

  Polynomial Regressions and Nonsense Inference




Polynomial Regressions and Nonsense Inference







Econometrics 2013, 1(3), 236-248; doi:10.3390/econometrics1030236




Article



Polynomial Regressions and Nonsense Inference



Daniel Ventosa-Santaulària 1,* and Carlos Vladimir Rodríguez-Caballero 2





1



Centro de Investigación y Docencia Económicas (CIDE), División de Economía, Carretera México-Toluca 3655 Col. Lomas de Santa Fe, Delegación Álvaro Obregón, México 01210, Mexico






2



Center for Research in Econometric Analysis of Time Series (CREATES) and Department of Economics and Business, Aarhus University, Fuglesangs Allé 4, Building 2622 (203), Aarhus V 8210, Denmark









*



Author to whom correspondence should be addressed; Tel.: +52-5727-9800 (ext. 2723).







Received: 6 August 2013; in revised form: 28 October 2013 / Accepted: 7 November 2013 / Published: 18 November 2013



Abstract:

 Polynomial specifications are widely used, not only in applied economics, but also in epidemiology, physics, political analysis and psychology, just to mention a few examples. In many cases, the data employed to estimate such specifications are time series that may exhibit stochastic nonstationary behavior. We extend Phillips’ results (Phillips, P. Understanding spurious regressions in econometrics. J. Econom. 1986, 33, 311–340.) by proving that an inference drawn from polynomial specifications, under stochastic nonstationarity, is misleading unless the variables cointegrate. We use a generalized polynomial specification as a vehicle to study its asymptotic and finite-sample properties. Our results, therefore, lead to a call to be cautious whenever practitioners estimate polynomial regressions.
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1. Introduction

There is some research on the effects of the nonstationarity of the variables on nonlinear relationships (spurious inference on linear regressions was uncovered by [1], and later explained by [2]). In [3], it is shown (both in finite samples and asymptotically) that six nonlinear tests (the Ramsey Regression Equation Specification Error Test (RESET), McLeod and Li test, Keenan test, Neural Network test, White’s information matrix, and the one proposed by [4]), when applied to independent random walks, tend to identify spurious (non-existing) nonlinear relationships (it is noteworthy that [5] studied the spurious regression phenomenon under stochastic nonstationarity when the logarithms of independent integrated of order one, I(1), variables are used; logarithmic transformations are commonly used in applied studies to deal with nonlinearity). The author of [6] extend these results by studying the behavior of two additional tests: the Brock-Dechert-Scheinkman (BDS) test and another one proposed by [7]; he finds that the former also yields results that do not make sense, whilst the latter proves to have good power properties even in small samples. The author of [8] studies the properties of the nonparametric Phillip’s unit root test applied to polynomials of integrated processes and concludes, broadly speaking, that the tests does not possess an asymptotic nuisance-parameter-free distribution, except under very specific conditions.

To the best of our knowledge, the “nonlinear relationship-spurious inference” literature (briefly sketched earlier) focuses on statistical tests rather than polynomial regressions. The latter are used to linearly relate the dependent variable to a k[image: there is no content] order polynomial on an independent variable, x. Such regressions therefore fit (through ordinary least squares, OLS) a nonlinear relationship between a polynomial on the independent variable and the conditional mean of y.

These specifications can be traced back to the nineteenth century, to impute series (see [9]). Despite its old age, polynomial regressions remain widely used in a large number of scientific fields, which include epidemiology/disease progression [10], geophysics [11], physics [12], political analysis [13], psychology [14], and, of course, statistics. Splines regression models (cubic splines, for example) can be used to smooth/impute series.

In empirical economics, polynomial specifications can be found in many subfields, such as, financial economics [15,16], labor economics [17,18], agricultural economics [19], macroeconomics (exchange rates, [20]) and environmental economics [21,22]. An evocative example can be found in the empirical research dealing with the Kuznets curve and the environmental Kuznets curve; the inverse U-shaped relationship between the variables is typically specified as the dependent variable regressed on the independent and its square (see [23,24]; it is noteworthy that Kuznets’ specifications usually employ even-order polynomials).

Even though polynomial regressions remain an important empirical tool, we could not find in the literature any attempt to study their properties when the variables behave as independent nonstationary processes. This might be so because the effect of nonstationarity is rather intuitive, and econometricians, at least those familiar with the spurious regression, could speculate that t-ratios diverge and the [image: there is no content] does not collapse. However, many researchers in diverse fields seem to be unaware of this possibility.

In this paper, we confirm that an inference drawn from a polynomial regression, when the variables are generated as independent integrated processes, is misleading (when the variables cointegrate, inference drawn from such a specification is no longer misleading). We provide evidence that generalizes Phillip’s results in two new directions: (i) we allow the exponent of the variables, both explanatory and dependent in a bivariate regression, to take any natural number; (ii) we allow for an arbitrary (natural number) order for the polynomial in x in a k-variate regression. The main objective of this work is to warn practitioners about the considerable risks of spurious inference when the powers of a nonstationary variable are used as regressors.

This paper is organized in a very simple manner. The next section presents the data-generating processes (DGPs) and the main results, divided in two theorems. A small Monte Carlo shows that the asymptotics are a sufficiently accurate representation of the finite sample behavior of the regressions.



2. Asymptotics of Polynomial Regressions

The variables, both dependent and independent, are generated as independent driftless unit roots:



[image: there is no content]



(1)




for [image: there is no content]. The innovations, [image: there is no content] and [image: there is no content], are independent of each other and obey the conditions stated by Phillips ([2], p. 313, Assumption 1). We use these variables to estimate the following specification:


[image: there is no content]



(2)




where [image: there is no content]. A word on notation; the symbol, [image: there is no content], denotes weak convergence, and, for simplicity, [image: there is no content], for [image: there is no content], denotes a Wiener standard process. The stochastic integral, [image: there is no content], is written as ∫.



Theorem 1.
Let [image: there is no content] and [image: there is no content] be independently generated by Equation (1). Estimate by OLS specification Equation (2). Then, as [image: there is no content]:


	T-m2α^[image: there is no content]σym∫wym∫wx2k-∫wxkwym∫wxk∫wx2k-∫wxk2


	T-12(m-k)[image: there is no content][image: there is no content]σymσxk∫wxkwym-∫wxk∫wym∫wx2k-∫wxk2≡σymσxkβ˜


	[image: there is no content]t[image: there is no content][image: there is no content]∫wxkwym-∫wxk∫wym∫wx2k-∫wxk2∫wy2m-∫wym2-∫wxkwym-∫wxk∫wym212


	[image: there is no content][image: there is no content]β˜2∫wx2k-∫wxk2∫wy2m-∫wym2









Proof:
See Appendix A.



Note that all these results are an extension of [2]. It is noteworthy to mention that, for [image: there is no content], our results are exactly those of [2]. This implies that, no matter what power does the practitioner applies to the variables, the spurious regression phenomenon remains identical. That said, a more interesting specification should allow for a more complete polynomial of the independent variable, as in:



[image: there is no content]



(3)




where [image: there is no content]. In this case, OLS estimates still generate a spurious regression:

Theorem 2.
Let [image: there is no content] and [image: there is no content] be independently generated by Equation (1). Estimate by OLS specification Equation (3). Then, as [image: there is no content]:


	



[image: there is no content][image: there is no content][image: there is no content][image: there is no content][image: there is no content]⋮T12(k-1)[image: there is no content]k[image: there is no content]σy100⋯00σx0⋯000σx2⋯0⋮⋮⋮⋯⋮000⋯σxk-1×1∫wx∫ωx2⋯∫wxk∫wx∫ωx2∫ωx3⋯∫ωxk+1∫ωx2∫ωx3⋯⋯∫ωxk+2⋮⋮∫wxk⋯⋯⋯∫ωx2k-1∫wy∫ωxωy∫ωx2ωy⋮∫ωxkωy









	[image: there is no content], where [image: there is no content]


	[image: there is no content] for [image: there is no content]









Proof:
See Appendix B.





Note the linear pattern in the order of convergence of the parameters; whilst the constant term, [image: there is no content], diverges at rate [image: there is no content], [image: there is no content] neither diverges, nor collapses, [image: there is no content] collapses at rate [image: there is no content], and so on. Nonetheless, all the t-ratios of the estimated parameters diverge at the usual rate [image: there is no content].

In both theorems, the convergence rate of the t-ratios associated with the estimates diverge. This implies that, for a sufficiently large sample, the null hypothesis that the parameters are equal to zero will eventually be rejected. Finite sample evidence suggests that this actually occurs in even rather small samples of 100–500 observations (Table 1).


Table 1. Rejection rates of t-ratios.



	
T

	
Specification (2)

	

	
Specification (3)




	

	
k

	

	
m

	

	
With k = 4




	

	

	
1

	
2

	
3

	

	

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]






	
100

	

	
1

	

	
0.77

	
0.71

	
0.71

	

	

	

	

	

	




	

	
2

	

	
0.71

	
0.66

	
0.65

	

	

	
0.46

	
0.35

	
0.33

	
0.31




	

	
3

	

	
0.72

	
0.66

	
0.66

	

	

	

	

	

	




	
250

	

	
1

	

	
0.85

	
0.82

	
0.82

	

	

	

	

	

	




	

	
2

	

	
0.81

	
0.78

	
0.78

	

	

	
0.64

	
0.56

	
0.52

	
0.50




	

	
3

	

	
0.82

	
0.78

	
0.78

	

	

	

	

	

	




	
500

	

	
1

	

	
0.89

	
0.87

	
0.87

	

	

	

	

	

	




	

	
2

	

	
0.86

	
0.84

	
0.84

	

	

	
0.73

	
0.67

	
0.64

	
0.63




	

	
3

	

	
0.88

	
0.84

	
0.84

	

	

	

	

	

	






Rejection rates of the t-ratio associated with: (i) for specification Equation (2), [image: there is no content]; (ii) for specification Equation (3), all β’s. Data-generating process (DGP) parameters: [image: there is no content], for [image: there is no content]. The code of this Monte Carlo experiment is available as supplementary material.






3. Concluding Remarks

In this paper, we extended the results of what is known as spurious inference by studying the asymptotic and finite-sample behavior of the t-ratios in an OLS-estimated regression, where the dependent variable and/or the explanatory variable are nonlinearly transformed by means of a polynomial. When the variables are independent and stochastically nonstationary, the inference based on OLS estimates is misleading. Our results concern pure integrated of order one processes, but provide a natural guide to future research; near-integration, integrated of order two, and broken linear trend processes should be further studied. This result should be understood as a call to be cautious whenever practitioners estimate polynomial regressions.
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Appendix


A. Proof of Theorem 1


Proof.
In order to get all of the results, we use the asymptotic results provided in [25]:


	T-12(k+2)∑ξz,t-1k[image: there is no content]σzk[image: there is no content]ωz(r)kdr


	T-12(k+m+2)∑ξx,t-1kξy,t-1m[image: there is no content]σxkσym∫wxkwym




We now define the rates of convergences of OLS estimates (∑ is short for [image: there is no content]).


α^[image: there is no content]=T∑xtk∑xtk∑xt2k-1∑ytm∑xtkytm=O(T)OpT12(k+2)OpT12(k+2)OpTk+1-1OpT12(m+2)OpT12(m+k+2)








By simple algebra, we get:


α^[image: there is no content]=OpTm2OpT12(m-k)








Therefore:


T-m2α^T-12(m-k)[image: there is no content][image: there is no content]1σxk∫wxkσxk∫wxkσx2k∫wx2k-1σym∫wymσymσxk∫wxkwym=1σx2k∫wx2k-∫wxk2σx2k∫wx2k-σxk∫wxk-σxk∫wxk1×σym∫wymσymσxk∫wxkwym=1σx2k(∫wx2k-∫wxk2)σymσx2k∫wym∫wx2k-∫wxkwym∫wxkσymσxk(∫wxkwym-∫wxk∫wym)








Finally:


T-m2α^T-12(m-k)[image: there is no content][image: there is no content]σym∫wym∫wx2k-∫wxkwym∫wxk∫wx2k-∫wxk2σymσxk∫wxkwym-∫wxk∫wym∫wx2k-∫wxk2asT→∞



(A1)




which proves results 1 and 2 in Theorem 1.
Let [image: there is no content]; following [2], to get t[image: there is no content], we define [image: there is no content]=T-1∑ytm-α^-[image: there is no content]xtk2. Then:



T-m[image: there is no content]=T-(m+1)∑ytm-y¯-[image: there is no content]xtk-x¯2=T-(m+1)∑ytm-y¯2-[image: there is no content]2T-(m+1)∑xtk-x¯2










T-m[image: there is no content][image: there is no content]σy2m∫wy2m-∫wym2-β˜2∫wx2k-∫wxk2



(A2)






asT→∞








Then, we use Equation (A1) and Equation (A2) to get:


[image: there is no content]t[image: there is no content]=[image: there is no content][image: there is no content]S[image: there is no content]=[image: there is no content][image: there is no content]S∑xtk-x¯2-12=T-12(m-k)[image: there is no content]TT-(k+1)∑xtk-x¯212TT-m2S[image: there is no content]t[image: there is no content][image: there is no content]σymσxkβ˜σxk∫wx2k-∫wxk212σym∫wy2m-∫wym2-β˜2∫wx2k-∫wxk212asT→∞








Then, after simple algebra, we get:


[image: there is no content]t[image: there is no content][image: there is no content]∫wxkwym-∫wym∫wxk∫wx2k-∫wxk2∫wy2m-∫wym2-∫wxkwym-∫wxk∫wym212asT→∞








proving result 3 of Theorem 1.
Finally, the asymptotic nonstandard distribution of [image: there is no content] is given by:



[image: there is no content]=∑y^tm-y¯2∑ytm-y¯2=[image: there is no content]2T-(m-k)T-(k+1)∑xtk-x¯2T-(m+1)∑ytm-y¯2[image: there is no content][image: there is no content]β˜2∫wx2k-∫wxk2∫wy2m-∫wym2,asT→∞








This proves the last result of Theorem 1. ☐




B. Proof of Theorem 2.


Proof.
Polynomial specification Equation (3) has the following OLS estimators:



[image: there is no content][image: there is no content][image: there is no content]⋮[image: there is no content]k=T∑xt∑xt2⋯∑xtk∑xt∑xt2∑xt3⋯∑xtk+1∑xt2∑xt3⋯⋯∑xtk+2⋮⋮∑xtk⋯⋯⋯∑xt2k-1∑yt∑xtyt∑xt2yt⋮∑xtkyt








or [image: there is no content], for short. To obtain the rates of convergences of the OLS estimates, note that [image: there is no content] is a Hankel matrix. The orders of convergence of each element in such a matrix are given by:


O(T)OpT32Op[image: there is no content]⋯OpT12(k+2)OpT32Op[image: there is no content]OpT52⋯OpT12(k+3)Op[image: there is no content]OpT52⋯⋯OpT12(k+4)⋮⋮OpT12(k+2)⋯⋯⋯OpTk+1








The Hankel matrix can be inverted using some results from linear algebra theory (spectral decomposition). Furthermore, while it would be possible to analyze some interesting properties of Hankel matrices given by [26] or [27] inter alia, there are some numerical algorithms, like [28], or [29] for polynomial regressions, that work with a Hankel matrix. That said, we are not interested in computing the exact inverse, but rather, using cases with [image: there is no content]. For specification Equation (3), it is straightforward to see that:


[image: there is no content]=O(T-1)OpT-32OpT-2⋯OpT-12(k+2)OpT-32OpT-2OpT-52⋯OpT-12(k+3)OpT-2OpT-52⋯⋯OpT-12(k+4)⋮⋮OpT-12(k+2)⋯⋯⋯OpT-(k+1)








which is again a Hankel matrix. We follow [30] to obtain the orders of convergence and the asymptotic distributions of OLS estimates. We first define the following matrices:


γ1=[image: there is no content]00⋯0010⋯000[image: there is no content]⋯0⋮⋮⋮⋮⋮000⋯T12(k-1)



(A3)




and:


γ2=T3200⋯00[image: there is no content]0⋯000T52⋯0⋮⋮⋮⋮⋮000⋯T12(k+3)



(A4)




Then, using matrices Equation (A3) and Equation (A4), we have [image: there is no content]. Finally, we get: [image: there is no content]
We have:



[image: there is no content]1[image: there is no content]⋱T12(k-1)[image: there is no content][image: there is no content][image: there is no content]⋮[image: there is no content]k=










[image: there is no content]1[image: there is no content]⋱T-12(k-1)T∑xt∑xt2⋯∑xtk∑xt∑xt2∑xt3⋯∑xtk+1∑xt2∑xt3⋯⋯∑xtk+2⋮⋮∑xtk⋯⋯⋯∑xt2k










T-32T-2T-52⋱T-12(k+3)-1×T-32T-2T-52⋱T-12(k+3)∑yt∑xt∑yt∑xt2∑yt⋮∑xtk∑yt



(A5)




We then multiply the matrices of Equation (A5):


[image: there is no content][image: there is no content][image: there is no content][image: there is no content][image: there is no content]⋮T12(k-1)[image: there is no content]k[image: there is no content]1σx∫wxσx2∫ωx2⋯σxk∫wxkσx∫wxσx2∫ωx2σx3∫ωx3⋯σxk+1∫ωxk+1σx2∫ωx2σx3∫ωx3⋯⋯σxk+2∫ωxk+2⋮⋮σxk∫wxk⋯⋯⋯σx2k∫ωx2k-1×σy∫wyσxσy∫ωxωyσx2σy∫ωx2ωy⋮σxkσy∫ωxkωy



(A6)




Finally, we factor the variances, [image: there is no content], from Equation (A6):


[image: there is no content][image: there is no content][image: there is no content][image: there is no content][image: there is no content]⋮T12(k-1)[image: there is no content]k[image: there is no content]σy100⋯00σx0⋯000σx2⋯0⋮⋮⋮⋯⋮000⋯σxk-1×1∫wx∫ωx2⋯∫wxk∫wx∫ωx2∫ωx3⋯∫ωxk+1∫ωx2∫ωx3⋯⋯∫ωxk+2⋮⋮∫wxk⋯⋯⋯∫ωx2k-1∫wy∫ωxωy∫ωx2ωy⋮∫ωxkωy








which proves Equation (1) in Theorem 2.
To obtain the asymptotics of the k t-ratios, note that the order of convergence of the estimated variance, [image: there is no content]:



[image: there is no content]=T-1∑t=1Tyt-[image: there is no content]-[image: there is no content]xt-[image: there is no content]xt2-⋯-[image: there is no content]kxtk2



(A7)




is always equal to [image: there is no content]. To see this, we expand expression Equation (A7) and analyze the convergence order of each element given by the previous result:


[image: there is no content]=T-1∑t=1Tyt-[image: there is no content]-[image: there is no content]xt-[image: there is no content]xt2-⋯-[image: there is no content]kxtk2=T-1∑yt2︸Op([image: there is no content])+∑[image: there is no content]02︸Op([image: there is no content])+[image: there is no content]12∑xt2︸Op([image: there is no content])+[image: there is no content]22∑xt4︸Op([image: there is no content])+⋯+[image: there is no content]k2∑xt2k︸Op([image: there is no content])-2[image: there is no content]∑yt︸Op([image: there is no content])-[image: there is no content]∑ytxt︸Op([image: there is no content])+[image: there is no content]∑ytxt2︸Op([image: there is no content])+[image: there is no content]3∑ytxt3︸Op([image: there is no content])-⋯-[image: there is no content]k∑ytxtk︸Op([image: there is no content])+2[image: there is no content]︸Op([image: there is no content])[image: there is no content]∑xt︸Op(T32)+[image: there is no content]∑xt2︸Op(T32)+[image: there is no content]3∑xt3︸Op(T32)+[image: there is no content]4∑xt4︸Op(T32)+⋯+[image: there is no content]k∑xtk︸Op(T32)+2[image: there is no content]^︸Op(1)[image: there is no content]∑xt3︸Op([image: there is no content])+[image: there is no content]3∑xt4︸Op([image: there is no content])+[image: there is no content]4∑xt5︸Op([image: there is no content])+[image: there is no content]5∑xt5︸Op([image: there is no content])+⋯+[image: there is no content]k∑xtk+1︸Op([image: there is no content])⋮+2[image: there is no content]k-1[image: there is no content]k∑xt2k-1︸Op([image: there is no content])








Therefore, [image: there is no content], which proves result 2 of Theorem 2.
Finally, t[image: there is no content]k=[image: there is no content]k[image: there is no content]∑kk-1(k,k)12=OpT12(k-1)Op(T)OpT-(k+1)12=OpT12(k-1)OpT-k2=Op[image: there is no content]. This proves Theorem 2. ☐
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