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Abstract: Non-negative distributions are important tools in various fields. Given the importance
of achieving a good fit, the literature offers hundreds of different models, from the very simple
to the highly flexible. In this paper, we consider the power–Pareto model, which is defined by its
quantile function. This distribution has three parameters, allowing the model to take different shapes,
including symmetrical and left- and right-skewed. We provide different distributional characteristics
and discuss parameter estimation. In addition to the already-known Maximum Likelihood and Least
Squares of the logarithm of the order statistics estimation methods, we propose several additional
methods. A simulation study and an application to two datasets are conducted to illustrate the
performance of the estimation methods.

Keywords: parameter estimation; power–Pareto distribution; quantile function

1. Introduction

Univariate continuous distributions play a crucial role in modeling real-world phenom-
ena. While well-known distributions like the normal, exponential, and Pareto distributions
are commonly used, there is often a need for specialized distributions, to model specific
data patterns. One established practice for defining more flexible distributions is through
the quantile function (QF)

Q(p) = inf{x : F(x) ≥ p}, 0 ≤ p ≤ 1,

where F(x) = P(X ≤ x) represents the cumulative distribution function (CDF) of the
random variable X. Thus, if F is strictly increasing, Q and F are inverse functions of each
other, and F(Q(p)) = p. QFs possess numerous distinct characteristics that are absent in
CDFs. We highlight that new and more flexible QFs can be easily constructed from the
combination of existing QFs. For example, the product of QFs is still a valid QF.

Since the QF provides all valuable information about the distribution’s shape, several
QF models have been proposed in the literature. The symmetric Tukey lambda distribution
(Tukey 1960) and its asymmetric version, known as the generalized lambda distribution
(Ramberg and Schmeiser 1972), are both defined in terms of their QF. Similarly, the quantile-
based skew logistic distribution introduced by Gilchrist (2000) is also defined through its
QF. More recently, Sankaran et al. (2016) introduce a new QF resulting from the sum of the
QFs of the generalized Pareto and Weibull distributions.

In some cases, the density and distribution functions for distributions expressed
through QFs are not available in closed form, except for specific parameter values. However,
those functions can be easily computed by numerically inverting the corresponding QF. One
significant advantage of these distributions is the simplicity of their QF, which facilitates
the generation of random values through the use of uniform random variables and the
application of inference procedures based on quantiles.
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In this article, we are interested in the power–Pareto distribution introduced in
Gilchrist (2000) and further studied in Hankin and Lee (2006). This is a versatile fam-
ily of distributions for a non-negative random variable, such as income and wealth. This
model is formed through the product of the power and Pareto QFs as

Q(p | c, λ1, λ2) = cpλ1(1 − p)−λ2 , 0 ≤ p ≤ 1, (1)

where c > 0, min(λ1, λ2) ≥ 0, and max(λ1, λ2) > 0. We write X ∼ PP(c, λ1, λ2) whenever
X has the QF in Equation (1). The parameter c is related to the scale, while λ1 and λ2 control
the shape of the distribution. By fixing or restricting some of this distribution’s parameters,
we obtain well-known reduced versions. More precisely, if λ1 = 0 and λ2 > 0, then X
follows a Pareto (type I) distribution with the QF

Q(p) = cpλ1 , 0 ≤ p ≤ 1,

and if λ1 > 0 and λ2 = 0, X has a scaled power distribution with the QF

Q(p) = c(1 − p)−λ2 , 0 ≤ p ≤ 1.

Furthermore, it can be observed that when λ1 = λ2 > 0, X has the well-known log-
logistic distribution, which is a special case of Burr (1942) type XII and Dagum (1977) family
of distributions (for further details, see Caeiro and Mateus 2024). The case λ1 = λ2 = 0
is not considered here, as it results in a degenerate distribution at c. In the literature, the
power–Pareto model in Equation (1) is also known as the Davies distribution (Hankin
and Lee 2006) or Hankin–Lee distribution (Nair and Vineshkumar 2010). Hankin and
Lee (2006) proposed two inference procedures to estimate the parameters c, λ1, and λ2 in
Equation (1), namely the maximum likelihood and the least squares method for the logged
order statistics. Additionally, the authors compare the efficiency of those two estimation
methods by comparing their variance. Since maximum likelihood estimators are often
severely biased, for small sample sizes, we argue that solely considering the variance of
the estimators may not provide a comprehensive assessment of their performance, and
thus, it could lead to misleading conclusions. Therefore, the primary goal of this paper is to
discuss a broader set of estimation techniques and consider alternative criteria for a more
precise and unbiased comparison of the estimators.

The remainder of the paper is organized as follows. In Section 2, we describe various
known properties of the power–Pareto model, like probability density and distribution
functions, moments, and quantile-based measures. Several inferential procedures for the
parameters of the power–Pareto distribution are discussed in Section 3. In Section 4, we
conduct Monte Carlo simulations to analyze the performance of the different inferential
procedures. In Section 5, we apply the inferential methods to two real datasets, and Section 6
concludes the article.

2. Statistical Properties of the Power–Pareto Distribution
2.1. Functions

From now on, we use θ = (c, λ1, λ2) to denote the three parameters of the power–
Pareto model. The derivative of Q(p | θ), denoted as q(p | θ) = ∂Q(p | θ)/∂p, is known as
the quantile density function. For the model in Equation (1), this function is given by

q(p | θ) = Q(p | θ)

(
λ1

p
+

λ2

1 − p

)
, 0 ≤ p ≤ 1. (2)

Note that the quantile density function in Equation (2) satisfies the identity

f (Q(p | θ)) q(p | θ) = 1,

where f (·) is the probability density function.
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If we exclude the cases where the power–Pareto reduces to the power, the Pareto, or
the log-logistic distributions, neither the distribution function nor the density function can
be expressed in closed form. Thus, these functions have to be computed through numerical
inversion of the QF. Suppose that u = u(x | θ) is the solution of the equation x = Q(u | θ).
Then, the CDF can be expressed as F(x | θ) = u, and the density function can be derived
from the inverse function rule as

f (x | θ) =
∂F(x | θ)

∂x

=

(
∂Q(u | θ)

∂u

)−1

(3)

=

(
Q(u | θ)

(
λ1

u
+

λ2

1 − u

))−1
.

The density at the left tail can be approximated by

f (x | θ) ∼ 1
cλ1

( x
c

) 1
λ1

−1
; (4)

Similarly, the right tail density can be approximated by

f (x | θ) ∼ 1
cλ2

( c
x

) 1
λ2

+1
. (5)

In addition, we have

1 − F(x | θ) ∼
( x

c

)−α
, (6)

for large x, where α = 1/λ2 is the upper tail index (Finkelstein et al. 2006; Schluter 2018).
Hence, the power–Pareto model belongs to the class of heavy-tailed distributions. In
numerous applications, it is crucial to estimate accurately the tail index α in Equation (6).
We refer the reader to Beirlant et al. (2012, 2004); Mehta and Yang (2022); Ndlovu and
Chikobvu (2023); Reiss and Thomas (2007), among others. As noted in Hankin and Lee
(2006), Equations (4) and (5) show that λ1 controls the behavior of the left-hand tail, while
λ2 governs the right-hand tail. A larger value of λ1 results in a shorter left tail, whereas
a larger value of λ2 leads to a longer right tail. This relationship is illustrated in Figure 1,
where different parameter values are used to depict the probability density function.
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Figure 1. The density function in (3) for fixed parameters c = 1, λ1 = 0.1 (left), λ1 = 0.4 (right), and
selected values for λ2.
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2.2. Moments

The k-th moment can be expressed in an explicit form as follows:

E(Xk) =
∫ 1

0
(Q(p | θ))kdp = ckB(1 + kλ1, 1 − kλ2), λ2 <

1
k

, (7)

where B(a, b) =
∫ 1

0 xa−1(1 − x)b−1dx, with a > 0 and b > 0, represents the Beta function.
Using the notation b(k, λ1, λ2) = B(1+ kλ1, 1− kλ2), the mean (µ) and the variance (σ2) are

µ = c b(1, λ1, λ2),

σ2 = c2
(

b(2, λ1, λ2)− b2(1, λ1, λ2)
)

,

and exist if λ2 < 1 and λ2 < 1
2 , respectively. Some other measures, like the coefficient of

variation (CV), Pearson’s skewness (Sp), and kurtosis (Kp) can also be easily obtained in
explicit forms,

CV =
b(1, λ1, λ2)√

b(2, λ1, λ2)− b2(1, λ1, λ2)
, λ2 <

1
2

,

Sp =
b(3, λ1, λ2)− 3b(1, λ1, λ2)b(2, λ1, λ2) + 2b3(1, λ1, λ2)

(b(2, λ1, λ2)− b2(1, λ1, λ2))
3/2 , λ2 <

1
3

,

Kp =
b(4, λ1, λ2)− 4b(1, λ1, λ2)b(3, λ1, λ2) + 6b2(1, λ1, λ2)b(2, λ1, λ2)− 3b4(1, λ1, λ2)

(b(2, λ1, λ2)− b2(1, λ1, λ2))
2 , λ2 <

1
4

.

2.3. Quantile Measures

Quantile-based measures of distributional characteristics, including location, disper-
sion, skewness, and kurtosis, exhibit less sensitivity to outliers when compared to conven-
tional moments. For the power–Pareto distribution, the median (M) and the interquartile
range (IQR) are, respectively, given by

M = Q(1/2 | θ) = c 2λ2−λ1 ,

IQR = Q(3/4 | θ)− Q(1/4 | θ) = c 4λ2−λ1(3λ1 − 3−λ2).

The asymmetry and peakedness of the distribution can be analyzed using Bowley
(1901) Skewness (SB) and Moors (1988) Kurtosis (KM) quantile-based coefficients,

SB =
Q(3/4 | θ)− 2 Q(1/2 | θ) + Q(1/4 | θ)

IQR

=
3λ1 − 21+λ1−λ2 + 3−λ2

3λ1 − 3−λ2
,

and

KM =
Q(7/8 | θ)− Q(5/8 | θ) + Q(3/8 | θ)− Q(1/8 | θ)

IQR

=
2λ2−λ1(7λ1 − 5λ13−λ2 + 3λ15−λ2 − 7−λ2)

3λ1 − 3−λ2
.

All the aforementioned quantile-based measures are more robust than moments, since
they exist in the complete parameter space, in contrast to moments.



Econometrics 2024, 12, 20 5 of 28

2.4. Order Statistics

Let X1, X2, . . . , Xn be a random sample of size n from a population with the QF defined
in Equation (1), and let X(1) ≤ X(2) ≤ . . . ≤ X(n) be the corresponding ascending order
statistics. Order statistics play a crucial role in statistical inference due to their ability to
provide valuable insights into the distribution of X, as well as in estimation procedures for
parameters of the model. The density function of X(i) is

f(i)(x) =
1

B(i, n − i + 1)
(F(x))i−1(1 − F(x))n−i f (x).

Note that f(i)(x) does not have a closed form, since neither the CDF nor the density
function can be expressed in closed form. However, the single moments of the order
statistics, µ(i) = E(X(i)), can be easily obtained from the corresponding QF in Equation (1).
For the class of distributions in Equation (1), µ(i), can be expressed as follows:

µ(i) =
1

B(i, n − i + 1)

∫ 1

0
Q(p | θ)pi−1(1 − p)n−idp

(8)

= c
B(i + λ1, n − i + 1 − λ2)

B(i, n − i + 1)
, n − i + 1 − λ2 > 0.

Thus, as explicit formulas for moments of order statistics exist, several mathematical
quantities associated with order statistics can be derived from Equation (8).

Additional properties can be found in Giorgi and Nadarajah (2010); Nair et al. (2013);
Sunoj and Sankaran (2012).

3. Estimation Methods for the Power–Pareto distribution

In this section, we discuss the parameter estimation methods employed in this paper.
For the estimation of the parameters of the aforementioned reduced versions of the power–
Pareto model, we refer to Bhatti et al. (2018); Caeiro et al. (2015); Caeiro and Mateus (2023);
Lu and Tao (2007); Mateus and Caeiro (2022); Rytgaard (1990); Shakeel et al. (2016); Zaka
et al. (2013). Concerning the three-parameter power–Pareto model, in Equation (1), Hankin
and Lee (2006) proposed the estimation of the parameters by two methods: maximum
likelihood and quantile least squares. The variance–covariance matrix of those two methods
is also provided in Hankin and Lee (2006). The maximum likelihood estimators possess
desirable asymptotic properties. However, in the case of small samples, this method may
exhibit lower efficiency, when compared to other estimation methods. Therefore, in this
paper, we consider not only the estimation methods in Hankin and Lee (2006), but also new
estimation methods. In the following, let x1, x2, . . ., xn represent a sample of size n, from
the power–Pareto distribution with all three parameters assumed unknown.

3.1. Maximum Likelihood (ML)

The maximum likelihood (ML) estimators of the three parameters are obtained by
solving an optimization problem, which involves maximizing the likelihood function,
or equivalently, minimizing the negative log-likelihood function. This can be expressed
as follows:

θ̂
ML

= argmin
θ

{
−

n

∑
i=1

(
log(Q(ui | θ)) + log

(
λ1

ui
+

λ2

1 − ui

))}
. (9)

where ui represents the solution of the equation xi = Q(ui | θ). Here, θ̂
ML

= (ĉML, λ̂ML
1 , λ̂ML

2 )
denotes the ML estimate of θ = (c, λ1, λ2).

While the ML estimation method provides asymptotically unbiased estimators and
efficiency for large sample sizes, the lack of a closed-form expression for the probability
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density function requires θ̂
ML to be obtained through a three-dimensional numerical search.

This makes the ML method computationally intensive, and convergence of the negative log-
likelihood to the global minimum can be sensitive to the initial values. Thus, this estimation
method for the parameters of the power–Pareto can be computationally complex and
challenging, especially for large datasets. Additionally, the ML method can be impacted by
model misspecification. Therefore, it is crucial to consider alternative methods, potentially
with closed-form expressions for the estimators.

3.2. Log Quantile Least Squares (LQLS)

Hankin and Lee (2006) proposed a regression method for estimating the parameters
of the power–Pareto distribution using order statistics. To achieve a simple linear relation
involving the parameters, a log transformation is applied, yielding the sum of squares

n

∑
i=1

[
log x(i) −E

(
log
(

X(i)

))]2
(10)

that needs to be minimized with respect to the vector parameters θ. Since X is continuous,

the inverse probability integral transform guarantees X d
= Q(U | θ), where U denotes a

uniform distribution on the interval (0, 1). Consequently,

X(i)
d
= Q(U(i) | θ), i = 1, . . . , n, (11)

where U(i) denotes the ith-order statistic from a sample of size n from a uniform distribution
on (0, 1). Note that U(i) has a Beta distribution with parameters i and n − i + 1. Using
Equation (11), we have

log(X(i))
d
= λ0 + λ1 log(U(i))− λ2 log(1 − U(i)), i = 1, . . . , n,

with λ0 = log(c). Thus,

E
(

log U(i)

)
= ψ(i)− ψ(n + 1) = −

n

∑
k=i

1
k

,

E
(

log(1 − U(i)

)
= ψ(n − i + 1)− ψ(n + 1) = −

n

∑
k=n−i+1

1
k

,

where ψ is the digamma function, the derivative of the log gamma function. For n integer,

ψ(n) = −γ +
n−1

∑
i=1

1
i

,

where γ is Euler’s constant. Then, by introducing the notation λ = (λ0, λ1, λ2), Equation (10)
can be expressed in matrix form as

S(λ) = (Y − Xλ)⊤(Y − Xλ)

where Y is a column matrix with the logarithm of the order statistics from the sam-
ple, log X(i), and X is an n × 3 matrix where the ith row is given by (1, ai, an−i+1), with
ai = −∑n

k=i
1
k . Applying the least squares method, the vector parameters are estimated by

λ̂
LQLS

= (X⊤X)−1X⊤Y;

Consequently,
θ̂

LQLS
= (exp(λ̂LQLS

0 ), λ̂LQLS
1 , λ̂LQLS

2 ). (12)
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The LQLS method offers several advantages. Firstly, it is more robust against outliers,
as the logarithmic transformation reduces the influence of those values. Secondly, unlike
the ML method, estimates are based on the order statistics and require straightforward
calculations, leading to computational efficiency. However, the LQLS method may ex-
hibit lower efficiency when compared to the ML method and can be sensitive to small
sample sizes.

3.3. Percentile (P)

Percentile points were first used for the determination of parameters of the Weibull
model (Kao 1959). This method is nowadays popular due to its simplicity. Estimators are
found from the relation, through the CDF or the QF, between probabilities and percentile
values. To estimate the parameters, one must consider the same number of percentiles.
Therefore, given three distinct cumulative probability levels p1, p2, and p3 (0 < p1 < p2 <
p3 < 1), the corresponding 100pi% percentiles, i = 1, 2, 3, are the values q1, q2, and q3
such that

F(qi | θ) = pi ⇔ qi = Q(pi | θ), i = 1, 2, 3,

with Q the QF in Equation (1). Next, applying a log transformation to the ratio between
two consecutive percentiles, we obtain

log
q2

q1
= λ1 log

p2

p1
+ λ2 log

1 − p1

1 − p2
,

and
log

q3

q2
= λ1 log

p3

p2
+ λ2 log

1 − p2

1 − p3
.

Solving the above two equations for λ1 and λ2, we obtain

λ1 =
log 1−p2

1−p3
log q2

q1
− log 1−p1

1−p2
log q3

q2

log p2
p1

log 1−p2
1−p3

− log p3
p2

log 1−p1
1−p2

, (13)

and

λ2 =
− log p3

p2
log q2

q1
+ log p2

p1
log q3

q2

log p2
p1

log 1−p2
1−p3

− log p3
p2

log 1−p1
1−p2

. (14)

Next, we use the following equation for the second percentile:

q2 = cpλ1
2 (1 − p2)

−λ2 ⇔ c = q2 p−λ1
2 (1 − p2)

λ2 . (15)

The estimators are obtained by replacing, in Equations (13)–(15), the percentiles
qi, by the corresponding sample percentiles. A possible choice for the probabilities is
(p1, p2, p3) = (0.1, 0.5, 0.9). Equivalently, let I be a set of three distinct values from the
first n positive integer values, {1, 2, . . . , n}, where n denotes the sample size. Another
possible choice of percentiles is qi = x(i) , i ∈ I, associated to the cumulative probabilities
pi = (i − a)/(n + b), where a and b are real constants. A popular choice of the constants is
a = 0 and b = 1.

The P method offers simplicity in computation and robustness against outliers. This
makes it straightforward to implement and suitable for exploratory analysis and initial
estimation, providing a quick and effective way to estimate parameters. However, it may
be less efficient and less accurate compared to other methods.
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3.4. Least Squares (LS) and Weighted Least Squares (WLS)

Here we consider the difference between the empirical and the theoretical CDF. Then,
the least squares (LS) estimator of θ, denoted by θ̂

LS
= (ĉLS, λ̂LS

1 , λ̂LS
2 ), can be obtained as

θ̂
LS

= argmin
θ

{
n

∑
i=1

(
F(x(i) | θ)− i

n + 1

)2
}

. (16)

Furthermore, the estimation of parameters using the weighted least squares (WLS)
method, symbolized as θ̂WLS = (ĉWLS, λ̂WLS

1 , λ̂WLS
2 ), can be determined by

θ̂
WLS

= argmin
θ

{
n

∑
i=1

(n + 1)2(n + 2)
i(n − i + 1)

(
F(x(i) | θ)− i

n + 1

)2
}

. (17)

The LS method involves minimizing the squared difference between the empirical
and theoretical CDFs. This method is straightforward to implement and interpret, making
it accessible for various applications. However, LS assumes homoscedasticity, which is
not valid, since the variance of F(x(i) | θ) depends on the index i. This violation does not
affect the bias of the estimators, but may increase their variance. On the other hand, the
weighting scheme used in the WLS method addresses heteroscedasticity by assigning larger
weights to observations that are closer to the center of the sample and smaller weights to
observations that are closer to the edges of the sample. Additionally, both the LS and WLS
methods are computationally intensive, since both depend on the CDF, which needs to be
computed numerically.

3.5. Quantile Least Squares (QLS)

The quantile least squares (QLS) estimator of distribution parameters, denoted by
θ̂

QLS
= (ĉQLS, λ̂QLS

1 , λ̂QLS
2 ), can be derived by

θ̂
QLS

= argmin
θ

{
n

∑
i=1

(
x(i) − µ(i)

)2
}

, (18)

with µ(i) defined in Equation (8).
The QLS estimator minimizes the squared difference between the order statistics and

their expected value, which can be easily obtained from Equation (8). A limitation of this
method is that µ(n) only exists if λ2 < 1; therefore, the QLS should only be considered if λ2
is a small positive value. Furthermore, the accuracy of parameter estimates can be affected
by the presence of large outliers.

A weighted version of this method was not considered because it would further
restrict its domain of validity.

4. Comparison of the Estimation Methods by Monte Carlo Simulation

In this section, a Monte Carlo simulation study is carried out to compare the perfor-
mance of the proposed P, LS, WLS, and QLS estimation methods, and to compare them with
the ML and LQLS methods, proposed by Hankin and Lee (2006). Davies package was used
for the ML method. Parameter estimation with the LS, WLS, and QLS was performed with
the R optimization function optim of the R Software version 4.0.0 and using the starting
values provided by the davies.start function in Davies package. The power–Pareto
distribution was used to generate r = 1000 samples with sizes n = 10, 20, 50, 75, and 100.
Sample values are generated using the inversion method. In the simulation study, the
following parameter combinations were considered:

• Case 1: (c, λ1, λ2) = (1, 0.1, 0.1);
• Case 2: (c, λ1, λ2) = (1, 0.1, 0.4);
• Case 3: (c, λ1, λ2) = (1, 0.4, 0.4);
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• Case 4: (c, λ1, λ2) = (1, 0.4, 0.9);
• Case 5: (c, λ1, λ2) = (1, 0.9, 0.4).

All the parameter combinations provide a power–Pareto distribution with finite mean
value and different levels of positive skewness and kurtosis. Both measures increase with
respect to λ2 and decrease with respect to λ1. The corresponding densities, for all five cases,
are presented in Figure 2.
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Figure 2. The density function for cases 1–5.

For each of the three parameters of θ, denoted generically by θ, we computed the
simulated average bias (ABias), median bias (MBias), and root mean squared error (RMSE)
of the corresponding estimator θ̂. The statistics are defined by

ABias(θ̂) =
1
r

r

∑
i=1

(θ̂i − θ),

MBias(θ̂) = median(θ̂1, θ̂2, . . . , θ̂r)− θ,

RMSE(θ̂) =

√
1
r

r

∑
i=1

(θ̂i − θ)2,

where θ̂i is the estimate of θ computed using the ith sample.
As a global criterion of comparison, we also computed the average absolute difference

between the true and the estimated CDFs,

Dabs =
1
r

r

∑
i=1

(
1
n

n

∑
j=1

|F(xij|θ)− F(xij|θ̂)|
)

(19)

and the average of the maximum absolute difference between the true and estimated CDFs,

Dmax =
1
r

r

∑
i=1

max |F(xij|θ)− F(xij|θ̂)|, (20)

where xij represents the jth observation in the ith sample. The smaller the values of Dabs
and Dmax, the better the fit to the data.

The ABias, MBias, and RMSE are presented in Figures 3–7, while the related
Tables A1–A5, with the corresponding values, are given in Appendix A. It is important
to note that it was impossible to obtain estimates provided by the QLS method for a few
samples. This was due to the non-convergence of the optimization method used to solve
Equation (18). The number of cases where convergence was achieved is indicated beneath
each table. This issue is not critical, as the QLS method generally demonstrates the poorest
performance. Thus, we do not advise its use.
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Moreover, since only small sample sizes were considered, it is difficult to assess the
convergence of both median and mean simulated bias to zero, likely attributed to sampling
error. However, it is evident that if n = 75 or n = 100, the simulated bias is usually closer
to zero than if n = 10 or n = 20. In almost all cases, the RMSE of the estimators of the
parameters c, λ1, and λ2 decreases toward zero, when the sample size increases.

0.
00

0.
01

0.
02

0.
03

0.
04

C = 1, λ1 = 0.1, λ2 = 0.1

Sample size

A
B

ia
s 

of
 Ĉ
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Figure 3. Monte Carlo simulated ABias, MBias, and RMSE from the power–Pareto distribution with
c = 1, λ1 = 0.1, λ2 = 0.1.
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Figure 4. Monte Carlo simulated ABias, MBias, and RMSE from the power–Pareto distribution with
c = 1, λ1 = 0.1, λ2 = 0.4.
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Figure 5. Monte Carlo simulated ABias, MBias, and RMSE from the power–Pareto distribution with
c = 1, λ1 = 0.4, λ2 = 0.4.
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 Ĉ

ML

LQLS

P

LS

WLS

10 20 50 75 100 0.
00

0.
02

0.
04

0.
06

0.
08

C = 1, λ1 = 0.4, λ2 = 0.9

Sample size

M
B

ia
s 

of
 Ĉ
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Figure 6. Monte Carlo simulated ABias, MBias, and RMSE from the power–Pareto distribution with
c = 1, λ1 = 0.4, λ2 = 0.9. Note that we remove the QLS methods because it is out of the range of plot.
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Figure 7. Monte Carlo simulated ABias, MBias, and RMSE from the power–Pareto distribution with
c = 1, λ1 = 0.9, λ2 = 0.4.

Based on RMSE values in Figures 3–7, it is evident that the performance of various
estimation methods varies based on the values of λ1 and λ2, and also the sample size (n).
Regarding the RMSE, we also have the following additional comments:

• For small sample sizes, such as n = 10, the P method generally demonstrates the
highest efficiency. Moreover, it is not a recommended method for larger sample sizes.

• The WLS method consistently outperforms the LS estimator in estimating each of the
three parameters.

• The LQLS method always has a good performance for samples of size n ≥ 20. The
WLS has a similar performance to the LQLS method if λ1 ̸= λ2. If λ1 = λ2, LQLS and
WLS methods have a similar performance for n ≥ 50.

• The ML method shows strong performance when λ1 = 0.1 and λ2 ≤ 0.4 and when
the sample size is equal to or larger than 50. Thus, we do not recommend its use for
samples of size smaller than n = 100.

Tables 1 and 2 provide a comparative analysis of Monte Carlo simulated mean absolute
difference and mean maximum absolute difference between true and estimated CDFs. The
best values are highlighted in bold. The insights derived from the analysis of these tables
can be summarized as follows:

• The performance rankings across different methods are consistent between the two tables.
• The WLS methods demonstrate a very good performance, typically yielding the

smallest or second smallest values of Dabs and Dmax.
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• The LS method consistently performs slightly worse than WLS, and LQLS shows
similar performance to WLS when n ≤ 50, except when λ1 = 0.1 and λ2 = 0.4. The
ML method is never the best performer, but it shows good performance if n ≥ 50 and
λ1 < λ2 or λ1 = λ2 = 0.4.

• The remaining methods exhibit poor performance. Both P and WLS methods provide
generally the largest absolute differences. The exception is the QLS method, for small
sample sizes and λ1 = λ2 = 0.1.

Table 1. Monte Carlo simulated average absolute difference Dabs in Equation (19).

λ1 λ2 n ML LQLS P LS WLS QLS∗

0.10

0.10

10 0.0996 0.0935 0.1041 0.0927 0.0912 0.0877
20 0.0668 0.0633 0.0717 0.0656 0.0642 0.0617
50 0.0405 0.0399 0.0437 0.0410 0.0399 0.0395
75 0.0330 0.0318 0.0352 0.0329 0.0319 0.0319
100 0.0290 0.0278 0.0307 0.0283 0.0276 0.0277

0.40

10 0.0983 0.1176 0.1287 0.0921 0.0905 0.0965
20 0.0675 0.0723 0.0841 0.0653 0.0635 0.0728
50 0.0403 0.0430 0.0493 0.0409 0.0395 0.0538
75 0.0315 0.0338 0.0373 0.0328 0.0316 0.0474
100 0.0271 0.0292 0.0320 0.0282 0.0273 0.0456

0.40

0.40

10 0.1000 0.0935 0.1056 0.0926 0.0912 0.0954
20 0.0686 0.0633 0.0717 0.0656 0.0642 0.0694
50 0.0405 0.0399 0.0437 0.0410 0.0399 0.0483
75 0.0320 0.0318 0.0352 0.0330 0.0320 0.0412
100 0.0278 0.0278 0.0307 0.0284 0.0276 0.0383

0.90

10 0.0991 0.1053 0.1237 0.0923 0.0909 0.1129
20 0.0688 0.0663 0.0775 0.0655 0.0640 0.1199
50 0.0406 0.0408 0.0451 0.0411 0.0398 0.1458
75 0.0325 0.0325 0.0356 0.0329 0.0318 0.1612
100 0.0276 0.0283 0.0310 0.0283 0.0275 0.1736

0.9 0.4

10 0.0996 0.0922 0.1015 0.0924 0.0910 0.0995
20 0.0690 0.0640 0.0708 0.0654 0.0641 0.0749
50 0.0440 0.0403 0.0440 0.0410 0.0398 0.0527
75 0.0349 0.0321 0.0354 0.0329 0.0318 0.0441
100 0.0296 0.0282 0.0310 0.0283 0.0275 0.0413

* Convergence of this estimation method is not achieved in all cases.

Table 2. Monte Carlo simulated average of the maximum absolute difference Dmax in (20).

λ1 λ2 n ML LQLS P LS WLS QLS∗

0.10

0.10

10 0.1876 0.1658 0.1961 0.1592 0.1559 0.1535
20 0.1234 0.1115 0.1347 0.1157 0.1122 0.1089
50 0.0723 0.0698 0.0802 0.0734 0.0705 0.0693
75 0.0584 0.0557 0.0630 0.0587 0.0561 0.0562
100 0.0515 0.0487 0.0554 0.0507 0.0484 0.0488

0.40

10 0.1807 0.2246 0.2555 0.1562 0.1528 0.1682
20 0.1239 0.1353 0.1722 0.1143 0.1098 0.1304
50 0.0715 0.0786 0.0982 0.0727 0.0692 0.0982
75 0.0552 0.0605 0.0712 0.0580 0.0550 0.0882
100 0.0475 0.0519 0.0600 0.0500 0.0473 0.0855
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Table 2. Cont.

λ1 λ2 n ML LQLS P LS WLS QLS∗

0.40

0.40

10 0.1894 0.1656 0.1990 0.1592 0.1561 0.1654
20 0.1278 0.1115 0.1348 0.1159 0.1122 0.1234
50 0.0722 0.0698 0.0802 0.0734 0.0705 0.0878
75 0.0567 0.0557 0.0630 0.0590 0.0567 0.0766
100 0.0491 0.0487 0.0554 0.0511 0.0491 0.0714

0.90

10 0.1855 0.1919 0.2394 0.1578 0.1542 0.2110
20 0.1272 0.1179 0.1514 0.1156 0.1115 0.2456
50 0.0727 0.0718 0.0845 0.0735 0.0706 0.3158
75 0.0574 0.0572 0.0642 0.0586 0.0558 0.3550
100 0.0488 0.0498 0.0561 0.0506 0.0484 0.3816

0.90 0.40

10 0.1860 0.1614 0.1896 0.1586 0.1553 0.1704
20 0.1289 0.1126 0.1335 0.1152 0.1119 0.1323
50 0.0809 0.0708 0.0817 0.0732 0.0701 0.0954
75 0.0630 0.0565 0.0640 0.0590 0.0563 0.0815
100 0.0527 0.0495 0.0561 0.0506 0.0485 0.0771

* Convergence of this estimation method is not achieved in all cases.

5. Application

In this section, we use two real datasets to illustrate the behavior of the estimators,
described in Section 3. To compare the fitted power–Pareto model we computed the
Kolmogorov–Smirnov (K-S) statistic and associated p-value for each method. Since param-
eters are estimated, the p-value of the K-S test is obtained using Monte Carlo simulation.
To measure the goodness-of-fit, we also computed the empirical correlation coefficient rQ,
between empirical quantiles xi and the corresponding estimated quantiles qi = Q(xi | θ̂),
i = 1, 2, . . . , n (Beirlant et al. 2004). Since both vectors have monotonically increasing values,
rQ will be non-negative.

5.1. Household Income by State in USA

The U.S. Census Bureau defines “household income” as the gross income of all people
aged 15 years or older who live in the same housing unit, regardless of their relationship.
Household income reflects the standard of living in distinct households and is an important
indicator of the local and national economies. Table 3 presents a dataset comprising the
median household income in 2016 in the United States, in dollars, of n = 52 states, as
available on the website data.world.1

Table 3. Household income by state dataset.

60,309 48,237 77,351 58,328 46,894 68,070 72,084 77,556 59,294 72,508
52,277 54,678 73,684 57,780 62,706 57,300 60,365 58,032 46,345 43,103
51,950 75,346 73,820 58,319 71,728 41,983 56,199 58,302 60,651 56,623
77,900 69,940 49,493 62,758 54,920 61,478 55,146 52,039 60,407 62,290
62,851 55,505 58,685 52,448 59,396 68,932 62,145 67,880 71,822 45,308
61,103 59,073

The histogram and the boxplot of these observations, in Figure 8, are compatible with
the power–Pareto distribution.

Table 4 summarizes the estimated parameters, K-S statistics, associated p-values, and
the empirical correlation coefficient for various statistical methods applied to the household
income dataset.
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Figure 8. Histogram and boxplot for the household income dataset.

Table 4. Parameter estimates under all methods, K-S statistics, and the associated values for the
household income data.

Method ĉ λ̂1 λ̂2 K-S p-Value rQ

ML 59,636.68 0.0855 0.0909 0.0965 0.6819 0.9838
LQLS 61,322.05 0.0981 0.0723 0.1064 0.5624 0.9868

P 58,936.56 0.0904 0.1004 0.0858 0.8067 0.9822
LS 59,604.21 0.0893 0.0937 0.0980 0.6639 0.9836

WLS 59,578.92 0.0890 0.0934 0.0965 0.6823 0.9837
QLS 62,520.99 0.1093 0.0635 0.1222 0.3880 0.9858

Regarding Table 4, it is shown that all estimation techniques produce p-values ex-
ceeding 0.05, indicating a favorable fit of the power–Pareto distribution. Considering that
a lower K-S statistic and a higher p-value signify a better fit, and a higher rQ implies a
stronger relationship between observed and expected quantiles, the P method stands out
with notably high p-value and rQ, indicating a good fit. Moreover, the LQLS method
achieves the highest rQ, further supporting its efficacy. Although the QLS method has a
large rQ value, the p-value is the lowest.

Figure 9 depicts Q-Q plots, comparing the observed data with the estimated quan-
tiles provided from various methods. If the points in the Q-Q plots align closely along
the diagonal line, it indicates that the estimated distribution provides an adequate sta-
tistical fit. Figure 10 provides the empirical CDF vs. the fitted CDF, for the six different
estimation methods.
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Figure 9. Cont.
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Figure 9. Q-Q plots of the household income dataset.

Figure 9 shows a good similarity between empirical and fitted quantiles in the body
of the distribution, although there are discrepancies in the right tail. All methods provide
a good correspondence in the body of the distribution. But the LQLS and QLS methods
provide the best correspondence in the right tail. Similar conclusions can be drawn from
Figure 10.
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Figure 10. Empirical vs. fitted CDFs using different estimators for the household income dataset.

5.2. Peak Concentrations

For the examination of accidental releases of hazardous gases, a method commonly
employed is the instantaneous release of a finite volume of gas into a surrounding flow
field. Concentration measurements are then taken at a fixed location downwind. In a series
of experiments conducted by Hall (1991) involving 100 repetitions, a key parameter for risk
assessment was the peak concentrations achieved. The dataset, studied by Hankin and Lee
(2006), is provided in Table 5.

Table 5. Peak concentration dataset.

12.100 1.701 9.074 7.056 7.025 4.777 8.870 7.656 10.920 6.806
8.757 5.670 12.890 7.119 2.523 9.055 7.341 3.938 10.460 11.050
6.678 3.026 6.806 11.750 5.742 4.007 7.340 2.849 6.418 8.456
5.702 7.262 6.086 7.568 7.941 14.030 7.844 3.150 7.818 8.554
5.796 3.497 7.087 15.800 4.316 7.591 13.990 9.185 6.286 11.040
11.280 6.804 5.292 6.273 10.840 6.587 8.757 9.344 5.513 11.040
16.160 11.500 5.072 9.041 8.927 7.560 4.694 6.832 15.380 10.250
10.550 7.655 5.229 14.900 7.087 2.646 3.704 9.293 6.117 13.650
5.072 6.045 6.458 4.993 7.403 13.480 11.530 9.926 3.451 16.910
9.010 3.215 5.859 10.020 6.962 11.440 5.765 6.928 5.171 7.825

In Figure 11, we present the histogram and the boxplot of the dataset. Both plots are
compatible with the power–Pareto distribution.
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Figure 11. Histogram and boxplot for the peak concentration dataset.

Table 6 provides the estimated parameters, K-S statistics, the associated p-values, and
the empirical correlation coefficient for various statistical methods for the peak concentra-
tion dataset.

Table 6. Parameter estimates under all methods, K-S statistics, and the associated values for the peak
concentration dataset.

Method ĉ λ̂1 λ̂2 K-S p-Value rQ

ML 8.3220 0.3189 0.1812 0.0634 0.7924 0.9928
LQLS 8.4020 0.3213 0.1729 0.0651 0.7649 0.9934

P 7.9760 0.3182 0.1984 0.0590 0.8565 0.9908
LS 7.7014 0.2740 0.2293 0.0509 0.9459 0.9834

WLS 8.1498 0.3142 0.1980 0.0584 0.8647 0.9908
QLS 9.1620 0.3842 0.1383 0.0854 0.4349 0.9930

It is observed that the data conform well to the distribution for all estimation methods,
with all associated p-values exceeding 0.05 and empirical correlation coefficient close to 1.
Results for the different estimation methods are similar, except for the QLS, which presents
a much higher K-S value. Furthermore, the P, LS, and WLS methods demonstrate favorable
outcomes, as indicated by the low K-S statistic, high p-value, and high empirical correlation
coefficient, rQ.

Figure 12 presents Q-Q plots, contrasting the observed data with the estimated quan-
tiles derived from the fitted power–Pareto distribution. Both the P and WLS methods
demonstrate a good correspondence, with similar patterns and some discrepancies in the
right tail. The QLS again evidences overfitting in the right tail.
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Figure 12. Q-Q plots of the peak concentration dataset.

Figure 13 displays the empirical and fitted CDFs. All methods work quite well
for analyzing this dataset. However, the P and WLS are the ones that provide the best
correspondence between CDFs.
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Figure 13. Empirical vs. fitted CDFs using different estimators for the peak concentration dataset.

6. Conclusions

This study examines the power–Pareto model for non-negative variables. The model
has three parameters and can exhibit various shapes, making it suitable for modelling both
symmetrical and skewed data. The paper explores distributional characteristics, with a
particular focus on different parameter estimation techniques, some of them introduced in
this work.

The numerical analysis reveals the importance of selecting an appropriate estimation
method based on both sample size and the values of the power–Pareto distribution param-
eters. Our results indicate that for very small sample sizes, the P method performs well in
terms of RMSE. However, for larger sample sizes, the LQLS and WLS methods emerge as
adequate choices and are recommended for practical applications.

Additionally, it is worth noting that the ML method also exhibits good performance
for larger sample sizes, typically with at least 100 observations. However, it is essential
to consider the computational time associated with this method, which is longer when
compared to other methods, a factor to weigh in the decision-making process.
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Abbreviations
The following abbreviations are used in this manuscript:

QF Quantile function
CDF Cumulative distribution function
IQR Interquartile range
ML Maximum Likelihood
LQLS Log quantile least squares
P Percentile
LS Least squares
WLS Weighted least squares
QLS Quantile least squares
ABias Average bias
MBias Median bias
RMSE Root mean squared error

Appendix A. Monte Carlo Simulation Results

Tables A1–A5 provide the ABias, MBias, and RMSE for the cases in Section 4, with the
best values highlighted in bold. Figures 3–7 are related with these tables.

Table A1. Monte Carlo simulated ABias, MBias, and RMSE from the power–Pareto distribution with
c = 1, λ1 = λ2 = 0.1.

n ML LQLS P LS WLS QLS∗

10 ABias(ĉ) 0.0155 0.0060 0.0051 0.0141 0.0127 −0.0036
MBias(ĉ) −0.0042 −0.0039 −0.0055 0.0073 −0.0001 −0.0036
RMSE(ĉ) 0.1576 0.1232 0.1164 0.1432 0.1360 0.1756

ABias(λ̂1) −0.0004 0.0005 −0.0165 0.0174 0.0172 0.0055
MBias(λ̂1) −0.0131 −0.0065 −0.0204 0.0077 0.0089 −0.0005
RMSE(λ̂1) 0.0841 0.0669 0.0641 0.0890 0.0836 0.0671

ABias(λ̂2) −0.0039 0.0016 −0.0148 0.0116 0.0125 −0.0062
MBias(λ̂2) −0.0123 −0.0070 −0.0219 0.0025 0.0049 −0.0164
RMSE(λ̂2) 0.0812 0.0684 0.0642 0.0883 0.0832 0.0644

20 ABias(ĉ) 0.0094 0.0027 0.0070 0.0094 0.0061 −0.0199
MBias(ĉ) 0.0041 0.0012 0.0010 0.0051 0.0043 0.0066
RMSE(ĉ) 0.1047 0.0789 0.0906 0.0972 0.0880 0.1859

ABias(λ̂1) 0.0003 −0.0007 −0.0086 0.0098 0.0074 0.0004
MBias(λ̂1) −0.0059 −0.0064 −0.0115 0.0063 0.0051 −0.0013
RMSE(λ̂1) 0.0570 0.0435 0.0513 0.0596 0.0526 0.0475

ABias(λ̂2) −0.0047 −0.0008 −0.0111 0.0034 0.0043 −0.0069
MBias(λ̂2) −0.0096 −0.0051 −0.0142 −0.0014 0.0010 −0.0121
RMSE(λ̂2) 0.0559 0.0438 0.0518 0.0587 0.0528 0.0472
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Table A1. Cont.

n ML LQLS P LS WLS QLS∗

50 ABias(ĉ) −0.0006 −0.0014 −0.0008 −0.0011 −0.0017 −0.0322
MBias(ĉ) −0.0032 −0.0048 −0.0020 −0.0022 −0.0035 −0.0011
RMSE(ĉ) 0.0527 0.0491 0.0598 0.0581 0.0518 0.1917

ABias(λ̂1) −0.0019 −0.0012 −0.0046 0.0019 0.0011 −0.0024
MBias(λ̂1) −0.0029 −0.0034 −0.0056 0.0013 −0.0002 −0.0004
RMSE(λ̂1) 0.0299 0.0279 0.0347 0.0349 0.0305 0.0342

ABias(λ̂2) −0.0009 0.0004 −0.0031 0.0037 0.0032 −0.0048
MBias(λ̂2) −0.0026 −0.0011 −0.0052 0.0008 0.0004 −0.0058
RMSE(λ̂2) 0.0310 0.0283 0.0346 0.0362 0.0316 0.0354

75 ABias(ĉ) 0.0014 0.0001 0.0020 0.0018 0.0009 −0.0125
MBias(ĉ) 0.0008 −0.0016 0.0022 0.0013 0.0010 0.0020
RMSE(ĉ) 0.0405 0.0401 0.0493 0.0470 0.0416 0.1304

ABias(λ̂1) −0.0008 −0.0006 −0.0021 0.0023 0.0014 −0.0006
MBias(λ̂1) −0.0016 −0.0026 −0.0029 0.0020 0.0016 0.0005
RMSE(λ̂1) 0.0230 0.0222 0.0274 0.0275 0.0234 0.0268

ABias(λ̂2) −0.0017 −0.0003 −0.0031 0.0010 0.0009 −0.0032
MBias(λ̂2) −0.0026 −0.0010 −0.0053 −0.0010 −0.0007 −0.0047
RMSE(λ̂2) 0.0239 0.0233 0.0282 0.0282 0.0243 0.0287

100 ABias(ĉ) 0.0017 0.0001 0.0015 0.0018 0.0010 −0.0286
MBias(ĉ) −0.0010 −0.0016 0.0005 −0.0002 −0.0015 0.0011
RMSE(ĉ) 0.0350 0.0353 0.0432 0.0404 0.0354 0.1805

ABias(λ̂1) −0.0002 −0.0005 −0.0015 0.0020 0.0012 −0.0022
MBias(λ̂1) −0.0008 −0.0015 −0.0017 0.0015 0.0008 0.0000
RMSE(λ̂1) 0.0204 0.0200 0.0243 0.0236 0.0201 0.0277

ABias(λ̂2) −0.0019 −0.0003 −0.0025 0.0005 0.0005 −0.0047
MBias(λ̂2) −0.0024 −0.0013 −0.0046 −0.0007 −0.0004 −0.0048
RMSE(λ̂2) 0.0208 0.0200 0.0247 0.0236 0.0204 0.0286

* The numbers of convergence cases are 983 (n = 10), 978 (n = 20), 966 (n = 50), 985 (n = 75), and 969 (n = 100).

Table A2. Monte Carlo simulated ABias, MBias, and RMSE from the power–Pareto distribution with
c = 1, λ1 = 0.1, λ2 = 0.4.

n ML LQLS P LS WLS QLS∗

10 ABias(ĉ) 0.0853 0.0482 0.1121 0.1063 0.0957 0.2065
MBias(ĉ) −0.0579 0.0199 0.0572 −0.0064 −0.0063 0.1475
RMSE(ĉ) 0.4478 0.3366 0.3707 0.4333 0.4001 0.6011

ABias(λ̂1) 0.0019 −0.0008 −0.0048 0.0474 0.0433 0.1051
MBias(λ̂1) −0.0912 0.0043 −0.0052 0.0057 0.0108 0.0669
RMSE(λ̂1) 0.1462 0.1343 0.1303 0.1696 0.1546 0.2374

ABias(λ̂2) −0.0196 0.0061 −0.0652 0.0133 0.0174 −0.1057
MBias(λ̂2) −0.0181 −0.0487 −0.1005 −0.0012 0.0031 −0.1360
RMSE(λ̂2) 0.2231 0.2375 0.2217 0.2490 0.2405 0.2128

20 ABias(ĉ) 0.0267 0.0280 0.0786 0.0514 0.0415 0.1414
MBias(ĉ) −0.0238 0.0277 0.0497 0.0007 0.0049 0.1462
RMSE(ĉ) 0.2725 0.2142 0.2671 0.2535 0.2207 0.4967

ABias(λ̂1) −0.0028 0.0014 0.0026 0.0236 0.0186 0.0901
MBias(λ̂1) −0.0220 0.0068 0.0010 0.0059 0.0084 0.0626
RMSE(λ̂1) 0.1058 0.0833 0.1016 0.1090 0.0901 0.2491

ABias(λ̂2) −0.0079 −0.0056 −0.0506 0.0032 0.0042 −0.0928
MBias(λ̂2) −0.0059 −0.0299 −0.0700 −0.0044 −0.0046 −0.1111
RMSE(λ̂2) 0.1693 0.1553 0.1754 0.1741 0.1587 0.1800
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Table A2. Cont.

n ML LQLS P LS WLS QLS∗

50 ABias(ĉ) −0.0017 0.0065 0.0224 0.0099 0.0075 0.0880
MBias(ĉ) −0.0110 0.0019 0.0074 −0.0050 −0.0024 0.1169
RMSE(ĉ) 0.1232 0.1342 0.1616 0.1359 0.1173 0.3460

ABias(λ̂1) −0.0052 −0.0011 −0.0022 0.0054 0.0037 0.0656
MBias(λ̂1) −0.0087 0.0020 −0.0034 −0.0006 0.0009 0.0656
RMSE(λ̂1) 0.0496 0.0528 0.0686 0.0613 0.0495 0.1350

ABias(λ̂2) −0.0014 −0.0011 −0.0175 0.0050 0.0037 −0.0644
MBias(λ̂2) −0.0068 −0.0120 −0.0264 −0.0035 −0.0047 −0.0804
RMSE(λ̂2) 0.0963 0.1020 0.1163 0.1059 0.0946 0.1496

75 ABias(ĉ) −0.0002 0.0080 0.0216 0.0117 0.0085 0.0765
MBias(ĉ) −0.0046 0.0072 0.0143 0.0046 0.0024 0.1187
RMSE(ĉ) 0.0911 0.1110 0.1336 0.1095 0.0941 0.3288

ABias(λ̂1) −0.0035 0.0003 0.0012 0.0059 0.0037 0.0611
MBias(λ̂1) −0.0045 0.0022 0.0018 0.0040 0.0026 0.0621
RMSE(λ̂1) 0.0356 0.0427 0.0557 0.0485 0.0385 0.1240

ABias(λ̂2) −0.0027 −0.0029 −0.0145 0.0005 0.0002 −0.0595
MBias(λ̂2) −0.0030 −0.0078 −0.0202 −0.0066 −0.0041 −0.0714
RMSE(λ̂2) 0.0746 0.0838 0.0943 0.0832 0.0740 0.1423

100 ABias(ĉ) 0.0011 0.0065 0.0167 0.0088 0.0063 0.0579
MBias(ĉ) −0.0060 0.0008 0.0092 0.0029 0.0010 0.1192
RMSE(ĉ) 0.0774 0.0966 0.1161 0.0916 0.0785 0.3323

ABias(λ̂1) −0.0021 0.0004 0.0012 0.0047 0.0028 0.0565
MBias(λ̂1) −0.0023 0.0009 0.0003 0.0019 0.0017 0.0619
RMSE(λ̂1) 0.0307 0.0376 0.0490 0.0408 0.0324 0.1217

ABias(λ̂2) −0.0031 −0.0026 −0.0117 0.0004 0.0001 −0.0567
MBias(λ̂2) −0.0043 −0.0076 −0.0175 −0.0009 −0.0030 −0.0650
RMSE(λ̂2) 0.0636 0.0721 0.0832 0.0696 0.0622 0.1411

* The numbers of convergence cases are 949 (n = 10), 962 (n = 20), 960 (n = 50), 959 (n = 75), and 952 (n = 100).

Table A3. Monte Carlo simulated ABias, MBias, and RMSE from the power–Pareto distribution with
c = 1, λ1 = 0.4, λ2 = 0.4.

n ML LQLS P LS WLS QLS∗

10 ABias(ĉ) 0.2517 0.1202 0.0984 0.1953 0.1829 0.4519
MBias(ĉ) −0.0054 −0.0156 −0.0176 0.0262 0.0081 0.2224
RMSE(ĉ) 0.8934 0.6031 0.5528 0.7712 0.7186 1.1709

ABias(λ̂1) 0.0182 0.0019 −0.0730 0.0710 0.0719 0.2361
MBias(λ̂1) −0.0427 −0.0259 −0.0932 0.0327 0.0355 0.1309
RMSE(λ̂1) 0.3683 0.2677 0.2599 0.3592 0.3393 0.6460

ABias(λ̂2) −0.0277 0.0063 −0.0476 0.0442 0.0449 −0.1261
MBias(λ̂2) −0.0690 −0.0282 −0.0808 0.0086 0.0186 −0.1559
RMSE(λ̂2) 0.3239 0.2735 0.2605 0.3529 0.3380 0.2464

20 ABias(ĉ) 0.1758 0.0492 0.0769 0.0988 0.0739 0.2839
MBias(ĉ) 0.0412 0.0046 0.0001 0.0216 0.0204 0.1953
RMSE(ĉ) 0.5886 0.3440 0.4030 0.4443 0.3911 0.9170

ABias(λ̂1) 0.0414 −0.0029 −0.0361 0.0405 0.0304 0.1716
MBias(λ̂1) −0.0131 −0.0256 −0.0478 0.0255 0.0212 0.1106
RMSE(λ̂1) 0.2776 0.1741 0.2055 0.2389 0.2108 0.1106

ABias(λ̂2) −0.0454 −0.0031 −0.0423 0.0126 0.0164 −0.1047
MBias(λ̂2) −0.0504 −0.0206 −0.0536 −0.0060 0.0012 −0.1269
RMSE(λ̂2) 0.2387 0.1751 0.2069 0.2350 0.2119 0.2008
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Table A3. Cont.

n ML LQLS P LS WLS QLS∗

50 ABias(ĉ) 0.0290 0.0090 0.0181 0.0161 0.0093 0.1586
MBias(ĉ) −0.0126 −0.0192 −0.0086 −0.0091 −0.0153 0.1755
RMSE(ĉ) 0.2590 0.2000 0.2475 0.2393 0.2112 0.4555

ABias(λ̂1) 0.0022 −0.0048 −0.0186 0.0075 0.0042 0.1206
MBias(λ̂1) −0.0093 −0.0135 −0.0225 0.0051 −0.0174 0.1279
RMSE(λ̂1) 0.1430 0.1116 0.1389 0.1396 0.1221 0.3026

ABias(λ̂2) −0.0085 0.0017 −0.0119 0.0149 0.0131 −0.0750
MBias(λ̂2) −0.0110 −0.0043 −0.0206 0.0033 0.0022 −0.0941
RMSE(λ̂2) 0.1279 0.1132 0.1385 0.1450 0.1265 0.1603

75 ABias(ĉ) 0.0251 0.0102 0.0219 0.0225 0.0192 0.1271
MBias(ĉ) −0.0001 −0.0064 0.0085 0.0058 0.0040 0.1567
RMSE(ĉ) 0.2098 0.1634 0.2018 0.1991 0.1993 0.4106

ABias(λ̂1) 0.0036 −0.0025 −0.0088 0.0103 0.0075 0.0994
MBias(λ̂1) −0.0072 −0.0105 −0.0117 0.0085 0.0057 0.1114
RMSE(λ̂1) 0.1168 0.0886 0.1096 0.1124 0.0995 0.2683

ABias(λ̂2) −0.0091 −0.0013 −0.0120 0.0032 0.0016 −0.0652
MBias(λ̂2) −0.0106 −0.0039 −0.0208 −0.0051 −0.0033 −0.0783
RMSE(λ̂2) 0.0968 0.0930 0.1127 0.1146 0.1044 0.1518

100 ABias(ĉ) 0.0238 0.0079 0.0171 0.0235 0.0162 0.1031
MBias(ĉ) −0.0016 −0.0064 0.0018 0.0006 −0.0052 0.1563
RMSE(ĉ) 0.2038 0.1432 0.1764 0.2003 0.1706 0.4092

ABias(λ̂1) 0.0051 −0.0020 −0.0060 0.0111 0.0020 0.0888
MBias(λ̂1) −0.0027 −0.0059 −0.0068 0.0063 0.0033 0.1110
RMSE(λ̂1) 0.1122 0.0800 0.0972 0.1047 0.0859 0.2651

ABias(λ̂2) −0.0088 −0.0012 −0.0099 0.0001 0.0001 −0.0645
MBias(λ̂2) −0.0117 −0.0051 −0.0185 −0.0044 −0.0021 −0.0752
RMSE(λ̂2) 0.0825 0.0798 0.0987 0.0993 0.0892 0.1525

* The numbers of convergence cases are 977 (n = 10), 958 (n = 20), 962 (n = 50), 960 (n = 75), and 949 (n = 100).

Table A4. Monte Carlo simulated ABias, MBias, and RMSE from the power–Pareto distribution with
c = 1, λ1 = 0.4, λ2 = 0.9.

n ML LQLS P LS WLS QLS∗

10 ABias(ĉ) 0.8308 0.3513 0.4594 0.7081 0.6520 6.5721
MBias(ĉ) −0.0791 0.0156 0.0484 0.0029 −0.0105 1.1266
RMSE(ĉ) 3.3311 1.2160 1.5800 2.9448 2.6376 19.7535

ABias(λ̂1) 0.0247 −0.0001 −0.0694 0.1238 0.1205 2.1121
MBias(λ̂1) −0.0987 −0.0106 −0.0639 0.0315 0.0551 0.5679
RMSE(λ̂1) 0.4876 0.3658 0.3765 0.4962 0.4657 11.4752

ABias(λ̂2) −0.0515 0.0138 −0.0797 0.0504 0.0574 −0.5457
MBias(λ̂2) −0.0566 −0.1060 −0.1754 0.0317 0.0047 −0.5764
RMSE(λ̂2) 0.5814 0.5502 0.5653 0.6279 0.6095 0.6298

20 ABias(ĉ) 0.5669 0.1522 0.2916 0.2796 0.2231 11.8500
MBias(ĉ) 0.0053 0.0482 0.0824 0.0234 0.0045 1.5789
RMSE(ĉ) 1.9100 0.6254 0.8795 0.9625 0.8223 39.5185

ABias(λ̂1) 0.0690 0.0007 −0.0200 0.0645 0.0508 2.9156
MBias(λ̂1) −0.0317 0.0013 −0.0364 0.0266 0.0245 0.8483
RMSE(λ̂1) 0.4436 0.2305 0.2819 0.3250 0.2808 7.1807

ABias(λ̂2) −0.0734 −0.0111 −0.0995 0.0143 0.0180 −0.5095
MBias(λ̂2) −0.0675 −0.0597 −0.1403 0.0028 0.0007 −0.5279
RMSE(λ̂2) 0.4729 0.3577 0.4106 0.4349 0.3980 0.5904
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Table A4. Cont.

n ML LQLS P LS WLS QLS∗

50 ABias(ĉ) 0.0958 0.0449 0.0913 0.0702 0.0549 25.8752
MBias(ĉ) −0.0172 −0.0112 0.0076 −0.0230 −0.0146 2.2231
RMSE(ĉ) 0.6234 0.3466 0.4536 0.4785 0.3971 122.0664

ABias(λ̂1) 0.0068 −0.0047 −0.0151 0.0140 0.0106 6.5544
MBias(λ̂1) −0.0163 −0.0017 −0.0172 0.0001 0.0071 1.5314
RMSE(λ̂1) 0.2183 0.1468 0.1905 0.1929 0.1629 24.7446

ABias(λ̂2) −0.0206 −0.0008 −0.0347 0.0183 0.0132 −0.4825
MBias(λ̂2) −0.0293 −0.0215 −0.0544 −0.0038 −0.0095 −0.4759
RMSE(λ̂2) 0.2510 0.2342 0.2728 0.2703 0.2429 0.5576

75 ABias(ĉ) 0.0677 0.0390 0.0775 0.0662 0.0511 36.4554
MBias(ĉ) 0.0080 0.0073 0.0264 0.0080 0.0030 2.6556
RMSE(ĉ) 0.4865 0.2835 0.3631 0.4389 0.3886 155.8396

ABias(λ̂1) 0.0080 −0.0010 −0.0038 0.0177 0.0118 8.4604
MBias(λ̂1) −0.0041 0.0002 −0.0017 0.0134 0.0057 1.9628
RMSE(λ̂1) 0.1639 0.1177 0.1527 0.1578 0.1301 19.2592

ABias(λ̂2) −0.0250 −0.0057 −0.0298 0.0022 0.0011 −0.4697
MBias(λ̂2) −0.0270 −0.0155 −0.0410 −0.0112 −0.0063 −0.4659
RMSE(λ̂2) 0.1905 0.1925 0.2215 0.2117 0.1885 0.5442

100 ABias(ĉ) 0.0541 0.0304 0.0604 0.0476 0.0457 41.6837
MBias(ĉ) 0.0076 0.0034 0.0175 0.0019 0.0015 2.8660
RMSE(ĉ) 0.4540 0.2453 0.3105 0.2947 0.4184 173.9902

ABias(λ̂1) 0.0048 −0.0005 −0.0017 0.0147 0.0109 10.6657
MBias(λ̂1) 0.0032 −0.0007 0.0028 0.0071 0.0029 2.3627
RMSE(λ̂1) 0.1220 0.1049 0.1346 0.1308 0.1192 25.2684

ABias(λ̂2) −0.0221 −0.0050 −0.0251 0.0004 −0.0011 −0.4648
MBias(λ̂2) −0.0265 −0.0133 −0.0385 −0.0053 −0.0042 −0.4600
RMSE(λ̂2) 0.1584 0.1652 0.1948 0.1762 0.1627 0.5403

* The numbers of convergence cases are 913 (n = 10), 936 (n = 20), 941 (n = 50), 946 (n = 75), and 944 (n = 100).

Table A5. Monte Carlo simulated ABias, MBias, and RMSE from the power–Pareto distribution with
c = 1, λ1 = 0.9, λ2 = 0.4.

n ML LQLS P LS WLS QLS∗

10 ABias(ĉ) 0.5116 0.4565 0.1674 0.4133 0.4064 0.7991
MBias(ĉ) 0.1972 −0.0579 −0.1179 0.0812 0.0219 0.3257
RMSE(ĉ) 1.3260 2.0416 1.0804 1.3088 1.2627 1.8824

ABias(λ̂1) 0.0642 0.0064 −0.1922 0.1072 0.1207 0.4752
MBias(λ̂1) 0.0193 −0.0777 −0.2576 0.0638 0.0787 0.2136
RMSE(λ̂1) 0.6308 0.5373 0.5156 0.6451 0.6222 1.3140

ABias(λ̂2) −0.0569 0.0068 −0.0180 0.0733 0.0634 −0.1531
MBias(λ̂2) −0.1791 −0.0025 −0.0488 0.0034 0.0088 −0.2005
RMSE(λ̂2) 0.4170 0.3701 0.3542 0.4941 0.4647 0.2817

20 ABias(ĉ) 0.4242 0.1479 0.1295 0.2003 0.1596 0.5729
MBias(ĉ) 0.2188 −0.0407 −0.0539 0.0691 0.0439 0.2837
RMSE(ĉ) 0.9908 0.7706 0.7506 0.7503 0.6785 1.4994

ABias(λ̂1) 0.1136 −0.0102 −0.1035 0.0593 0.0472 0.3848
MBias(λ̂1) 0.0605 −0.0647 −0.1349 0.0448 0.0341 0.1899
RMSE(λ̂1) 0.4821 0.3566 0.4080 0.4346 0.3968 1.1138

ABias(λ̂2) −0.0939 0.0010 −0.0279 0.0249 0.0268 −0.1224
MBias(λ̂2) −0.1189 0.0011 −0.0344 0.0014 0.0070 −0.1507
RMSE(λ̂2) 0.3044 0.2324 0.2815 0.3192 0.2837 0.2304
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Table A5. Cont.

n ML LQLS P LS WLS QLS∗

50 ABias(ĉ) 0.2037 0.0335 0.0343 0.0426 0.0254 0.3695
MBias(ĉ) 0.0297 −0.0351 −0.0480 −0.0083 −0.0221 0.2526
RMSE(ĉ) 0.6502 0.3682 0.4320 0.3960 0.3338 2.0387

ABias(λ̂1) 0.0820 −0.0109 −0.0466 0.0126 0.0071 0.3530
MBias(λ̂1) 0.0179 −0.0284 −0.0670 −0.0015 0.0021 0.2278
RMSE(λ̂1) 0.3711 0.2296 0.2731 0.2602 0.2292 2.1254

ABias(λ̂2) −0.0493 0.0063 −0.0023 0.0246 0.0208 −0.0894
MBias(λ̂2) −0.0285 0.0062 −0.0084 0.0088 0.0138 −0.1094
RMSE(λ̂2) 0.1973 0.1466 0.1899 0.1941 0.1620 0.1792

75 ABias(ĉ) 0.1406 0.0268 0.0366 0.0424 0.0327 0.2482
MBias(ĉ) 0.0149 −0.0173 −0.0043 0.0078 0.0016 0.2125
RMSE(ĉ) 0.5084 0.2902 0.3427 0.3067 0.2891 1.1944

ABias(λ̂1) 0.0569 −0.0073 −0.0265 0.0143 0.0098 0.2395
MBias(λ̂1) 0.0028 −0.0245 −0.0336 0.0126 0.0048 0.2033
RMSE(λ̂1) 0.2913 0.1814 0.2134 0.2039 0.1808 1.2468

ABias(λ̂2) −0.0364 0.0014 −0.0075 0.0074 0.0055 −0.0800
MBias(λ̂2) −0.0185 0.0029 −0.0138 −0.0033 0.0020 −0.0916
RMSE(λ̂2) 0.1591 0.1202 0.1547 0.1522 0.1290 0.1688

100 ABias(ĉ) 0.1248 0.0207 0.0300 0.0321 0.0263 0.2184
MBias(ĉ) 0.0117 −0.0137 −0.0154 −0.0015 −0.0061 0.2094
RMSE(ĉ) 0.4667 0.2570 0.3008 0.2611 0.2446 0.5693

ABias(λ̂1) 0.0501 −0.0060 −0.0182 0.0112 0.0085 0.2250
MBias(λ̂1) 0.0027 −0.0190 −0.0266 0.0119 0.0043 0.2164
RMSE(λ̂1) 0.2663 0.1645 0.1900 0.1731 0.1542 0.9415

ABias(λ̂2) −0.0307 0.0012 −0.0069 0.0055 0.0027 −0.0693
MBias(λ̂2) −0.0149 0.0026 −0.0121 −0.0031 −0.0010 −0.0826
RMSE(λ̂2) 0.1415 0.1040 0.1350 0.1275 0.1101 0.1561

* The numbers of convergence cases are 971 (n = 10), 974 (n = 20), 963 (n = 50), 955 (n = 75), and 967 (n = 100).

Note
1 https://data.world/garyhoov/household-income-by-state (accessed on 6 June 2024)
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