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Abstract:

 This paper investigates, in a particular parametric framework, the geometric meaning of joint unpredictability for a bivariate discrete process. In particular, the paper provides a characterization of the joint unpredictability in terms of distance between information sets in an Hilbert space.
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1. Introduction

Let [image: there is no content] be a probability space and [image: there is no content]=[y1,t,y2,t]′;t=0,1,... a bivariate stochastic process defined on [image: there is no content]. We consider the differenced process Δ[image: there is no content]=[Δy1,t,Δy2,t]′;t=1,..., where Δ is the first-difference operator. Following Caporale and Pittis [1] and Hassapis et al. [2], we say that the process Δ[image: there is no content];t=1,... is jointly unpredictable if



E(Δyt+1|σ([image: there is no content],...,y0))=0∀t



(1)




where [image: there is no content] is the σ-field generated by past vectors [image: there is no content][image: there is no content].
The goal of this paper is to show that the notion of joint unpredictability, in a particular parametric framework, can be characterized by a geometric condition. This characterization is given in terms of distance between information sets in an Hilbert space. In particular, we will show that the process Δ[image: there is no content];t=1,... is jointly unpredictable if and only if the information contained in its past is `much distant’ from the information contained in its future. Even if our result is not as general as might seem desirable, we think that the intuition gained from this characterization makes the notion of joint unpredictability more clear.

The rest of the paper is organized as follows. Section 2 presents the utilized mathematical framework. Section 3 presents the geometric characterization. Section 4 concludes.



2. Preliminaries

Definitions, notation, and preliminary results from Hilbert space theory will be presented prior to establish the main result. An excellent overviews of the applications of Hilbert space methods to time series analysis can be found in Brockwell and Davis [3].

We use the following notations and symbols. Let [image: there is no content] be a probability space. We consider the Hilbert space [image: there is no content][image: there is no content] of all real square integrable random variables on [image: there is no content] The inner product in [image: there is no content][image: there is no content] is defined by [image: there is no content] for any z,w∈[image: there is no content][image: there is no content]. The space [image: there is no content][image: there is no content] is a normed space and the norm is given by [image: there is no content] The distance between z,w∈[image: there is no content][image: there is no content] is [image: there is no content],[image: there is no content]. A sequence {[image: there is no content]}⊂[image: there is no content][image: there is no content] is said to converge to a limit point z∈[image: there is no content][image: there is no content] if d([image: there is no content],z)→0 as [image: there is no content]. A point z∈[image: there is no content][image: there is no content] is a limit point of a set M (subset of [image: there is no content][image: there is no content]) if it is a limit point of a sequence from M. In particular, M is said to be closed if it contains all its limit points. If S is a arbitrary subset of [image: there is no content][image: there is no content], then the set of all [image: there is no content] ([image: there is no content]; [image: there is no content] arbitrary real numbers; [image: there is no content] arbitrary elements of S) is called a linear manifold spanned by S and is symbolized by [image: there is no content](S). If we add to [image: there is no content](S) all its limit points we obtain a closed set that we call the closed linear manifold or subspace spanned by S, symbolized by [image: there is no content]¯(S). Two elements [image: there is no content] ∈ [image: there is no content] are called orthogonal, and we write [image: there is no content], if [image: there is no content] If S is any subset of [image: there is no content](Ω,F,P), then we write [image: there is no content] if [image: there is no content] for all [image: there is no content] similarly, the notation [image: there is no content], for two subsets S and T of [image: there is no content](Ω,F,P), indicates that all elements of S are orthogonal to all elements of T. For a given z∈[image: there is no content][image: there is no content] and a closed subspace M of [image: there is no content][image: there is no content], we define the orthogonal projection of z on M, denoted by [image: there is no content], as the unique element of Msuch that z−P(z|M)≤z−w for any [image: there is no content] We remember that if [image: there is no content], then [image: there is no content]

If M and N are two arbitrary subsets of [image: there is no content][image: there is no content], then the quantity



[image: there is no content]








is called distance between M and N.
We close this section introducing some further definitions, concerning discrete stochastic processes in [image: there is no content][image: there is no content].

Let [image: there is no content] be a univariate stochastic process. We say that [image: there is no content] is integrated of order one (denoted [image: there is no content]) if the process [image: there is no content] is stationary whereas [image: there is no content] is not stationary. We say that the bivariate stochastic process [image: there is no content] is integrated of order one if [image: there is no content] and [image: there is no content].

A stochastic process [image: there is no content] Granger causes another stochastic process [image: there is no content], with respect to a given information set [image: there is no content] that contains at least [image: there is no content], [image: there is no content], [image: there is no content], if [image: there is no content] can be better predicted by using past values of y than by not doing so, all other information in [image: there is no content] (including the past of x) being used in either case. More formally, we say that [image: there is no content] is Granger causal for [image: there is no content] with respect to Hxy(t)=[image: there is no content]¯[image: there is no content],yt,xt−1,yt−1,... if



[image: there is no content]








where Hx(t)=[image: there is no content]¯[image: there is no content],xt−1,....
Two stochastic processes, [image: there is no content], and [image: there is no content], both of which are individually [image: there is no content] are said to be cointegrated if there exists a non-zero constant β such that zt=[image: there is no content]−βyt is a stationary ([image: there is no content]) process.

It is important to note that cointegration between two variables implies the existence of causality (in the Granger sense) between them in at least one direction (see Granger [4]).



3. A Geometric Characterization

In this section we assume that [image: there is no content]=y1,t,y2,t′;t=0,1,... be a bivariate stochastic process defined on [image: there is no content] integrated of order one, with [image: there is no content] that has a VAR(1) representation



[image: there is no content]



(2)




where


[image: there is no content]








is a fixed [image: there is no content] coefficient matrix and [image: there is no content] is i.i.d. with [image: there is no content] and [image: there is no content] for all t and [image: there is no content] for [image: there is no content].
In this framework we have that [image: there is no content] does not Granger cause [image: there is no content] if and only if [image: there is no content] Similarly, [image: there is no content] does not Granger cause [image: there is no content] if and only if [image: there is no content].

We observe that the VAR residuals are usually correlated and hence the covariance matrix Σ is seldom a diagonal matrix. However, because the main aim of this study is pedagogical, we assume that Σ is diagonal for analytical convenience.

We consider the following information sets: [image: there is no content], [image: there is no content], H[image: there is no content](t)=[image: there is no content]¯Δy1,t,Δy1,t−1,... and H[image: there is no content](t)=[image: there is no content]¯Δy2,t,Δy2,t−1,....

Theorem 3.1. Let [image: there is no content] be a VAR(1) process defined as in (2). The differenced process Δ[image: there is no content];t=1,... is jointly unpredictable if and only if



dI[image: there is no content](t+),H[image: there is no content](t)=σ[image: there is no content]anddI[image: there is no content](t+),H[image: there is no content](t)=σ[image: there is no content]








Theorem 1 provides a geometric characterization of the notion of joint unpredictability of a bivariate process in term of distance between information sets. It is important to note that



dI[image: there is no content](t+),H[image: there is no content](t)≤σ[image: there is no content]anddI[image: there is no content](t+),H[image: there is no content](t)≤σ[image: there is no content]








Thus we have that the process Δ[image: there is no content]=[Δy1,t,Δy2,t]′;t=1,... is jointly unpredictable if and only if the distances [image: there is no content] and [image: there is no content] achieve their maximum value, respectively.
It is intuitive to think that if these distances achieve their maximum value, then [image: there is no content] does not contain any valuable information about the future of the differenced series, Δ[image: there is no content]=[Δy1,t,Δy2,t]′ and hence these are jointly unpredictable with respect to the information set [image: there is no content], that is E(Δyt+1|σ([image: there is no content],...,y0))=0.

We recall that Theorem 1 holds only in a bivariate setting.


3.1. Lemmas

In order to prove Theorem 1, we need the following lemmas.

Lemma 3.2. Let V be a closed subspace of [image: there is no content][image: there is no content]and [image: there is no content]a subset of [image: there is no content][image: there is no content]such that [image: there is no content], [image: there is no content]. [image: there is no content]if and only if [image: there is no content]

Proof. Focker and Triacca ([5], p. 767).

Lemma 1 establishes a relationship between the orthogonality of sets/spaces in the Hilbert space [image: there is no content](Ω,F,P) and their distance. We note that the orthogonality between G and V holds if and only if the distance dG,V achieves the maximum value. In fact, dG,V can not be greater than η since [image: there is no content]V.

Lemma 3.3. The processes [image: there is no content]and [image: there is no content]are not cointegrated if and only if [image: there is no content]

Proof. By (2) we have



[image: there is no content]








These equations must be balanced, that is the order of integration of [image: there is no content] and [image: there is no content] must be zero.

(⇒) If [image: there is no content] since [image: there is no content] and [image: there is no content], we can have three cases.

Case (1) A=[aij],with aij≠0i,j=1,2,i≠j and aii≠1i=1,2.

Case (2)



[image: there is no content]








with [image: there is no content] and [image: there is no content].
Case (3)



[image: there is no content]








with [image: there is no content] and [image: there is no content].
In all three cases, there exists at least a not trivial linear combination of the processes [image: there is no content] and [image: there is no content] that is stationary. Thus we can conclude that [image: there is no content] and [image: there is no content] are cointegrated.

(⇐) If [image: there is no content] then [image: there is no content] and so [image: there is no content] does not Granger cause [image: there is no content] and [image: there is no content] does not Granger cause [image: there is no content]. It follows that [image: there is no content] and [image: there is no content] are not cointegrated.

Lemma 3.4. If [image: there is no content]and [image: there is no content]are cointegrated, then [image: there is no content]

Proof. We subtract [image: there is no content] from both sides of Equation (2) by obtaining



[image: there is no content]








If [image: there is no content] and [image: there is no content] are cointegrated, we have



Δy1,tΔy2,t=α1α2β1β2y1,t−1y2,t−1+u1,tu2,t=β1α1α21β2/β1y1,t−1y2,t−1+u1,tu2,t=ϑ1ϑ21−βy1,t−1y2,t−1+u1,tu2,t=ϑ1ϑ2(y1,t−1−βy2,t−1)+u1,tu2,t








where [image: there is no content] is the cointegration coefficient and [image: there is no content] and [image: there is no content] are the speed of adjustment coefficients.
We observe that



[image: there is no content]



(3)




By rearranging Equation (3) we obtain an AR(1) model for [image: there is no content]



[image: there is no content]








where [image: there is no content] Since [image: there is no content] and [image: there is no content] are cointegrated, [image: there is no content] is a stationary process and so


[image: there is no content]








Lemma 3.5. The process Δ[image: there is no content]=Δy1,t,Δy2,t′;t=0,1,... is jointly unpredictable if and only if



[image: there is no content]








Proof. (⇒) process Δ[image: there is no content]=Δy1,t,Δy2,t′;t=0,1,... is jointly unpredictable, then



E([image: there is no content]|σ(yt−1,...,y1))=yt−1








On the other hand, since


[image: there is no content]








with [image: there is no content] and [image: there is no content] for all t and [image: there is no content] for [image: there is no content] we have that


E([image: there is no content]|σ(yt−1,...,y1))=Ayt−1








Hence we have


[image: there is no content]








and so


[image: there is no content]








(⇐) If



[image: there is no content]








then [image: there is no content]=yt−1+ut with [image: there is no content] and [image: there is no content] for all t and [image: there is no content] for [image: there is no content], and hence we have


E([image: there is no content]|σ(yt−1,...,y0))=yt−1








Thus we can conclude that the process Δ[image: there is no content]=Δy1,t,Δy2,t′;t=1,... is jointly unpredictable.
Before to conclude this subsection we observe that Equation (2) can be written in lag operator notation. The lag operator L is defined such that L[image: there is no content]=yt−1. We have that



(I−AL)[image: there is no content]=ut








or


[image: there is no content]










3.2. Proof of Theorem 1

Sufficiency. If



dI[image: there is no content](t+),H[image: there is no content](t)=σ[image: there is no content]anddI[image: there is no content](t+),H[image: there is no content](t)=σ[image: there is no content]








then, by Lemma 1, we have


[image: there is no content]








and


[image: there is no content]








Now we assume that [image: there is no content] and [image: there is no content] are not both equal to zero. We can have three cases.
Case (1) [image: there is no content]≠0 and [image: there is no content]=0. This implies that



r1,t=(a11−1)y1,t+[image: there is no content]y2,t+u1,t








and


[image: there is no content]








Thus


<Δy1,t+1,Δy2,t>=E(Δy1,t+1Δy2,t)=(a11−1)E(y1,tu2,t)+[image: there is no content]E(y2,tu2,t)+E(u1,t+1u2,t)=(a11−1)E(y1,tu2,t)+[image: there is no content]E(u2,t∑s=1tu2,s)=(a11−1)E(y1,tu2,t)+[image: there is no content]σ22








Now, we note that


[image: there is no content]








Thus


<Δy1,t+1,Δy2,t>=[image: there is no content]σ22≠0








but this is absurd since


[image: there is no content]








Case (2) [image: there is no content]=0 and [image: there is no content]≠0. In this case we have



<Δy2,t+1,Δy1,t>=[image: there is no content]σ12≠0








Again this is absurd since


[image: there is no content]








Case (3) [image: there is no content]≠0 and [image: there is no content]≠0. We note that



Δy1,tΔy2,t=(1−a22L)γ(L)[image: there is no content]Lγ(L)[image: there is no content]Lγ(L)(1−a11L)γ(L)u1,tu2,t








where


γ(L)=1−L(1−a11L)(1−a22L)−[image: there is no content][image: there is no content][image: there is no content]








By Lemma 2, we have that [image: there is no content] and [image: there is no content] are cointegrated and hence the matrix


A−I=a11−1[image: there is no content][image: there is no content]a22−1








has rank 1. It follows that


[image: there is no content][image: there is no content]=(1−a11)(1−a22)








Thus


γ(L)=1−L(1−a11L)(1−a22L)−(1−a11)(1−a22)[image: there is no content]=1−L(1−L)(1+L)−(1−L)(a11+a22)L=11+L−(a11+a22)L=11−(a11+a22−1)L=11−δL








where [image: there is no content]
Since [image: there is no content] and [image: there is no content] are cointegrated, by Lemma 3 we have that [image: there is no content] and hence



γ(L)=1+δL+δ2[image: there is no content]+...








Now, we can have two cases.
Case (a) [image: there is no content] In this case we have



Δy1,t=u1,t−a22u1,t−1+[image: there is no content]u2,t−1








and


Δy2,t=[image: there is no content]u1,t−1+u2,t−a11u2,t−1








Thus


<Δy1,t+1,Δy2,t>=[image: there is no content]σ22≠0








and


<Δy2,t+1,Δy1,t>=[image: there is no content]σ12≠0








but this is absurd since


[image: there is no content]








and


[image: there is no content]








Case (b) [image: there is no content] In this case we have


Δy1,t=u1,t+(a11−1)u1,t−1+δ(a11−1)u1,t−2+...[image: there is no content]u2,t−1+[image: there is no content]δu2,t−2+...=u1,t+(a11−1)∑i=0∞δiu1,t−1−i+[image: there is no content]∑i=0∞δiu2,t−1−i








and


Δy2,t=u2,t+(a22−1)u2,t−1+δ(a22−1)u2,t−2+...[image: there is no content]u1,t−1+[image: there is no content]δu1,t−2+...=u2,t+(a22−1)∑i=0∞δiu2,t−1−i+[image: there is no content]∑i=0∞δiu1,t−1−i








Thus


<Δy1,t+1,Δy2,t>=(a11−1)σ12δ1−δ2[image: there is no content]+1+(a22−1)δ1−δ2σ22[image: there is no content]








and


<Δy2,t+1,Δy1,t>=(a22−1)σ22δ1−δ2[image: there is no content]+1+(a11−1)δ1−δ2σ12[image: there is no content]








Now, we consider the system


[image: there is no content][image: there is no content][image: there is no content]=00








The determinant of the matrix


[image: there is no content]








is


[image: there is no content]








Since [image: there is no content] and [image: there is no content] we have that


[image: there is no content]








Thus [image: there is no content]≠0,[image: there is no content] implies that [image: there is no content] or [image: there is no content] but this is absurd since


[image: there is no content]








and


[image: there is no content]








In all Cases (1–3) we obtain an absurd conclusion, thus we can state that



[image: there is no content]=0,[image: there is no content]=0








Now, we prove that [image: there is no content]. We have that


Δyi,t=(aii−1)yi,t+uiti=1,2








Since the error term [image: there is no content] is stationary these equations must be balanced, that is the order of integration of [image: there is no content] and [image: there is no content] must be the same. By the hypothesis that [image: there is no content] it follows that [image: there is no content] (i.e., stationary) and [image: there is no content] is I(1), hence [image: there is no content][image: there is no content] implies that [image: there is no content] Thus [image: there is no content] and hence, by Lemma 4, it follows that the process Δ[image: there is no content];t=1,... is jointly unpredictable.
Necessity. If the process Δ[image: there is no content];t=1,... is is jointly unpredictable, then by Lemma 4 it follows that [image: there is no content] and hence [image: there is no content] and [image: there is no content][image: there is no content]. This implies that [image: there is no content] and [image: there is no content][image: there is no content]. Therefore we have that [image: there is no content] and [image: there is no content][image: there is no content]. Thus, by Lemma 1, it follows that



dI[image: there is no content](t+),H[image: there is no content](t)=σ[image: there is no content]anddI[image: there is no content](t+),H[image: there is no content](t)=σ[image: there is no content]








Theorem 1 is proved.




4. Conclusions

In this paper we have considered the following geometric condition concerning the distance between information sets



dI[image: there is no content](t+),H[image: there is no content](t)=σ[image: there is no content]anddI[image: there is no content](t+),H[image: there is no content](t)=σ[image: there is no content]



(4)




It says that the distances [image: there is no content] and [image: there is no content] achieve their maximum value, respectively. Theorem 1 tells us that, under the hypothesis that the process [image: there is no content] follows a bivariate VAR(1) model, the condition Equation (4) represents a geometric characterization of the notion of joint unpredictability. If this condition holds, the processes [image: there is no content] and [image: there is no content] are jointly unpredictable since the past of the bivariate process [image: there is no content] does not contain any valuable information about the future of the differenced series. The information in the past is too far from the future information.
Even if the bivariate VAR(1) assumption is far from general, we think that this geometric characterization is useful in order to throw light on the concept of joint unpredictability of a stochastic process.
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