is no content](w)=y-∑l=1M[image: there is no content][image: there is no content]l=∑l=1M[image: there is no content](y-[image: there is no content]l)=∑l=1M[image: there is no content][image: there is no content]=U^w and


tr(P(w))=∑l=1M[image: there is no content]tr[image: there is no content]=∑l=1M[image: there is no content][image: there is no content]=q′w








in which [image: there is no content][image: there is no content][image: there is no content] is the residual vector from the l-th model and [image: there is no content] is an [image: there is no content] matrix of residuals from all the models. Thus


C(w)=w′U^′U^w+2[image: there is no content]q′w








is quadratic in [image: there is no content] Thus


[image: there is no content]








which is obtained by using the quadratic programming procedure with inequality constraints using Gauss or MATLAB. Then Hansen’s Mallows model averaging (MMA) estimator is


[image: there is no content]([image: there is no content])=∑l=1M[image: there is no content]l[image: there is no content]l.








Following [83], [39] shows that



[image: there is no content]








as [image: there is no content] and [image: there is no content] is asymptotically optimal in Li’s sense, where L([image: there is no content])=(m-[image: there is no content]([image: there is no content]))′(m-[image: there is no content]([image: there is no content])). However, Hansen’s result requires weights belonging to a discrete set and the models to be nested. In [41] improves the result by relaxing discreteness and by not assuming that the models are nested. Their approach is based on deriving an unbiased estimator of the exact MSE of [image: there is no content](w).
Reference [84] also proposes a corresponding forecasting method, using Mallows model averaging (MMA). He proves that the criterion is an asymptotically unbiased estimator of both the in-sample and the out-of-sample one-step-ahead MSE.



2.2.3. Jackknife Model Averaging Method (CV)

Utilizing the leave-one-out cross validation (CV) procedure, which is also known as the Jackknife procedure, Jackknife model averaging (JMA) method of estimating [image: there is no content] by [40] relaxes assumptions in [39]. The submodels are now allowed to be non-nested and also the error terms can be heteroskedastic. The sum-of-squared residuals in the JMA method is



[image: there is no content]








where [image: there is no content] is the vector of the Jackknife estimator computed with the i-th element deleted. To be more specific, [image: there is no content] where [image: there is no content] is equal to [image: there is no content] with its i-th row deleted and [image: there is no content] is y with the i-th element deleted. Thus


u˜(w)=∑l=1M[image: there is no content](y-[image: there is no content])=∑l=1M[image: there is no content]u˜l=U˜w








where [image: there is no content] is an [image: there is no content] matrix, [image: there is no content] is an [image: there is no content] vector in which [image: there is no content] is computed with the i-th observation deleted. Then


[image: there is no content]








and JMA weights are obtained by minimizing [image: there is no content] with respect to [image: there is no content] and the JMA estimator is m˜(w)=∑l=1M[image: there is no content][image: there is no content]. Reference [40] shows the asymptotic optimality, using [83,85], in the sense of minimizing conditional risk which is equivalent to the out-of-sample prediction MSE.
There are many extensions of the JMA method to various other econometric models. Reference [86] does it for the quantile regression model. Reference [82] extends it for the dependent time series models or models with GARCH errors. Also, using MMA method in [39], for models with endogeneity, in [87] develops MMA based two-stage least squares (MATSLS), model averaging limited information maximum likelihood (MALIML), and model averaging Fuller (MAF) estimators.

However, it would be useful to have extensions of the MMA and JMA procedures to the models with GMM or IV estimator. In addition the sampling properties of the average estimators need to be developed for the purpose of statistical inference.





3. Nonparametric (NP) Model Selection and Model Averaging


3.1. NP Model Selection

Let us write the NP model as



[image: there is no content]=m([image: there is no content])+[image: there is no content]








where [image: there is no content] is i.i.d. with density f and the error [image: there is no content] is independent of [image: there is no content].
We can write the local linear model as



[image: there is no content]=m(x)+([image: there is no content]-x)′β(x)+[image: there is no content]=[image: there is no content](x)′δ(x)+[image: there is no content]








or


[image: there is no content]








where [image: there is no content](x)=[1([image: there is no content]-x)′]′ so that [image: there is no content] is an [image: there is no content] matrix and [image: there is no content][image: there is no content] Then the local linear LS estimator (LLLS) of [image: there is no content] is


[image: there is no content]








where [image: there is no content][image: there is no content] is a diagonal matrix in which the kernel K(([image: there is no content]-x)/h)=∏j=1qK((xij-xj)/[image: there is no content]), and [image: there is no content] is the window-width for the j-th variable. From this, pointwise [image: there is no content](x)=[1[image: there is no content][image: there is no content](x)=[0[image: there is no content] Further, profiled [image: there is no content]=([image: there is no content](x1),...,[image: there is no content](xn))′ can be written as


[image: there is no content]=Py








where [image: there is no content] is an [image: there is no content] matrix generated by [image: there is no content]0]P([image: there is no content])=[10](Z′([image: there is no content])K([image: there is no content])Z([image: there is no content]))-1Z′([image: there is no content])K([image: there is no content]), for [image: there is no content] If h is fixed then [image: there is no content] is a linear estimator in y. But it will be a nonlinear estimator in y if [image: there is no content] is either obtained by a plug-in estimator or by cross-validation.
With respect to the goodness of fit measures for the NP models we note that



V(y)=V(m(x))+E[[image: there is no content](x)]








So the global population goodness of fit is


[image: there is no content]








and its sample global estimator is given by


[image: there is no content]=[1-∑[image: there is no content]∑([image: there is no content]-y¯)2]=[1-u^′u^y′M2y]=1-y′M1(h)yy′M2y=y′M1*(h)yy′M2y








where u^=y-[image: there is no content]=y-P(h)y=M(h)y ([image: there is no content]), [image: there is no content][image: there is no content] and [image: there is no content] with ι being an [image: there is no content] vector of unit elements. However, 0≤[image: there is no content]≤1 may not be valid since ∑([image: there is no content]-y¯)2≠∑([image: there is no content]([image: there is no content])-y¯)2+∑[image: there is no content]. Therefore, one can use the following modified [image: there is no content] as


[image: there is no content]=[image: there is no content]I(a≤1)








where a=∑[image: there is no content]/∑([image: there is no content]-y¯)2 and [image: there is no content] is an indicator function.
Another way to define a proper global [image: there is no content] is to first consider a local [image: there is no content](x). This is based on the fact that at the point x,



∑([image: there is no content]-y¯)2K([image: there is no content]-xh)=∑([image: there is no content]([image: there is no content])-y¯)2K([image: there is no content]-xh)+∑[image: there is no content]K([image: there is no content]-xh)








because ∑[image: there is no content]K([image: there is no content]-xh)=0 and ∑([image: there is no content]-x)[image: there is no content]K([image: there is no content]-xh)=0 due to local linear LS estimation. Thus a local [image: there is no content](x) can be defined as


[image: there is no content](x)=∑([image: there is no content]([image: there is no content])-y¯)2K([image: there is no content]-xh)∑([image: there is no content]-y¯)2K([image: there is no content]-xh)=SSR(x)SST(x)








which satisfies 0≤[image: there is no content](x)≤1. A global [image: there is no content] is then


[image: there is no content]=∫xSSR(x)dx∫xSST(x)dx,0≤[image: there is no content]≤1








The goodness of fit [image: there is no content] is considered in [88] where they showed its application for the statistically significant variables selection in NP regression. [image: there is no content] is introduced in [89,90]. For the variables selection it may be more appropriate to consider an adjusted [image: there is no content] as



R1a2=[image: there is no content]I(b≤1)








where [image: there is no content]=(1-n-1trM1(h)y′M1(h)yy′M2y)=1-b. As a practical matter, the most critical choice in model selection in the nonparametric regression estimation above is the choice of the window-width h and the number of variables q. Further, if instead of considering the local linear estimator taken above and often used, we consider a local polynomial of degree d, then [image: there is no content] in [image: there is no content] would be a [image: there is no content] matrix and we would need an additional selection for d. Thus the nonparametric goodness of fit measures described above should be considered as [image: there is no content]=[image: there is no content](h,q,d) and [image: there is no content] and they can be used for choosing, say h, for fixed q and d, as the value which maximizes [image: there is no content]. We note that [image: there is no content] is the well known Nadaraya and Watson local constant estimator and for [image: there is no content], it is the local linear estimator. Further, for given d and h, [image: there is no content]=[image: there is no content](q) and [image: there is no content]=[image: there is no content](q) can be used to choose q.

3.1.1. AIC, BIC, and GCV

In the NP case the model selection (choosing q) using AIC is proposed by [91]. This is based on the LCLS estimator,



[image: there is no content]








where [image: there is no content] in which [image: there is no content] and [image: there is no content] where the ([image: there is no content])-th element of [image: there is no content] is P[image: there is no content](h)=Kij/∑l=1nKil and [image: there is no content]
In the same way, we note that [image: there is no content] and it can be used to select, for example, h given q and d ([92]) or q given h and d. In the latter case [image: there is no content]. The result for the [image: there is no content] procedure in the NP model is not yet known. However, if one considers NP sieve regression of the type m(x)=∑j=1qzj(x)[image: there is no content] where [image: there is no content] are nonlinear function of x and [image: there is no content] then BIC is similar to the BIC given in [96]. This includes, for example, special cases of a series expansion in which [image: there is no content] and a spline regression in which m(x)=∑j=1pxj[image: there is no content]+∑j=1rβp+j(x-[image: there is no content])I(x≥[image: there is no content]) with [image: there is no content][image: there is no content] as j-th knot, and I(x≥[image: there is no content])=1 if x≥[image: there is no content] and 0 otherwise.

In [9] an estimate of the minimizer of [image: there is no content] called the GCV, is proposed which does not require the knowledge of [image: there is no content]. This can be written as the minimization of



V(q)=n-1∑i=1n([image: there is no content]-[image: there is no content]([image: there is no content]))2(1-n-1trP)2








with respect to [image: there is no content] It has been shown by [9] that E[V(q)|x]-[image: there is no content]≃E[L(q)|x] for large n, and the minimizer [image: there is no content] of [image: there is no content] is asymptotically optimal in the sense that EL([image: there is no content])/minqEL(q)=1 as[image: there is no content] That is, the MSE of [image: there is no content] tends to be minimum as [image: there is no content] We note that [image: there is no content] in parametric and nonparametric cases are given in Section 2.1.3 and Section 3.1.2, respectively.


3.1.2. Mallows Model Selection

Let us write the regression model



[image: there is no content]=m([image: there is no content])+[image: there is no content]








where E[[image: there is no content]|[image: there is no content]]=0 and E(ui2|[image: there is no content])=[image: there is no content]. Then, for [image: there is no content][image: there is no content] and [image: there is no content]


[image: there is no content]








Let us consider the LLLS estimator of [image: there is no content] which is linear in [image: there is no content] as



[image: there is no content]=[image: there is no content](q)=P(q)y








where [image: there is no content] as defined in section 3.1. When [image: there is no content] for large [image: there is no content][image: there is no content] can become asymptotically linear.
Our objective is to choose q such that the average mean squared error (risk) [image: there is no content] is minimum where



L(q)=1n(m-[image: there is no content](q))′(m-[image: there is no content](q)).








We note that for u^=y-[image: there is no content](q)



[image: there is no content]=1n(m-[image: there is no content](q)y)′(m-[image: there is no content](q)y)=1n[u^′u^+u′u-2u^′u]








and


R(q)=E(L(q)|x)=1nE[u^′u^+2[image: there is no content]trP(q)-[image: there is no content]]








Further Mallows criterion for selecting q (number of variables in [image: there is no content]) is by minimizing



C(q)=1n(y-[image: there is no content](q))′(y-[image: there is no content](q))+2[image: there is no content]ntrP(q)








where the second term on the right-hand side is the penalty. Essentially, the minimization of [image: there is no content] is the same as the minimization of the unbiased estimator of [image: there is no content] since [image: there is no content] does not depend on q, see Section 2.1.3 and [6,9].


3.1.3. Cross Validation (CV)

The CV method is one of the most widely used window-width selectors for NP kernel smoothing. We note that the cross-validation estimator of the integrated squared error weighted by the density [image: there is no content],



ISE(q)=∫x([image: there is no content](x)-m(x))2f(x)dx








is given by


CV(q)=1n∑i=1n([image: there is no content]-[image: there is no content]-i([image: there is no content]))2








where [image: there is no content]-i([image: there is no content]) is [image: there is no content]([image: there is no content]) after deleting the i-th observations [image: there is no content],[image: there is no content] from the sample. In fact,


CV(q)=1n∑i=1n(m([image: there is no content])-[image: there is no content]-i([image: there is no content]))2+2n∑i=1n(m([image: there is no content])-[image: there is no content]-i([image: there is no content]))[image: there is no content]+1n∑i=1nui2








where the first term on the right-hand side is a good approximation to [image: there is no content], because the second term is generally negligibly small, and the third term converges to a constant [image: there is no content]=E[[image: there is no content](x)] free from h. Therefore CV(q)=ISE(q)+[image: there is no content] asymptotically.
Also, in the case where [image: there is no content] is a sieve regression, [96] shows that CV is an unbiased estimator of the MSE of prediction error (MSEPE) of m, MSEPE=E[y[image: there is no content]-[image: there is no content](x[image: there is no content])]2, see section 2.1.4. In addition, the minimization of MSEPE is equivalent to the minimization of MSE and integrated MSE (IMSE) of estimated m for conditional and unconditional x, respectively.

If, instead of the local linear of m([image: there is no content]) we consider the local polynomial of order d, then [image: there is no content]([image: there is no content]) is the LPLS estimator [2], and [image: there is no content] continues to hold. For [image: there is no content] we have a local constant LS (LCLS) estimator developed by [98,99]. For [image: there is no content] we have the LLLS estimator as considered above. In practice, the values of h and d can be determined by minimizing [image: there is no content] with respect to h and d for given q, which is developed by [100]. For a vector [image: there is no content], if the choice of [image: there is no content]=[image: there is no content]j for any j tends to be infinity (very large) then the corresponding variable is an irrelevant variable. This can be observed from a simple example. Suppose the [image: there is no content](x) for two variables [image: there is no content][image: there is no content] considering the LCLS estimator is [image: there is no content](x1,x2)=[image: there is no content](x)=∑[image: there is no content]K(xi1-x1h1)K(xi2-x2h2)/∑K(xi1-x1h1)K(xi2-x2h2). Thus if [image: there is no content] then [image: there is no content] is constant and [image: there is no content](x)=[image: there is no content](x1,x2)=∑[image: there is no content]K(xi1-x1h1)/∑K(xi1-x1h1). Thus a large estimated value of the window-width leads to the exclusion of variables, and hence variables selection.

In a seminal paper [83] shows that Mallows, GCV and CV procedures are asymptotically equivalent and all of them lead to optimal smoothing in the sense that



∫([image: there is no content](x,[image: there is no content])-m(x))2dF(x)infq∫([image: there is no content](x,q)-m(x))2dF(x)→p1








where [image: there is no content](x)=[image: there is no content](x,[image: there is no content]), given h and d, is an estimator of [image: there is no content] with [image: there is no content] obtained using one of the above procedures.
Also, [101] demonstrates that for the local constant estimator ([image: there is no content] and given q), [image: there is no content] smoothing selectors of h are asymptotically equivalent to GCV selectors. In an important paper, in [92] shows the asymptotic normality of [image: there is no content](x)=[image: there is no content](x,[image: there is no content]), where [image: there is no content] is obtained by the CV method and [image: there is no content] is a vector of mixed continuous and discrete variables. Their extensive simulation results reveal (no theoretical proof) that AIC window-width selection criterion is asymptotically equivalent to the CV method, but for small samples AIC tends to perform better than the CV method. Further, with repect to the comparison of NP and parametric models, their results explain the observations of [102] which finds that NP estimators with smoothing parameters h chosen by CV can yield better prediction relative to commonly used parametric methods for the datasets of several countries. Reference [85] shows that CV is optimal under heteroskedasticity. For GMM model selection which involves selecting moments conditions, see [93]. Also, see [94] for using minimization of empirical likelihood/KLIC and comments by [95] claiming a fundamental flaw in the application of KLIC.




3.2. NP Model Averaging

Let us consider [image: there is no content]l,[image: there is no content] to be the set of estimators of m corresponding to the different sets of regressors considered in the model selection. Then



[image: there is no content](w)=∑l=1M[image: there is no content][image: there is no content]l=P(w)y








where [image: there is no content]l=[image: there is no content]y,P(w)=∑l=1M[image: there is no content][image: there is no content] and [image: there is no content] is the P matrix, as defined before, based here on the variables in the l-th model. Then the choice of w can be determined by applying Mallows criterion (see Section 2.2.2) as


C(w)=w′U^′U^w+2[image: there is no content]q*′w








where [image: there is no content], and [image: there is no content] is a matrix of NP residuals of all the models. Thus we get [image: there is no content]([image: there is no content])=∑l=1M[image: there is no content]l[image: there is no content]l.
Similarly, as in section 2.2.3, if we calculate [image: there is no content] by deleting one element of each variable, then w can be determined by minimizing



[image: there is no content]








in which the NP residuals matrix [image: there is no content] with [image: there is no content] and [image: there is no content] is computed with the i-th observation deleted.
For the fixed window-width the optimality result of [image: there is no content] can be shown to follow from [83]. However, for [image: there is no content] the validity of Li’s result needs further investigation.




4. Conclusions

Nonparametric and parametric models are studied in econometrics and practice. In all applications, the important issue is to reduce model uncertainty by using model selection or model averaging. This paper selectively reviews frequentist results on model selection and model averaging in the regression context.

It is clear that most of the results presented are under the i.i.d. assumption. It is useful to relax this assumption to allow dependence or heterogeneity in the data, see [103] for model selection in dependent time series models using various CV procedures. A systematic study of the properties of estimators based on FMA is warranted. Further, results need to be developed for more complicated nonparametric models, e.g., panel data models and models where variables are endogenous, although for the parametric case see [104,105,106,107,108]. Also, the properties of NP model averaging estimators, when the window-width in kernel regression is estimated are to be developed; although readers can see [96] for NP results of the estimators based on the sieve method.
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