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Abstract: Regularized regression methods have attracted much attention in the literature, mainly
due to its application in high-dimensional variable selection problems. Most existing regularization
methods assume that the predictors are directly observed and precisely measured. It is well known
that in a low-dimensional regression model if some covariates are measured with error, then the naive
estimators that ignore the measurement error are biased and inconsistent. However, the impact of
measurement error in regularized estimation procedures is not clear. For example, it is known that the
ordinary least squares estimate of the regression coefficient in a linear model is attenuated towards
zero and, on the other hand, the variance of the observed surrogate predictor is inflated. Therefore,
it is unclear how the interaction of these two factors affects the selection outcome. To correct for
the measurement error effects, some researchers assume that the measurement error covariance
matrix is known or can be estimated using external data. In this paper, we propose the regularized
instrumental variable method for generalized linear measurement error models. We show that the
proposed approach yields a consistent variable selection procedure and root-n consistent parameter
estimators. Extensive finite sample simulation studies show that the proposed method performs
satisfactorily in both linear and generalized linear models. A real data example is provided to further
demonstrate the usage of the method.

Keywords: regularization method; penalized estimation; measurement error; instrumental variable;
generalized linear model; variable selection; consistency; oracle property

1. Introduction

Regularization is an important approach for estimation in regression models with a
relatively large number of parameters because it provides a stable numerical procedure
and better prediction while avoiding the overfitting problem. This approach has attracted
much attention in the recent literature, mainly due to its applications in variable selection
problems in high-dimensional models where the conventional statistical methods are
infeasible theoretically and computationally. To address the variable selection problem in
sparse regression, various regularization methods have been proposed, e.g., the bridge
regression (Frank and Friedman 1993), Lasso (Tibshirani 1996), SCAD (Fan and Li 2001),
adaptive Lasso (Zou 2006), MCP (Zhang et al. 2010), elastic net (Zou and Hastie 2005) and
Dantzig selector (Candes et al. 2007). A more detailed review of regularization methods
can be found in Fan and Lv (2010) and Negahban et al. (2012).

In real data analysis, it is common that some predictors cannot be observed directly
or measured precisely. For example, the long-term average systolic blood pressure and
cholesterol level are important factors of cardiovascular disease, which are usually mea-
sured with error. In a lung cancer risk study, the inhaled dose of air pollutants cannot
be measured precisely and are approximated by the average level of pollutants within a
certain area. In regression models, it is well known that if some predictors are measured
with error, ordinary estimation procedures ignoring the ME are biased and inconsistent.
However, the impact of ME on regularized estimation procedures is not clear. For example,
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in a linear model, the naive least squares estimate for the regression coefficient of the
mismeareued predictor is attenuated towards zero and, on the other hand, the variance of
the corresponding observed surrogate predictor is inflated. Therefore, the combined effect
of these two factors may cause false-positive or -negative results in the selection outcome,
as illustrated in Example 1.

Research on regularized estimation in ME models is sparse. Some authors considered
the penalized version of the usual error correction methods, assuming the ME covariance
matrix is known or can be estimated using replicate data. For example, Liang and Li
(2009) applied the penalized least squares method with attenuation correction and quantile
estimation with orthogonal regression adjustment in a partial linear model. Ma and
Li (2010) studied general parametric and semiparametric models using the method of
penalized estimating equations. Further, Huang and Zhang (2013) used the penalized score
functions, while Zhang et al. (2017) used a prediction criterion for variable selection in
linear ME models.

Another major approach to estimation in ME models is the instrumental variable (IV)
method. This method has been used to treat the endogeneity problem in high-dimensional
regression models by Fan and Liao (2014) who proposed the focused generalized method of
moments estimator. Lin et al. (2015) studied a two-stage regularization method for selecting
relevant instruments and predictors in linear models under the assumption that the random
errors are jointly normally distributed. Zhong et al. (2020) proposed a two-stage estimation
procedure with instrumental variables for a dummy endogenous variable.

All these works mainly focus on a general endogegeity problem in linear models
or binary response variables. So far, there is very few, if any, published studies focusing
specifically on the IV approach to measurement error problems. In this paper, we try to
fill in this gap. Specifically, we extend the IV method to study the variable selection and
estimation problem in generalized linear models with ME. This method does not require the
distribution or covariance matrix of the ME to be known. It is an extension of the method
of conditional moments by Wang and Hsiao (2011). The proposed selection procedure and
estimator are consistent and enjoy the oracle property under general conditions.

The rest of the paper is organized as follows: In Section 2, we introduce the regularized
instrumental variable method and study its asymptotic properties. Section 3 contains the
special case of linear model. Numerical examples are given in Section 4 followed by a real
example in Section 5. Technical details are relegated to Appendix A.

2. The Model and Estimation Method

Suppose the response variable Y has the conditional mean function

E(Y|X, Z) = g(α + βT
x X + βT

z Z), (1)

where X ∈ Rp is a vector of error-prone predictors in low dimension, Z ∈ Rq is a vector
of error-free predictors and g(·) is a link function. Equation (1) includes the generalized
linear models as well as the so-called single index models as special cases. We assume that
the observed surrogate predictors are

X∗ = X + δ, (2)

where δ is a random ME. Further, we assume that there are instrumental variables (IV)
W ∈ Rl besides the main sample (Y, X∗, Z). The usual requirement for an IV is that
it is correlated with the unobserved predictor X but independent of the ME δ and is
conditionally independent of Y given (X, Z). Following the literature (Wang 2021; Wang
and Hsiao 2011), we assume that the IV W is related with X through

X = ΓW + U, (3)
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where Γ is the p × l matrix of unknown parameters which is assumed to have full rank
p, U is independent of W , Z, has mean E(U) = 0 and density fU(u; ϕ) with unknown
parameters ϕ ∈ Rk. It is further assumed that the ME δ in (2) satisfies E(δ|X, Z, W) = 0.
Throughout this paper, we assumed that Z is exogenous and all expectations on it are
taken conditionally; however, Z is suppressed to simplify notations. We also adopt the
common assumption in the ME literature that the ME δ is nondifferential, which implies
that E(Y|X, X∗, W) = E(Y|X).

Now, we consider the estimation of unknown parameters in (1)–(3) given an iid
random sample Yi, X∗

i , W i, i = 1, 2, ..., n. First, substituting (3) into (2) results in a usual
linear regression equation

X∗ = ΓW + U + δ

and, therefore, Γ can be consistently estimated by the least squares estimator

Γ̂ = (
n

∑
i=1

X∗
i W T

i )(
n

∑
i=1

W iW T
i )

−1.

In the following, we focus on the estimation of other parameters of main interest
ψ = (α, βT

x , βT
z , ϕT)T in model (1)–(3). Specifically, we propose an estimator based on the

fist two conditional moments E(Y|W) and E(YX∗|W). To simplify notation, we denote
X̃∗

= (1, X∗T)T and X̃ = (1, XT)T . Then, the two conditional moments can be written
together as

E(X̃∗Y|W) =
∫

X̃∗g(α + βT
x ΓW + βT

z Z + βT
x u) fU(u; ϕ)du

=
∫

x̃g(α + βT
x x + βT

z Z) fU(x − ΓW ; ϕ)dx

:= m(ΓW ; ψ),

(4)

where
m(v; ψ) =

∫
x̃g(α + βT

x x + βT
z Z) fU(x − v; ϕ)dx.

Then, the loss function for estimating ψ is defined as

Ln(ψ) =
1
2

n

∑
i=1

ρ̂i(ψ)T Ai ρ̂i(ψ), (5)

where ρ̂i(ψ) = YiX̃
∗
i − m(Γ̂W i; ψ) and Ai = A(W i) are a semipositive definite matrix

which may depend on W i.
One of the main features in the high-dimensional variable selection framework is the

sparsity of the model, where many regression parameters in β = (βT
x , βT

z )
T have a true

value zero. In the following, we denote the true parameter values of β as β0, the index set
of non-zero coefficients as J = {j : β0j ̸= 0} and its compliment set as Jc = {j : β0j = 0}.
We further denote βJ = {β j, j ∈ J}, βJc = {β j, j ∈ Jc} and ψJ = (α, βT

J , ϕT)T . Similarly, let
ΓJ be the matrix consisting of rows of Γ corresponding to the index set J, and γ = vec(ΓT)
as the vector consisting of the columns of ΓT . Finally, the proposed regularized IV estimator
is defined as the minimizer of the objective function

Qn(ψ) = Ln(ψ) + n
d

∑
j=1

pλn(|β j|), (6)

where pλn(|b|) is a penalty function. Let ψ0 = (α0, βT
0 , ϕT

0 )
T be the true value of model

parameters.
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Theorem 1. Under Assumptions A1–A5 in Appendix A, suppose the penalty function satisfies

an = max{p′λn
(|β0j|) : β0j ̸= 0} = O(n−1/2),

and
bn = max{p′′λn

(|β0j|) : β0j ̸= 0} = o(1).

Then there exists a local minimizer ψ̂ of the objective function (6) such that ||ψ̂ − ψ0|| =
Op(n−1/2).

Further, let b = (0, p
′
λn
(|βT

0J |), 0)T ◦ sign(ψ0J) and Σ = diag(0, p′′λn
(|βT

0J |), 0). We have
the following results.

Theorem 2. If λn → 0,
√

nλn → ∞ and lim inf
n→∞

lim inf
ξ→0+

p′λn
(ξ)/λn > 0, then with probability

approaching 1, the root n consistent estimator ψ̂ in Theorem 1, satisfies
(a) β̂Jc = 0,
(b) ψ̂J has asymptotic distribution

√
n(H + Σ)(ψ̂J − ψ0J) +

√
nb d→ N(0, DCDT),

where

H = E

[
∂ρT(ψ0J)

∂ψJ
A(W)

∂ρ(ψ0J)

∂ψT
J

]
,

D =

Is+2, E

∂ρT
(

ψ0J

)
∂ψJ

A(W)
∂ρ
(

ψ0J

)
∂γT

(Ip ⊗ E(WW T)−1
),

C = E(KKT)

and

K =

(
∂ρT

(
ψ0J

)
/∂ψJ · A(W)ρ

(
ψ0J

)
(X∗

J − Γ0JW)⊗ W

)
.

From the proof of the above theorem in the Appendix, it can be seen that the covariance
matrix DCDT can be estimated by

1
n

∂Ln(ψ̂J)

∂ψJ

∂Ln(ψ̂J)

∂ψT
J

p→ DCDT ,

where
∂Ln(ψJ)

∂ψJ
=

n

∑
i=1

∂ρT
i (ψJ)

∂ψJ
Aiρi(ψJ).

Though the estimator is consistent regardless of the choice of A(W), there exists an
optimal weight A(W) matrix theoretically for the most efficient estimator. Following Wang
and Hsiao (2011), the optimal weight matrix is given by

A(W) = E[ρ(ψ0J)ρ
T(ψ0J)|W ].

Since the optimal weight matrix involves unknown parameters, A(W) can be calculated
via a two-stage estimation procedure. First, the objective function is minimized using the
identity matrix as a weight matrix. In the second stage, the estimators are obtained with
the optimal weight matrix, which is calculated with the estimates from the first stage.

As noted in Abarin and Wang (2012), for some models like gamma log-linear and
Poisson log-liner model, the analytical form of the expectation (4) can be obtained for some
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error distribution fU(u). For example, when the random error u follows an univariate
normal distribution u ∼ N(0, ϕ), the integral in (4) has the following closed-form expression

E(X̃∗Y|W) = ãξ,

where ã = (1, ΓW + βxϕ)T and ξ = exp(α + βxΓW + βT
z Z + β2

xϕ/2). With the closed-form
expression, the burden of computation is eased a lot. On the other hand, in situations where
the integral in (4) does not have analytical form, Monte Carlo methods (e.g., importance
sampling) can be used to approximate the integral. Specifically, we follow the suggestions
in Wang and Hsiao (2011) to calculate (4) as follows.

(1) Choose a candidate distribution whose density function h(x) is known;
(2) Generate i.i.d. random sample {xis, s = 1, 2, . . . , S, S + 1, . . . , 2S; i = 1, 2, . . . , n} from

density function h(x);
(3) Calculate the Monte Carlo approximation of m(Γwi; ψ) as

mS1(Γwi; ψ) =
1
S

S

∑
s=1

x̃isg(α + βT
x xis + βT

z zi) fU(xis − Γwi; ϕ)

h(xis)
,

and

mS2(Γwi; ψ) =
1
S

2S

∑
s=S+1

x̃isg(α + βT
x xis + βT

z zi) fU(xis − Γwi; ϕ)

h(xis)
;

(4) Apply the gradient descent method on approximated loss function

Ln(ψ) =
1
2

n

∑
i=1

ρ̂T
i,S1(ψ)Ai ρ̂i,S2(ψ) + n

d

∑
j=1

pλn(|β j|),

where ρ̂i,S1(ψ) = yi x̃∗i − mS1(Γ̂wi; ψ) and ρ̂i,S2(ψ) = yi x̃∗i − mS2(Γ̂wi; ψ).

For some penalty functions like SCAD and MCP, b and Σ are both zero when the
tuning parameter λn is sufficiently small. Hence the resulting estimator has the oracle
performance such that β̂Jc = 0 and the asymptotic distribution of ψ̂J is given by

√
n(ψ̂J − ψ0J)

d→ N(0, H−1DCDT H−1).

3. Linear ME Model

For the linear regression model, the proposed regularized IV method simplifies to a
regularized two-stage least squares method when the weight matrix A = I. Specifically,
consider a linear model

Y = α + βT
x X + βT

z Z + ϵ, (7)

where ϵ ∼ N(0, σ2), E(U|W , Z) = 0 and E(UUT |W , Z) = Σu. Without loss of generality,
assume the intercept α is zero. The regularized instrumental variable estimator is defined
as the minimizer of the following objective function

1
2

n

∑
i=1

(yi − βT
x x̂i − βT

z zi)
2 + n

d

∑
j=1

pλn(|β j|). (8)

where x̂i = Γ̂wi. Since the naive estimator is inconsistent in estimation and selection in gen-
eral, the observed covariates are replaced by its corrected version x̂ based on instrumental
variables. Furthermore, since the objective function in (8) involves the non-independence of
a random sample (yi, x̂i, zi) due to the involvement of Γ̂, the standard results for regularized
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linear regression cannot be applied directly. For the linear regression model, we have the
following results.

Corollary 1. If an = O(n−1/2), bn = o(1) and E(W̃W̃ T
) is positive definite, where W̃ =

(W T , ZT)T , then there exists a local minimizer β̂ of Q(β) such that ||β̂ − β0|| = Op(n−1/2).

Corollary 2. If λn → 0,
√

nλn → ∞ and lim inf
n→∞

lim inf
ξ→0+

p′λn
(ξ)/λn > 0, then with probability

approaching 1, the root n consistent estimator β̂ in (8) satisfies
(a) β̂Jc = 0,
(b) β̂J has the following asymptotic normal distribution

√
n(H + Σ)(β̂J − β0J + (H + Σ)−1b) →d N(0, E[(Y − βT

0J X̃∗
)2Γ̃0JW̃W̃ T

Γ̃
T
0J ]),

where H = Γ̃0J E(W̃W̃ T
)Γ̃

T
0J , Γ̃ = diag(Γ̂, Iq) and Γ̃J is the matrix consisting of rows of Γ̃

corresponding to the index set J.

4. Numerical Examples

In this section, we conduct simulations to assess the finite sample performance of
the proposed instrumental variable estimator (IVE) on variable selection as well as pa-
rameter estimation. For comparison purposes, we also calculate the regularized esti-
mator (TRE) using the true data (yi, xT

i , zT
i ), and the naive estimator (NAE) using the

observed sample (yi, x∗T
i , zT

i ). The proposed method is implemented with SCAD penalty
function. The tuning parameter is selected by BIC that has the property of recover-
ing the true model consistently for SCAD penalty (Wang et al. 2007). To assess the se-
lection performance, we calculate the false-positive (FP) rate that is the average num-
ber of zero coefficients incorrectly estimated as non-zero, and the false negative (FN)
rate that is the average number of non-zero coefficients incorrectly estimated as zero.
We also calculate the Matthews correlation coefficient (MCC) that is a general measure
of describing the confusion matrix of true/false positives/negatives and is defined as
(TP× TN − FP× FN)/[(TP+ FP)(TP+ FN)(TN + FP)(TN + FN)]1/2. The MCC ranges
from −1 to 1, where the large value indicates good prediction. Finally, we calculate the
mean squared error (MSE) ||β̂ − β0||2 to assess estimation accuracy.

Example 1. First, we consider a linear model Y = βxX + βT
z Z + ϵ, where (βx, βT

z ) = (3, 1.5, 0,
0, 2, 0, 0, 0) and (Z1, W, Z2, . . . , Z7)

T are jointly generated from N(0, Σ) with Σij = 0.7|i−j|. In
addition, the true covariate X is generated as X = −1.5W + U, where ϵ and U are the standard
normal. The observed surrogate X∗ is generated as X∗ = X + δ, where δ follows a normal
distribution with mean zero and variance σ2

δ .
Figure 1 shows the estimated coefficients, FP and FN, for various values of σ2

δ with a sample
size n = 200. The results of the naive method (NAE) are on the left-hand side, while the results
of the IVE method are on the right-hand side. Both the FP and FN increase with σ2

δ for the naive
method, as seen from the bottom left graph. In contrast, the IV estimator is robust against the
magnitude of σ2

δ . The simulation results with σ2
δ = 2 are reported in Table 1. It can be seen that the

naive method has both high FP and FN in the selection results. The increase in FN is due to the fact
that covariate z1 is dropped from the model incorrectly, as shown in Table 1. On the other hand, the
TR and IV methods perform well in recovering the true model.

The selection results of three methods (σ2
δ = 1) with sample sizes n = 50, 100, 200 are reported

in Table 2. As the sample size increases, it can be seen that both FP and FN decrease for TR and IV
methods, whereas the FP increases for the naive method. In addition, the performance of MCC and
MSE is better for TR and IV methods than that of the naive method. The selection is biased for the
naive method regardless of the sample size.
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Figure 1. Estimation and selection results for Example 2 with n = 200. In the upper panel, the
estimated non-zero parameters are marked red, while the estimated zero parameters are marked blue.
In the lower panel, FN is marked red and FP is marked blue.

Table 1. Simulation results of Example 1 with n = 200, σ2
δ = 2.

FP FN MCC MSE z1 x z2 z3 z4 z5 z6 z7

TR 0.1 0.0 0.98 0.02 TR 100 100 99 98 100 98 98 98
IV 0.2 0.0 0.96 0.34 IV 100 100 98 98 100 97 97 95

NA 1.0 0.8 0.54 5.69 NA 23 100 17 96 100 96 95 96

Table 2. Simulation results of Example 1 with different sample sizes and σ2
δ = 1.

n = 50 n = 100 n = 200

FP FN MCC MSE FP FN MCC MSE FP FN MCC MSE
TR 0.3 0 0.92 0.08 0.1 0 0.96 0.03 0.1 0 0.98 0.01
IV 0.3 0 0.92 0.52 0.2 0 0.96 0.19 0.1 0 0.98 0.07

NA 0.5 0 0.87 0.87 0.6 0 0.85 0.71 0.8 0 0.82 0.64

Example 2. In this example, we consider a logistic model where Y|(X, Z) follows the Bernoulli
distribution with mean function g(α + βxX + βT

z Z), where g(η) = exp(η)/(1 + exp(η)) and
(α, βx, βT

z ) = (1, 3, 1.5, 0, 0, 2, 0, 0, 0). The covariates (Z1, W, Z2, . . . , Z7)
T are jointly generated

from N(0, Σ) with Σij = 0.7|i−j|. Further, X = 1.5W + U and the rest of the model setting is the
same as in Example 1. The simulation results are shown on the left-hand side of Table 3. The results
show similar patterns as in Example 1, where values of FP and FN are both low for TR and IV
methods, compared with the NA method.

Example 3. In this example, we consider the Poisson model for Y|(X, Z) with mean function
exp(α + βxX + βT

z Z), and the rest of model setting is the same as in Example 2. The simulation
results are shown on the right-hand side of Table 3. It can be seen that in the Poisson log-linear
model, the naive method performs the worst among all three methods, where FP and FN remain at a
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high level. In contrast, the results from the IV method is similar to that of the TR method, where
values of FP, FN and MSE are close to zero and MCC is close to one.

Table 3. Simulation results of Examples 2 and 3 with n = 200, σ2
δ = 5.

FP FN MCC MSE FP FN MCC MSE

TR 0.4 0.0 0.90 1.51 TR 0 0 0.99 0.03
IV 0.6 0.0 0.87 1.62 IV 0.3 0 0.94 0.07

NA 1.1 0.1 0.75 3.20 NA 2.6 0.7 0.32 25.68

Example 4. In this example, we consider the linear model of Example 1 with relatively high
dimension p. In particular, we simulate the data with sample size n = 50 and p = 100. The true
parameter values are (βx, βz) = (3, 1.5, 0, 0, 2, 0, 0, . . . , 0). The simulation results in Table 4 show
that the proposed IVE method performs similarly to the small p scenarios, and, in particular, it
outperforms the naive method clearly.

Table 4. Simulation results of Example 4 with n = 50, p = 100.

σ2
δ = 1 σ2

δ = 2 σ2
δ = 5

FP FN MCC MSE FP FN MCC MSE FP FN MCC MSE
TR 0.70 0.00 0.90 0.19 0.60 0.00 0.91 0.12 0.60 0.00 0.91 0.17
IV 5.80 0.10 0.56 4.70 4.60 0.00 0.60 4.19 5.40 0.00 0.57 4.32

NA 8.10 0.20 0.46 11.40 6.30 0.20 0.51 10.90 7.70 0.20 0.47 11.45

Example 5. In this example, we consider the linear model of Example 5 with different parameter
settings where (βx, βz) = (0, 1.5, 2, 0, 1, 0, 0, 0). In this case, the corresponding coefficient is 0 for
the error prone covariate x. The simulation results are presented in Table 5. It can be observed that
the ME has virtually no effects on the FN. Also, as the sample size increases, the IV estimation
performs nearly the same as the TR model.

Table 5. Simulation results of Example 5.

n = 100 n = 200 n = 500

FP FN MCC MSE FP FN MCC MSE FP FN MCC MSE
TR 0.18 0.00 14.46 0.02 0.06 0.00 14.82 0.12 0.04 0.00 14.88 0.00
IV 0.32 0.00 14.04 0.22 0.20 0.00 14.40 4.19 0.02 0.00 14.94 0.03

NA 0.32 0.00 14.04 0.68 0.36 0.00 13.92 10.90 0.82 0.00 12.54 0.63

Example 6. In this example, we consider the linear model. First, we consider a linear model
Y = βxX + βT

z Z + ϵ, where (βx, βT
z ) = (3, 1.5, 0, 0, 2, 0, 0, 0) and (Z1, X, W, Z2, . . . , Z7)

T are
jointly generated from N(0, Σ) with Σij = 0.7|i−j|. Note that the covariate X and W are jointly
generated together with all other covariates in this case. The rest of the model setting remains the
same as in Example 1. The results are shown in Table 6, which are similar as those in Example 1,
regardless of the data-generating mechanism. The IV estimator performs better compared with NA
estimator as the sample size increases.

Table 6. Simulation results of Example 6.

n = 100 n = 200 n = 500

FP FN MCC MSE FP FN MCC MSE FP FN MCC MSE
TR 0.26 0.00 14.22 0.04 0.08 0.00 14.76 0.01 0.00 0.00 15.00 0.00
IV 0.36 0.00 13.92 0.37 0.36 0.00 13.92 0.12 0.20 0.00 14.40 0.05

NA 0.70 0.00 12.90 0.89 0.84 0.00 12.48 0.86 1.06 0.00 11.82 0.92



Econometrics 2024, 12, 21 9 of 14

5. Real Data Example

We applied the proposed method on a real dataset in this section. The Mobility
Program Clinical Research Unit of St. Michael’s Hospital conducted research studying
the prognostic factors of work productivity after a limb injury. The dataset was collected
through the Work Limitations Questionnaire (WLQ) from a group of injured workers
attending Shoulder & Elbow Specialty clinic, which is managed by Workplace Safety &
Insurance Board of Ontario, Canada. The WLQ developed by Lerner et al. (2001) and Lerner
et al. (2012) offers a way of measuring how the health problems affect the job performance
and the productivity loss at work. The WLQ has shown its good criterion validity and is
adopted by several research institutes such as Ida et al. (2012) and Tang et al. (2011). There
were 168 recruited participants who were worker compensation claimants and may or may
not be working at the time of initial clinic attendance. Typically, injured workers were
referred to these clinics if they have a chronic work-related upper limb injury greater than
6 months in duration without sufficient recovery.

In this paper, we are interested in exploring the prognostic factors of the WLQ index.
The response variable, the work limitations questionnaire index, evaluates the proportion
of time where difficulty is experienced in the following four different domains: time man-
agement, physical demands, and mental–interpersonal and output demands. This index
quantifies the productivity loss at work as a result of health disorders. The predictors (prog-
nostic factors) are supervisor support (x∗); lower quick disabilities of the arm, shoulder and
hand (DASH) score (z1); better mental health factor score (z2); better physical health factor
score (z3); age (z4); lower von Korff pain intensity score (z5); lower von Korff pain intensity
score (z6); and lower shoulder pain and disability index (z7). The instrumental variables
are organization support and decision authority. The work disability is an important issue
in public health, caused by whether the productivity loss at work can exceed the direct
medical cost. In the literature, supervisor support is associated with the productivity and
health outcomes of workers. Physical and mental disorders are also significantly related to
work loss. For example, positive support from a supervisor is associated with low degree
of stress and low sickness absence of the employees (Nielsen et al. 2006; Stansfeld et al.
1997). Physical–mental comorbidity is also found to have an additive increase effect in
work loss (Buist-Bouwman et al. 2005). The estimation results are presented in Table 7. It
can be observed that, besides the covariates lower quick DASH score and better mental
health factor score that are retained in the model for the naive method, the IV method keeps
the supervisor support and lower shoulder pain and disability index.

Table 7. Estimation results of WLQ data.

IV Naive Full

coef se coef se coef se
int 8.19 0.090 8.19 0.404 8.19 0.408
x∗ –0.09 0.090 - - 0.13 0.445
z1 –1.83 0.164 –1.69 0.457 –1.49 0.706
z2 –1.56 0.119 –1.60 0.457 –1.74 0.501
z3 - - - - –0.52 0.555
z4 - - - - –0.33 0.415
z5 - - - - –0.25 0.583
z6 - - - - 0.26 0.451
z7 0.23 0.128 - - 0.05 0.629

6. Conclusions and Discussion

Although the regularized regression methods have been widely investigated in the
literature, most of the published works assume the data are precisely measured. Some
researchers study the high-dimensional measurement error models, assuming the ME
covariance matrix is known or can be estimated using replicate data. However, the replicate
data are not always available in real applications. Instead, instrumental data are more
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flexible and relatively easy to obtain. Technically, the assumption of instrumental variable
is weaker than the replicate measurements. Although the IV approach is used by some
authors to study general endogeneity problem in linear models, very few studies focus
specifically on ME problems. Developing methodologies in this particular context allow
us to obtain more insights into ME issues such as its impact on variable selection and
parameter estimation in high-dimensional models.

In this paper, we extended the instrument variable method to the regularization
estimation setup to correct for ME effects in both linear and generalized linear ME models.
Besides the attenuation effect, the ME also affects the selection results in various settings.
The proposed estimator is shown to have the oracle property, which is consistent in both
variable selection and parameter estimation. The asymptotic distribution is derived for the
proposed estimator in both linear and generalized linear ME models. Extensive simulation
studies for linear, logistic and Poisson log-linear models are conducted examining the
performance of the proposed estimator, as well as the naive estimator. Simulation results
show that the proposed estimator performs well in various model settings with a finite
sample size. The extension of the proposed method to nonlinear models is of interest for
future research.

In this paper, we assume that the possibly mismeasured covariates are of low dimen-
sion. In future, it is important to study the case where a large number of covariates are
measured with errors.
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Appendix A

We assume the following regularity conditions.

Assumption A1. E((ρ(ψ)− ρ(ψ0))
T A(W)(ρ(ψ)− ρ(ψ0)) = 0 if and only if ψ = ψ0, where

ρ(ψ) = YX̃∗ − m(ΓW ; ψ).

Assumption A2. The parameter spaces Ψ ⊂ Rd+k+1 and Γ ⊂ Rp×l are compact.

Assumption A3. fU(u; ϕ) is continuously differentiable with respect to u and ϕ respectively.
Furthermore, E||A(W)||(|Y|2 + ||YX̃∗||2) < ∞, functions G(X, Z; θ) fU(X − ΓW ; ϕ) and
G(X, Z; θ)∂ fU(X − ΓW ; ϕ)/∂uT and their first-order partial derivatives with respect to θ and ϕ
respectively are dominated by a function η(X, Z, W) that satisfies

E||A(W)||(
∫ ∫

η(x, z, W)(||x||+ ||z||+ 1)dxdz)2 < ∞.

Assumption A4. fU(u; ϕ) is twice continuously differentiable with respect to ϕ in an open
neibouhood of ϕ0 and the first two partial derivatives of G(X, Z; θ) fU(X − ΓW ; ϕ) with respect to
ψ satisfies the similar dominating condition as in Assumption A3.



Econometrics 2024, 12, 21 11 of 14

Assumption A5. The matrix E
[

∂ρT(ψ0J)

∂ψJ
A(W)

∂ρ(ψ0J)

∂ψT
J

]
is non-singular.

Proof of Theorem 1. The score and hessian function of Ln(ψ) are written as Gn(ψ) and
Hn(ψ), respectively. By Assumption A4, using the Taylor expansion, the score of the
objective function Qn(ψ) can be written as

Sn(ψ) = Gn(ψ0) + p̃
′
λn
(|β0|) ◦ sign(ψ0) + Hn(ψ

∗)(ψ − ψ0) + p̃
′′
λn
(|β0|)(ψ − ψ0)(1 + op(1)),

where ψ∗ is in between ψ and ψ0. It is sufficient to show that Sn(ψ) = 0 has a solution ψ
satisfying ||ψ̂ − ψ0|| = Op(n−1/2). To this end, we show for any ψ such that ||ψ − ψ0|| =
n−1/2C the inequality (ψ − ψ0)

TSn(ψ) > 0 holds with probability approaching 1. By
Assumption A5 and bn = 0(1), it follows that

(ψ − ψ0)
TSn(ψ) = (ψ − ψ0)

T(Gn(ψ0) + p̃
′
λn
(|β0|) ◦ sign(ψ0)) + n||ψ − ψ0||

2(1 + op(1)).

It can be seen that by Assumptions A1–A3, the first term is of order Op(C), and the
second term is of order Op(C2). Hence, for a sufficiently large C, the second term dominates
the others. (ψ − ψ0)

TSn(ψ) is shown to be positive with probability tending to 1, which
completes the proof.

Proof of Theorem 2a. By Assumption A4, the Taylor expansion of Sn(ψ) around ψ0 is
given by

Sn(ψ) = Gn(ψ0) + Hn(ψ
∗)(ψ − ψ0) + np̃

′
λn
(|β|) ◦ sign(ψ)

= nλn

{
1

nλn
Gn(ψ0) +

1
nλn

Hn(ψ
∗)(ψ − ψ0) +

1
λn

p̃
′
λn
(|β|) ◦ sign(ψ)

}
.

For j ∈ Jc, ϵn = Cn−1/2, by Assumptions A1–A5, it can be shown that

Sn(β j) = nλn

{
Op(

1√
nλn

) +
p
′
λn
(|β j|)
λn

sign(β j)

}
.

Together with the condition lim inf
n→∞

lim inf
ξ→0+

p′λn
(ξ)/λn > 0, we have Gn(β j) > 0 if

0 < β j < ϵn; Gn(β j) < 0 if −ϵn < β j < 0. Hence, P(β j = 0) → 1 for j ∈ Jc.

Proof of Theorem 2b. By Assumption A4, the Taylor expansion of Sn(ψJ) around ψ0J is
given by

Sn(ψJ) = Gn(ψ0J) + Hn(ψ
∗
J )(ψJ − ψ0J) + nb + np̃

′′
λn
(|β∗

J |)(ψJ − ψ0J),

where
p̃
′′
λn
(|β∗

J |) = diag(0, p′′λn
(|β∗T

J |), 0),

Gn(ψ0J) =
n

∑
i=1

∂ρ̂T
i (ψ0J)

∂ψJ
Ai ρ̂i(ψ0J)

and

Hn(ψ
∗
J ) =

n

∑
i=1

∂ρ̂T
i (ψ

∗
J )

∂ψJ
Ai

∂ρ̂i(ψ
∗
J )

∂ψT
J

+
(

ρ̂T
i (ψ

∗
J )Ai ⊗ Is+2

)∂vec
(

∂ρ̂T
i (ψ

∗
J )/∂ψJ

)
∂ψT

J

.
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By rearranging the terms, we obtain

− 1√
n

Gn(ψ0J) =
√

n
(

1
n

H(ψ∗
J ) + p̃

′′
λn
(|β∗

J |)
)
(ψJ − ψ0J) +

√
np̃

′
λn
(|β0J |) ◦ sign(ψ0J).

Note that

1
n

H(ψ∗
J ) →p E

∂ρT(ψ0J)

∂ψJ
A(W)

∂ρ(ψ0J)

∂ψT
J

+
(

ρT(ψ0J)A ⊗ Is+2

)∂vec
(

∂ρT(ψ0J)/∂ψJ

)
∂ψT

J


= H,

(A1)

since the expectation of the second term is

E

ρT(ψ∗
J )A ⊗ Is+2

∂vec
(

∂ρT(ψ∗
J )/∂ψJ

)
∂ψT

J


=E

E(ρT(ψ∗
J )|W̃)A ⊗ Is+2

∂vec
(

∂ρT(ψ∗
J )/∂ψJ

)
∂ψT

J


=0.

Now, consider the first-order Taylor expansion of Gn(ψ0J) around γ0J . Again by
Assumption A4,

Gn(ψ0J) =
n

∑
i=1

∂ρT
i (ψ0J)

∂ψJ
Aiρi(ψ0J) +

∂2 L̃n

(
ψ0J

)
∂ψJ∂γT

J

(
γ̂J − γ0J

)
, (A2)

where

∂2 L̃n

(
ψ0J

)
∂ψJ∂γT

J

=
n

∑
i=1

[
∂ρT

i (ψ0J , γ∗
J )

∂ψJ
Ai

∂ρi(ψ0J , γ∗
J )

∂γT
J

+ (ρT
i (ψ0J , γ∗

J )Ai ⊗ Is+2)
∂vec(∂ρT

i (ψ0J , γ∗
J )/∂ψJ)

∂γT
J

]
.

Using a similar argument of Equation (A1), it can be shown that

1
n

∂2 L̃n

(
ψ0J

)
∂ψJ∂γT

J
→p E

(
∂ρT(ψ0J)

∂ψJ
A

∂ρ(ψ0J)

∂γT
J

)
.

In addition, the term γ̂J − γ0J in Equation (A2) can be written as

γ̂J − γ0J = (∑ Ip ⊗ W iW T
i )

−1
(
∑(X∗

Ji − Γ0JW i)⊗ W i

)
.

Hence, Equation (A2) can be written as

Gn(ψ0J) = Dn

n

∑
i=1

Ki,
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where

Dn =

Is+2,
∂2 L̃n

(
ψ0J

)
∂ψJ∂γT

J
(Ip ⊗ (

n

∑
i=1

W iW T
i )

−1)


→
(

Is+2, E
(∂ρT(ψ0J)

∂ψJ
A

∂ρ(ψ0J)

∂γT
J

)
(Ip ⊗ E(WW T)−1)

)
= D,

Ki =

(
∂ρT

i

(
ψ0J

)
/∂ψJ · Aiρi

(
ψ0J

)
(X∗

Ji − Γ0JW i)⊗ W i

)
.

Then, together with Assumption A5,
√

n(H + Σ)(ψ̂J − ψ0J) +
√

nb →d N(0, DCDT).
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