Polynomial Regressions and Nonsense Inference
Abstract
:1. Introduction
2. Asymptotics of Polynomial Regressions
T | Specification (2) | Specification (3) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
k | m | With k = 4 | ||||||||||
1 | 2 | 3 | ||||||||||
100 | 1 | 0.77 | 0.71 | 0.71 | ||||||||
2 | 0.71 | 0.66 | 0.65 | 0.46 | 0.35 | 0.33 | 0.31 | |||||
3 | 0.72 | 0.66 | 0.66 | |||||||||
250 | 1 | 0.85 | 0.82 | 0.82 | ||||||||
2 | 0.81 | 0.78 | 0.78 | 0.64 | 0.56 | 0.52 | 0.50 | |||||
3 | 0.82 | 0.78 | 0.78 | |||||||||
500 | 1 | 0.89 | 0.87 | 0.87 | ||||||||
2 | 0.86 | 0.84 | 0.84 | 0.73 | 0.67 | 0.64 | 0.63 | |||||
3 | 0.88 | 0.84 | 0.84 |
3. Concluding Remarks
Acknowledgments
Conflicts of Interest
Appendix
A. Proof of Theorem 1
B. Proof of Theorem 2.
References
- C. Granger, and P. Newbold. “Spurious regressions in econometrics.” J. Econom. 2 (1974): 111–120. [Google Scholar] [CrossRef]
- P. Phillips. “Understanding spurious regressions in econometrics.” J. Econom. 33 (1986): 311–340. [Google Scholar] [CrossRef]
- Y.-S. Lee, K. Tae-Hwan, and P. Newbold. “Spurious nonlinear regressions in econometrics.” Econ. Lett. 87 (2005): 301–306. [Google Scholar] [CrossRef]
- J.D. Hamilton. “A parametric approach to flexible nonlinear inference.” Econometrica 69 (2001): 537–573. [Google Scholar] [CrossRef]
- R.M. De Jong. “Logarithmic spurious regressions.” Econ. Lett. 81 (2003): 13–21. [Google Scholar] [CrossRef]
- E. O’Brien. “A note on spurious nonlinear regression.” Econ. Lett. 3 (2008): 366–368. [Google Scholar] [CrossRef]
- D. Peña, and J. Rodriguez. “Detecting nonlinearity in time series by model selection criteria.” Int. J. Forecast. 21 (2005): 731–748. [Google Scholar] [CrossRef]
- M. Wagner. “The Phillips unit root tests for polynomials of integrated processes.” Econ. Lett. 114 (2012): 299–303. [Google Scholar] [CrossRef]
- J. Gergonne. “The application of the method of least squares to the interpolation of sequences.” Hist. Math. 1 (1815): 439–447, (Translated by Ralph St. John and S. M. Stigler from the 1815 French edition). [Google Scholar] [CrossRef]
- C. Chatterjee, and R. Sarkar. “Multi-step polynomial regression method to model and forecast malaria incidence.” PLoS One 3 (2009): e4726. [Google Scholar] [CrossRef] [PubMed]
- S. Verma. “Evaluation of polynomial regression models for the Student t and Fisher F critical values, the best interpolation equations from double and triple natural logarithm transformation of degrees of freedom up to 1000, and their applications to quality control in science and engineering.” Revista Mex. Ciencias Geol. 26 (2009): 79–92. [Google Scholar]
- P. Barker, F. Street-Perrott, M. Leng, P. Greenwood, D. Swain, R. Perrott, R. Telford, and K. Ficken. “A 14,000-year oxygen isotope record from diatom silica in two alpine lakes on Mt. Kenya.” Science 292 (2001): 2307–2310, p. 2,310. [Google Scholar] [CrossRef] [PubMed]
- D. Green, T. Leong, H. Kern, A. Gerber, and C. Larimer. “Testing the accuracy of regression discontinuity analysis using experimental benchmarks.” Polit. Anal. 17 (2009): 400–417. [Google Scholar] [CrossRef]
- L. Shanock, B. Baran, W. Gentry, S. Pattison, and E. Heggestad. “Polynomial regression with response surface analysis: A powerful approach for examining moderation and overcoming limitations of difference scores.” J. Bus. Psychol. 25 (2010): 543–554. [Google Scholar] [CrossRef]
- R. Ferrer, C. González, and G. Soto. “Linear and nonlinear interest rate exposure in Spain.” Manag. Financ. 36 (2010): 431–451. [Google Scholar] [CrossRef]
- C. Ioannidis, D. Peel, and M. Peel. “The time series properties of financial ratios: Lev revisited.” J. Bus. Financ. Account. 30 (2003): 699–714. [Google Scholar] [CrossRef]
- M. Leonardi, and G. Pica. “Who pays for it? The heterogeneous wage effects of employment protection legislation.” Econ. J., 2013. [Google Scholar] [CrossRef]
- J. Straka. “Is poor worker morale costly to firms? ” Ind. Labor Relat. Rev., 1993, 381–394. [Google Scholar] [CrossRef]
- C. Ackello-Ogutu, Q. Paris, and W. Williams. “Testing a von Liebig crop response function against polynomial specifications.” Am. J. Agric. Econ. 67 (1985): 873–880. [Google Scholar] [CrossRef]
- Z. Darvas. “Estimation Bias and inference in overlapping autoregressions: Implications for the target-zone literature.” Oxf. Bull. Econ. Stat. 70 (2008): 1–22. [Google Scholar] [CrossRef]
- M. Auffhammer, and R. Kellogg. “Clearing the air? The effects of gasoline content regulation on air quality.” Am. Econ. Rev. 101 (2011): 2687–2722. [Google Scholar] [CrossRef]
- D. Kellenberg. “Trading wastes.” J. Environ. Econ. Manag. 61 (2012): 68–87. [Google Scholar] [CrossRef]
- G. Grossman, and A. Krueger. “Environmental Impacts of a North American Free Trade Agreement.” In The Mexico-U.S. Free Trade Agreement. Edited by P.M. Garbe. Cambridge, MA, USA: MIT Press, 1993, pp. 13–56. [Google Scholar]
- S. Labson, and P. Crompton. “Common trends in economic activity and metals demand: Cointegration and the intensity of use debate.” J. Environ. Econ. Manag. 25 (1993): 147–161. [Google Scholar] [CrossRef]
- D. Giles. “Spurious regressions with time-series data: Further asymptotic results.” Commun. Stat. Theory Methods 36 (2007): 967–979. [Google Scholar] [CrossRef]
- E. Hannan, and M. Deistler. The Statistical Theory of Linear Systems. Cambridge, MA, USA: Cambridge University Press, 2012. [Google Scholar]
- G. Golub, and C. van Loan. Matrix Computations. Baltimore, MD, USA: The Johns Hopkins University Press, 2013. [Google Scholar]
- W. Trench. “An algorithm for the inversion of finite Hankel matrices.” J. Soc. Ind. Appl. Math. 13 (1965): 1102–1107. [Google Scholar] [CrossRef]
- K. Kumar, and M. Alsaleh. “Application of Hankel matrices in polynomial regression.” Appl. Math. Comput. 77 (1996): 205–211. [Google Scholar] [CrossRef]
- J.D. Hamilton. Time Series Analysis. Cambridge, MA, USA: Cambridge University Press, 1994. [Google Scholar]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Ventosa-Santaulària, D.; Rodríguez-Caballero, C.V. Polynomial Regressions and Nonsense Inference. Econometrics 2013, 1, 236-248. https://doi.org/10.3390/econometrics1030236
Ventosa-Santaulària D, Rodríguez-Caballero CV. Polynomial Regressions and Nonsense Inference. Econometrics. 2013; 1(3):236-248. https://doi.org/10.3390/econometrics1030236
Chicago/Turabian StyleVentosa-Santaulària, Daniel, and Carlos Vladimir Rodríguez-Caballero. 2013. "Polynomial Regressions and Nonsense Inference" Econometrics 1, no. 3: 236-248. https://doi.org/10.3390/econometrics1030236
APA StyleVentosa-Santaulària, D., & Rodríguez-Caballero, C. V. (2013). Polynomial Regressions and Nonsense Inference. Econometrics, 1(3), 236-248. https://doi.org/10.3390/econometrics1030236