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Abstract: Heterogeneity in preferences can be addressed through various discrete choice modeling
approaches. The random-parameter latent class (RLC) approach offers a desirable alternative for
analysts due to its advantageous properties of separating classes with different preferences and
capturing the remaining heterogeneity within classes by including random parameters. For latent
class specifications, however, more empirical evidence on the optimal number of classes to consider
is needed in order to develop a more objective set of criteria. To investigate this question, we tested
cases with different class numbers (for both fixed- and random-parameter latent class modeling)
by analyzing data from a discrete choice experiment conducted in 2021 (examined preferences
regarding COVID-19 vaccines). We compared models using commonly used indicators such as the
Bayesian information criterion, and we took into account, among others, a seemingly simple but
often overlooked indicator such as the ratio of significant parameter estimates. Based on our results,
it is not sufficient to decide on the optimal number of classes in the latent class modeling based on
only information criteria. We considered aspects such as the ratio of significant parameter estimates
(it may be interesting to examine this both between and within specifications to find out which model
type and class number has the most balanced ratio); the validity of the coefficients obtained (focusing
on whether the conclusions are consistent with our theoretical model); whether including random
parameters is justified (finding a balance between the complexity of the model and its information
content, i.e., to examine when (and to what extent) the introduction of within-class heterogeneity is
relevant); and the distributions of MRS calculations (since they often function as a direct measure
of preferences, it is necessary to test how consistent the distributions of specifications with different
class numbers are (if they are highly, i.e., relatively stable in explaining consumer preferences, it is
probably worth putting more emphasis on the aspects mentioned above when choosing a model)).
The results of this research raise further questions that should be addressed by further model testing
in the future.
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1. Introduction

The modeling of stated choice experiments is rarely limited to a simple multinomial
logit (MNL) specification estimation. This is because it is necessary to address the restrictive
assumptions of the model in order to draw truly accurate conclusions and develop welfare
measures based on them. A vital limitation of the MNL is that it assumes homogeneous
tastes (homogeneous preferences) for respondents in the sample for the product/service
attributes under analysis. Extending the model with sociodemographic interactions helps
address the problem, but in most cases, further analysis is needed, as a substantial part of
the preference heterogeneity has yet to be explained (Hess 2014; Train 2009; Walker and
Ben-Akiva 2002).

As grouped by Mariel et al., the so-called mixed logit (MXL) models offer an efficient
and relatively simple option to capture preference heterogeneity (Mariel et al. 2021). These
models assume that preference heterogeneity can be effectively addressed by introducing
continuous or discrete distributions. The former group includes the random-parameter
logit (RPL) specification, which allows the taste parameters to vary among respondents
along a predefined distribution. Another widely used alternative is latent class (LC) model-
ing, which separates a discrete number of classes with different tastes and assumes that
members’ preferences are already homogeneous within heterogeneous classes. Compar-
isons between the two types of models have been investigated by several authors, who
all concluded that further comparisons between the models should be made in the future
(Greene and Hensher 2003; Scarpa et al. 2005; Shen 2009).

A hybrid solution has been proposed by Bujosa et al. and Greene and Hensher because
for latent classes separated by LC, a significant part of the preference heterogeneity remains
unexplained within classes, i.e., the inclusion of random parameters may be justified
(Bujosa et al. 2010; Greene and Hensher 2013). The former authors introduced the random-
parameter latent class (RLC) approach by examining preferences for recreational trips to
forest sites. At the same time, the latter used a stated choice data set on alternative freight
distribution attribute packages. Both studies conclude that RLC outperforms the RPL and
fixed-parameter LC specifications. However, the authors highlight the need for further
comparisons.

Nevertheless, the authors point out that, as in the case of fixed-parameter LC, deter-
mining the optimal number of classes is a crucial issue in the specification. Bujosa et al., for
example, chose to estimate and analyze the two-class specification because their models
with more than two classes often did not converge (Bujosa et al. 2010). Greene and Hensher
also estimated two-class versions and concluded that when two classes are defined, all
parameter estimates are significant in at least one class, whereas in three- and four-class
versions, there is already at least one variable that is not significant in either class (Greene
and Hensher 2013).

So why is it critical to get the class number right? Too few classes can result in a high
level of preference heterogeneity within classes, which increases the imprecision of the
model. Too many classes, on the other hand, can lead to an overspecified model, which
may, for example, result in less generalizability of the conclusions drawn from our model
estimation. There may also be the problem that the class allocation is very unbalanced for
certain class numbers, i.e., there may be too many/few respondents in certain class(es) or
the proportion of significant parameter estimates in certain classes may be very low.

The aim of this research is to investigate which aspects should be considered in order
to choose the optimal number of classes for LC modeling.

Its objectives are as follows:
(1) To investigate the consistency of the “best model” proposed by the different

information criteria suggested in the literature with the specification showing the best
significant parameter estimation ratio;

(2) To examine the similarities and differences between the results of the LC model
specifications estimated with different class numbers;
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(3) To examine the similarities and differences between the distributions of the MRS
(marginal rate of substitution) calculations for the LC model specifications estimated with
different class numbers.

To investigate these objectives, we will model data from a discrete choice experiment
conducted in 2021 that examined preferences regarding COVID-19 vaccines. In the fol-
lowing sections of the paper, we describe the modeling approach to be tested (latent class
modeling with fixed and random parameters), present the research details (a stated choice
experiment in Debrecen with 1011 participants), and compare the results of latent class
models with fixed and random parameters (focusing on the structure of the objectives:
(1) to examine information criteria, (2) to compare model estimates, (3) to compare the
distributions of the MRS calculations), emphasizing the choice of the optimal number of
classes.

2. Materials and Methods

This chapter will describe the methodological and modeling approach and the details
of our research.

2.1. Methodology

Stated preference (SP) type valuation methods include commonly used methods such
as conjoint analysis (CA), best–worst scaling (BWS), and a discrete choice experiment (DCE).
The difference between these methods mainly relates to the theoretical background and the
complexity and form of the decision task (Louviere et al. 2010; Hensher et al. 2015). In the
case of DCE, the former is provided by the random utility theory (RUT), which assumes
the decision-maker utility maximization (in the context of the random utility maximization
(RUM)) and decomposes the utility perceived by the decision-maker into a systematic and
a random component according to Equation (1) (Ben-Akiva and Lerman 1985):

Un,i,t = Vn,i,t + εn,i,t, (1)

where U denotes the utility, V is the systematic part of the utility, ε the random part of the
utility, n is the decision-maker, i is the alternative, and t is the decision situation.

A widely known and long-used specification of RUT-based discrete choice models is
the conditional logit (CL) type associated with Daniel McFadden (McFadden 1974). The
model has the advantage of being relatively easy to estimate, and its results are simple to
interpret. However, one of its drawbacks is the assumption of homogeneous preferences,
suggesting that respondents in the study sample have the same level of sensitivity to
the observed attributes (e.g., they are equally cost-, risk-, and possibly brand-sensitive).
The researchers can address this through the introduction of interactions as well as by
estimating more complex models (Louviere et al. 2000).

The modeler can address heterogeneity in preferences through the use of both discrete
and continuous distributions. The former approach is known as latent class (LC) modeling,
while the latter is known as random-parameter logit (RPL) modeling. The LC specification
aims to create a discrete number of classes with different preferences in which the members’
tastes are already homogeneous (Boxall and Adamowicz 2002). In contrast, in RPL, the
taste parameters (β coefficients) are allowed to vary along a distribution predetermined
by the researcher, and then specific distribution parameters are estimated (McFadden and
Train 2000).

It is essential to mention that it is also possible to combine these two approaches to
obtain the random-parameter latent class (RLC) specification proposed by Bujosa et al. and
Greene and Hensher (Bujosa et al. 2010; Greene and Hensher 2013). The RLC is based
on the assumption that even when classes with different preferences are identified (fixed-
parameter LC modeling), there remains a significant degree of heterogeneity within classes,
so introducing random parameters (similar to RPL) may be justified.

In summary, latent class modeling is basically composed of two main parts: (1) a
class-specific choice model and (2) a class allocation model.
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The former models the probabilities with which each alternative is chosen (with
fixed or random parameters in the utility functions depending on whether we are using
fixed-parameter or random-parameter latent class modeling), while the latter models the
probability with which an individual belongs to each latent class.

In modeling our experiment, we defined our utility function for the fixed-parameter
LC according to Equation (2).

UVaccine i
= ASCVaccineNo choice + βUSAqOriginUSAVaccine i
+βEuropean Unionq

OriginEuropean UnionVaccine i
+ βHungaryq

OriginHungaryVaccine i
+βRussiaqOriginRussiaVaccine i

+ β60−70%q E f f iciency60−70%Vaccine i
+β71−90%q E f f iciency71−90%Vaccine i
+βAs described in the package lea f letq

Side e f f ectAs described in the package lea f letVaccine i

+β6 monthsq Protection6 monthsVaccine i
+ β12 monthsq Protection12 monthsVaccine i

+ εi

(2)

where βq denotes the parameter vector estimated for the q-th class. The attributes under
study are discussed in the following subsection. For the estimates, China (country of
origin), more than 90% (level of efficiency), long term (side effect), and lifelong (ensuring
protection) were the reference levels.

In the RLC estimations, the utility function parameters in Equation (2) were modified
according to Equation (3).

UVaccine i

= ASCVaccineNo choice +
(

βUSAq + σUSAn,q

)
OriginUSAVaccine i

+
(

βEuropean Unionq

+σEuropean Unionn,q

)
OriginEuropean UnionVaccine i

+
(

βHungaryq

+σHungaryn,q

)
OriginHungaryVaccine i

+
(

βRussiaq + σRussian,q

)
OriginRussiaVaccine i

+
(

β60−70%q + σ60−70%n,q

)
E f f iciency60−70%Vaccine i

+
(

β71−90%q

+σ71−90%n,q

)
E f f iciency71−90%Vaccine i

+
(

βAs described in the package lea f letq

+σAs described in the package lea f letn,q

)
Side e f f ectAs described in the package lea f letVaccine i

+
(

β6 monthsq + σ6 monthsn,q

)
Protection6 monthsVaccine i

+
(

β12 monthsq

+σ12 monthsn,q

)
Protection12 monthsVaccine i

+ εi

(3)

where σ denotes the person-dependent deviation for the random parameters.
In LC modeling, researchers mostly use information criteria to decide the optimal

number of classes. One example is the Bayesian information criterion (BIC) (Equation (4))
[4].

BIC = −2LL + KlnN, (4)

where LL is the converged log-likelihood, K is the number of parameters estimated, and N
is the number of observations.

To perform our model estimations and MRS calculations, we used the Apollo package
of the R program, which is a user-written, highly customizable R package. Through the use
of this package, users have the possibility to estimate a wide range of choice models, for
example in the context of RUM and non-RUM (e.g., random regret minimization)-based
approaches, less complex (e.g., CL, RPL, LC) and more complex (e.g., ICLV—integrated
choice latent variable model) specifications, or to integrate the package into the analysis
process of other types of stated preference estimation methods (e.g., the support. BWS
package created by Aizaki and Fogarty for the analyses of object-type BWSs) (Hess and
Palma 2019; Hess and Palma 2021; R Core Team 2020; Aizaki and Fogarty 2023).
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2.2. Case Description

We used data from a discrete choice experiment examining decision-makers’ pref-
erences regarding COVID-19 vaccines to test the modeling questions. The survey was
conducted in 2021 in Debrecen, the second-largest city in Hungary (Blaga et al. 2023). The
attributes of the final experiment (Table 1) were determined through a qualitative approach
(expert interviews, focus group interviews) and a pilot study. Our Bayesian D-efficient
experimental design, created with Ngene 1.2 software, included 32 decision situations (an
example is shown in Table 2), each with four options (three vaccine alternatives and one
“no choice” option) (ChoiceMetrics 2018). Due to the large number of decision situations,
we used blocking (4 blocks were created), so our respondents were only faced with a subset
of decision situations (8 situations).

Table 1. Attributes and their levels in the experiment.

Attribute Attribute Level

Country of origin

USA
European Union

Hungary
Russia
China

Level of efficiency (%)
60–70
71–90

More than 90

Side effect
As described in the package leaflet

Long term

Ensuring protection
6 months
12 months
Lifelong

Table 2. Example of a decision situation.

Vaccine 1 Vaccine 2 Vaccine 3 No Choice

Country of
origin USA China Russia

Level of
efficiency (%) More than 90 More than 90 60–70

Side effect As described in the
package leaflet

As described in the
package leaflet Long term

Ensuring
protection 6 months 12 months Lifelong

Your choice (X):

Our sample includes 1011 respondents, the details of which are shown in Table 3 (it is
important to note that in the study by Blaga et al., two respondents were excluded from
the sample (i.e., a sample of 1009 was analyzed) due to incomplete responses, but in this
case we were able to work with a full sample (n = 1011), as the questions underlying the
exclusion are not relevant for the present study) (Blaga et al. 2023). It is necessary to mention
that at the time of the data collection, the vaccination of the middle-aged population was
taking place in Hungary, so this bias should be considered when interpreting our results.

For more details on the survey process, see the study by Blaga et al. (2023).
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Table 3. Sample characteristics.

Characteristic Sample (n = 1011)

Gender (%)

Male 44.2
Female 55.8

Age category (%)

18–29 37.9
30–45 38.9
46–60 20.8
61–75 2.4

Highest level of education (%)

Primary 6.1
Secondary 54.7
Higher (minimum BSc) 39.2

Residence category (%)

Debrecen 67.8
Other cities in Hajdú–Bihar county 21.8
Other municipalities in Hajdú–Bihar county 8.3
Other 2.1

3. Results
3.1. Comparison of Latent Class Models with Different Number of Classes—Information Criteria

The information criteria and additional modeling considerations shown in Table 4
simultaneously illustrate the outputs for each class number of fixed-parameter LC and RLC
models. For the fixed-parameter LC modeling, a decrease in the BIC is observed up to the
seven-class version, but for the RLC, an increase is detected in the four-class case, so the
random-parameter specification testing ended with the four-class case.

Table 4. Information criteria and additional modeling aspects for LC (fixed- and random-parameter)
versions with different class numbers.

2 Class Fixed-
Parameter LC 2 Class RLC 3 Class Fixed-

Parameter LC 3 Class RLC 4 Class Fixed-
Parameter LC 4 Class RLC

Estimated
parameters 20 38 30 57 40 76

Ratio of significant
parameters at 5%
level (%)

85.00 84.21 93.33 57.89 87.50 63.16

Log-likelihood (final) −9016.99 −7981.58 −8653.83 −7767.81 −8252.72 −7799.10

AIC 18,073.98 16,039.15 17,367.66 15,649.62 16,585.44 15,750.19

BIC 18,213.95 16,305.08 17,577.61 16,048.51 16,865.37 16,282.05

Note: AIC: Akaike information criterion; BIC: Bayesian information criterion; Log-likelihood (0): −11,212.35. In
the table, the specifications with the most favourable significant parameter ratio and BIC value in fixed-parameter
LC and RLC contexts are shown in bold.

Some conclusions can be drawn from the results presented in Table 4. In the case of
latent class modeling, a different model could be selected as the “best” based on the values
of the recommended information criteria for the optimal number of classes, as indicated
by the ratio of significant parameters. When the LC model with only fixed parameters is
selected, the four-class version shows the lowest BIC, but the three-class version has the
most significant parameter estimates. Also, for the RLC, the specification with fewer classes
(two-class case) shows a significantly higher parameter estimation rate. In comparison,
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the case with more classes (the three-class case) performs better regarding the information
criteria.

3.2. Comparison of Latent Class Models with Different Numbers of Classes—Estimation Results

Based on the ambiguous conclusions of Table 4, the results of the estimations of all
three versions (two-, three-, and four-class case) are presented below. For the RLC modeling,
all attribute coefficients were simulated using a normal distribution with 1000 mlhs draws.
The results of the two-class fixed-parameter LC and RLC model estimations are shown in
Table 5.

Table 5. Results of the two-class fixed-parameter LC and RLC model estimations.

Attributes and Descriptive Data of the
Model

Two−Class Fixed-Parameter LC Two−Class RLC

Class 1 Class 2 Class 1 Class 2

ASC no choice −1.67
(−23.36)

−1.66
(−18.14)

USA −0.33
(−2.65)

0.71
(10.59)

−0.67
(−4.22)

2.28
(8.25)

USA (SD) - - 1.52
(7.30)

1.51
(8.16)

European Union 0.10
(0.86)

1.12
(17.54)

−0.04
(−0.27)

3.07
(10.14)

European Union (SD) - - 1.45
(8.70)

1.79
(10.58)

Hungary 0.04
(0.29)

1.16
(18.15)

0.03
(0.19)

2.97
(10.21)

Hungary (SD) - - 1.66
(8.03)

2.26
(9.46)

Russia 0.01
(0.07)

0.50
(7.64)

−0.50
(−3.26)

1.63
(7.64)

Russia (SD) - - 1.48
(7.37)

2.09
(8.36)

60–70 −0.81
(−7.98)

−0.81
(−18.00)

−2.41
(−12.29)

−0.81
(−7.10)

60–70 (SD) - - 1.64
(10.44)

0.71
(4.49)

71–90 −0.57
(−6.28)

−0.33
(−8.35)

−1.28
(−9.84)

−0.02
(−0.17)

71–90 (SD) - - 0.98
(7.05)

0.13
(0.54)

As described in the package leaflet 0.13
(1.77)

0.86
(21.84)

2.22
(10.78)

0.47
(6.28)

As described in the package leaflet (SD) - - 2.87
(12.71)

0.01
(0.05)

6 months −3.15
(−18.77)

−1.09
(−18.99)

−2.55
(−12.84)

−3.40
(−13.69)

6 months (SD) - - 1.48
(7.62)

1.60
(8.58)



Econometrics 2024, 12, 22 8 of 16

Table 5. Cont.

Attributes and Descriptive Data of the
Model

Two−Class Fixed-Parameter LC Two−Class RLC

Class 1 Class 2 Class 1 Class 2

12 months −1.99
(−18.63)

−0.44
(−9.79)

−1.28
(−11.08)

−2.37
(−11.00)

12 months (SD) - - 0.97
(6.46)

1.55
(9.35)

Class membership probability 0.32 0.68 0.49 0.51

Constant in class allocation equation −0.74
(−7.30) - −0.02

(−0.19) -

Ratio of significant parameters at 5% level (%) 66.67 100.00 88.89 83.33

Log-likelihood (final) −9016.99 −7981.58

BIC 18,213.95 16,305.08

Note: ASC: alternative specific constant; t-ratios are shown in parentheses below the parameter estimates; SD:
standard deviation; BIC: Bayesian information criterion; Log-likelihood (0): −11,212.35.

The estimates in Table 5 show that the no-choice option was less preferred (based on
the negative and significant value of ASC no-choice) compared to the vaccine alternative
choice for both models. This conclusion is also true for the other models discussed in this
paper, and ASCs were not included as class-specific in any of the models, so we will not
reinterpret them in the following paragraphs.

Based on the class probability values of the two-class cases, it is clear that the two types
of models (fixed-parameter LC and RLC) do not have the same classes (fixed-parameter
LC: Class 1: 0.32, Class 2: 0.68; RLC: Class 1: 0.49, Class 2: 0.51). The direction of the
estimated coefficients is mostly in line with expectations (e.g., as the level of efficiency and
the duration of ensuring protection increase, the respondents’ perception of the utility of
COVID-19 vaccines increases). In contrast, their effect is significant in most cases. In the
latter case, however, it is important to note the interesting conclusion that only 66.67% of
the estimated parameters for the first class of fixed-parameter LC are significant at the
5% level, compared to the 100% significant coefficient estimates for the second class. The
RLC specification shows a much more balanced ratio, with 88.89% of the parameters for
the first class and 83.33% for the second class considered significant at the 5% level. An
aggregate comparison of the models shows a significantly lower BIC for the RLC, indicating
a better model fit (which is probably due to the fact that the additional information gained
from using the RLC specification (mainly due to the introduction of random parameters
within latent classes) is greater than the “cost” of the complexity of the model), and most of
the estimated standard deviation parameters represent significant effects, suggesting the
existence of preference heterogeneity within groups. The exceptions to the latter for the
second class are the standard deviation parameters for the efficiency level of 71–90% and
the side effects described in the package leaflet.

The estimates for the three-class versions of fixed-parameter LC and RLC are presented
in Table 6.

The three-class estimates (Table 6) show that, as in the two-class versions, we have
obtained entirely different classes for the fixed-parameter LC and RLC models (fixed-
parameter LC: Class 1: 0.11, Class 2: 0.55, Class 3: 0.34; RLC: Class 1: 0.21, Class 2: 0.29,
Class 3: 0.50). The direction of the estimated coefficients in the three-class models is also
mostly in line with expectations, except for the positive parameter estimate for the first
class of LC for the side effect as described in the package leaflet (indicating that members
of this group are more positive about the long-term side effects of the vaccine compared to
those in the package leaflet). An exciting conclusion on the ratio of significant parameter
estimates can also be drawn when comparing the fixed-parameter LC and RLC models.
While the former has a very high ratio of parameters significant at the 5% level (Class 1:
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88.89%, Class 2: 100.00%, Class 3: 88.89%), the latter already shows a group where none of
the parameter estimates shows a significant effect (Class 1: 0.00%, Class 2: 77.78%, Class
3: 88.89%). Comparing the models based on the BIC information criterion, we can also
conclude, as in the two-class case, that the RLC performs significantly better. In addition to
the fact that for the first class of RLC, none of the attributes’ standard deviations represent
a significant effect at the 5% level (as mentioned earlier in the discussion of the ratio of
significant parameter estimates), it may be interesting to note that for the second group,
three standard deviation parameters do not represent a significant effect at the 5% level (for
those with the USA and Hungary as the country of origin and the 71–90% efficiency level).

Table 6. Results of the three-class fixed-parameter LC and RLC model estimations.

Attributes and Descriptive Data of
the Model

Three-Class Fixed-Parameter LC Three-Class RLC

Class 1 Class 2 Class 3 Class 1 Class 2 Class 3

ASC no choice −1.59
(−22.04)

−1.87
(−20.19)

USA −0.26
(−1.32)

1.51
(14.34)

−0.46
(−4.49)

−0.60
(−0.54)

0.98
(3.26)

0.61
(3.76)

USA (SD) - - - 5.76
(1.16)

0.42
(1.03)

2.00
(11.88)

European Union 0.48
(2.31)

1.94
(18.12)

−0.21
(−2.35)

3.39
(0.89)

1.34
(4.46)

1.50
(8.71)

European Union (SD) - - - 7.30
(1.24)

0.59
(1.80)

2.20
(12.50)

Hungary −1.02
(−4.50)

2.06
(19.37)

0.07
(0.76)

1.53
(0.51)

1.75
(5.72)

1.31
(7.38)

Hungary (SD) - - - 13.68
(1.23)

0.05
(0.15)

2.34
(12.46)

Russia −1.42
(−5.64)

1.37
(15.27)

−0.19
(−1.67)

−4.65
(−1.15)

1.49
(5.09)

0.21
(1.47)

Russia (SD) - - - 8.22
(1.17)

1.15
(4.57)

1.65
(8.41)

60–70 −1.97
(−9.25)

−0.69
(−12.64)

−1.03
(−12.42)

−18.40
(−1.18)

−0.60
(−3.44)

−1.49
(−11.94)

60–70 (SD) - - - 12.33
(1.20)

0.67
(3.26)

1.06
(8.55)

71–90 −1.43
(−7.70)

−0.18
(−3.68)

−0.63
(−8.55)

−7.63
(−1.27)

0.20
(1.39)

−0.73
(−8.08)

71–90 (SD) - - - 2.33
(1.34)

0.09
(0.23)

0.70
(5.58)

As described in the package leaflet −0.45
(−3.12)

0.29
(6.67)

1.73
(17.06)

26.48
(1.20)

0.68
(4.85)

0.59
(6.04)

As described in the package leaflet
(SD) - - - 30.03

(1.21)
0.86

(4.95)
0.85

(6.95)

6 months −3.14
(−13.26)

−1.78
(−25.47)

−1.23
(−11.95)

−20.86
(−1.14)

−5.00
(−10.21)

−1.34
(−11.32)

6 months (SD) - - - 9.54
(1.17)

1.65
(4.37)

0.40
(2.22)
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Table 6. Cont.

Attributes and Descriptive Data of
the Model

Three-Class Fixed-Parameter LC Three-Class RLC

Class 1 Class 2 Class 3 Class 1 Class 2 Class 3

12 months −2.36
(−12.91)

−1.17
(−19.43)

−0.48
(−6.32)

−12.27
(−1.15)

−2.78
(−9.36)

−0.65
(−7.37)

12 months (SD) - - - 2.99
(1.11)

1.55
(7.13)

0.29
(1.03)

Class membership probability 0.11 0.55 0.34 0.21 0.29 0.50

Constant in class allocation equation −1.66
(−13.30) − −0.48

(−4.30)
−0.33

(−2.27) - 0.56
(3.71)

Ratio of significant parameters at 5%
level (%) 88.89 100.00 88.89 0.00 77.78 88.89

Log-likelihood (final) −8653.83 −7767.81

BIC 17,577.61 16,048.51

Note: ASC: alternative specific constant; t-ratios are shown in parentheses below the parameter estimates; SD:
standard deviation; BIC: Bayesian information criterion; Log-likelihood (0): −11,212.35.

The four-class fixed-parameter LC and RLC model estimations are presented in Table 7.

Table 7. Results of the four-class fixed-parameter LC and RLC model estimations.

Attributes and
Descriptive Data of the
Model

Four-Class Fixed-Parameter LC Four-Class RLC

Class 1 Class 2 Class 3 Class 4 Class 1 Class 2 Class 3 Class 4

ASC no choice −1.47
(−19.43)

−1.93
(−21.12)

USA −0.40
(−3.66)

1.75
(14.43)

1.03
(5.56)

−0.20
(−1.01)

−33.58
(<0.01)

2.96
(8.69)

−0.48
(−3.48)

−0.36
(−0.57)

USA (SD) - - - - 31.07
(<0.01)

1.95
(7.79)

0.78
(4.03)

6.79
(3.89)

European Union −0.10
(−0.98)

2.34
(19.12)

1.00
(6.30)

0.65
(3.21)

−24.42
(<0.01)

3.90
(10.48)

−0.01
(−0.09)

5.26
(2.73)

European Union (SD) - - - - 8.20
(<0.01)

2.07
(8.39)

1.05
(6.11)

7.20
(4.79)

Hungary 0.22
(2.14)

2.12
(17.40)

1.67
(9.80)

−0.94
(−4.14)

−15.70
(<0.01)

3.60
(10.11)

0.26
(2.05)

1.09
(1.10)

Hungary (SD) - - - - 31.02
(<0.01)

3.12
(9.40)

0.36
(1.27)

14.84
(3.77)

Russia 0.04
(0.38)

0.65
(4.63)

1.81
(11.19)

−1.41
(−5.36)

12.81
(<0.01)

1.75
(6.41)

0.05
(0.43)

−4.19
(−3.44)

Russia (SD) - - - - 0.87
(<0.01)

2.89
(8.71)

0.87
(4.96)

7.75
(3.90)

60–70 −1.13
(−12.35)

−1.00
(−13.09)

−0.12
(−1.17)

−2.14
(−10.18)

−6.06
(<0.01)

−0.95
(−6.06)

−1.51
(−11.19)

−12.06
(−4.21)

60–70 (SD) - - - - 4.71
(<0.01)

0.97
(4.74)

1.12
(9.10)

6.54
(3.94)

71–90 −0.65
(−8.19)

−0.37
(−5.72)

0.28
(2.83)

−1.56
(−8.40)

−32.03
(<0.01)

0.02
(0.20)

−0.71
(−7.59)

−7.03
(−4.47)
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Table 7. Cont.

Attributes and
Descriptive Data of the
Model

Four-Class Fixed-Parameter LC Four-Class RLC

Class 1 Class 2 Class 3 Class 4 Class 1 Class 2 Class 3 Class 4

71–90 (SD) - - - - 49.63
(<0.01)

0.17
(0.34)

0.69
(5.66)

1.25
(2.22)

As described in the
package leaflet

2.02
(17.99)

0.14
(2.26)

0.32
(4.06)

−0.34
(−2.31)

−12.36
(<0.01)

0.44
(4.45)

0.93
(8.17)

22.38
(3.87)

As described in the
package leaflet (SD) - - - - 26.34

(<0.01)
0.08

(0.27)
0.92

(7.03)
27.28
(3.87)

6 months −1.36
(−11.71)

−0.85
(−10.12)

−3.57
(−17.30)

−3.08
(−13.29)

23.58
(<0.01)

−4.47
(−13.26)

−1.51
(−9.25)

−14.30
(−4.43)

6 months (SD) - - - - 19.65
(<0.01)

1.79
(6.83)

0.96
(6.20)

8.65
(3.68)

12 months −0.60
(−7.43)

−0.33
(−4.47)

−2.08
(−16.74)

−2.26
(−12.57)

29.47
(<0.01)

−3.17
(−11.91)

−0.67
(−5.95)

−9.07
(−4.09)

12 months (SD) - - - - 13.29
(<0.01)

1.84
(7.33)

0.53
(3.71)

2.41
(3.18)

Class membership
probability 0.31 0.33 0.26 0.10 <0.01 0.43 0.36 0.20

Constant in class
allocation equation

−0.06
(−0.51) - −0.23

(−2.14)
−1.18

(−9.11)
−11.71
(<0.01) - −0.75

(−6.47)
−0.19

(−1.44)

Ratio of significant
parameters at 5% level (%) 77.78 100.00 88.89 88.89 0.00 83.33 83.33 88.89

Log-likelihood (final) −8252.72 −7799.10

BIC 16,865.37 16,282.05

Note: ASC: alternative specific constant; t-ratios are shown in parentheses below the parameter estimates; SD:
standard deviation; BIC: Bayesian information criterion; Log-likelihood (0): −11,212.35.

The four-class estimates in Table 7 show that, as in previous cases, the same classes
were not identified using the fixed-parameter LC and RLC models (fixed parameter LC:
Class 1: 0.31, Class 2: 0.33, Class 3: 0.26, Class 4: 0.10; RLC: Class 1: <0.01, Class 2: 0.43,
Class 3: 0.36, Class 4: 0.20). The directions of the estimated coefficients were mainly in
line with our expectations, as in the previously estimated models. An exception to this
is seen in the case of the four-class LC, which is reflected in the fact that members of the
third class have the highest preference for efficiency levels between 71 and 90% (compared
to more than 90% efficiency) and that for the fourth group, the side effect as described in
the package leaflet is associated with a negative sign (less preferred over long-term side
effects). Regarding the ratio of significant parameter estimates, it can be concluded that
the ratio of significant parameter estimates is relatively high for all classes in the four-class
fixed-parameter LC (Class 1: 77.78%, Class 2: 100.00%, Class 3: 88.89%, Class 4: 88.89%),
however, in the RLC there is one class where no parameter estimate is significant at the 5%
level (Class 1: 0.00%, Class 2: 83.33%, Class 3: 83.33%, Class 4: 88.89%). When comparing
the fixed-parameter LC and RLC specifications—based on the BIC information criterion—it
can be concluded that the latter shows a better fit. However, the difference between the
two models is now significantly smaller than it was for the lower-class cases. In addition to
the fact that in the case of RLC, we estimated a whole class without significant parameters,
the conclusion drawn for the three-class case that there is a standard deviation parameter
with no significant effect at the 5% level in the other classes (e.g., for the second class for
the 71–90% efficiency level and the side effect as described in the package leaflet, and for
the third class for the Hungary country of origin) is also valid here.
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3.3. Comparison of Latent Class Models with Different Numbers of Classes—Marginal Rate of
Substitution (MRS) Calculations

Marginal rate of substitution (MRS) calculations were also carried out, where the
numerator was the attribute of interest and the denominator was the “as described in the
package leaflet” side effect in all cases (Table 8). This is not a typical MRS calculation, in
which the cost parameter is included in the denominator, and WTP (willingness to pay)
calculations are performed. This is because, in our final study, the cost attribute was not
included in the characteristics of the alternatives. However, it should be emphasized that
the present approach is perfectly applicable for comparing models in the MRS context.

Table 8. Results of the MRS calculations (with non-linear effect in the denominator).

Attribute

MRS Calculations for the Fixed-Parameter LC Specifications
(Using Posterior Probabilities)

Two-Class Three-Class Four-Class

Mean
(Q1)

(Median)
(Q3)

USA

−0.26
(−2.10)
(0.72)
(0.83)

2.28
(−0.00)
(1.04)
(5.15)

4.85
(0.59)
(3.23)

(11.07)

European Union

1.14
(0.85)
(1.29)
(1.30)

2.39
(0.39)
(1.02)
(5.53)

5.96
(0.07)
(3.14)

(14.69)

Hungary

1.01
(0.44)
(1.32)
(1.35)

2.70
(0.84)
(2.82)
(4.66)

6.52
(1.77)
(5.25)

(13.42)

Russia

0.41
(0.13)
(0.56)
(0.58)

2.35
(0.10)
(2.34)
(4.46)

3.39
(0.93)
(4.38)
(4.65)

60–70

−2.69
(−5.61)
(−1.13)
(−0.96)

−0.49
(−1.91)
(−0.86)
(−0.75)

−1.93
(−6.23)
(−0.60)
(−0.40)

71–90

−1.71
(−3.94)
(−0.52)
(−0.39)

0.19
(−0.37)
(−0.35)
(−0.35)

−0.24
(−2.18)
(−0.32)
(0.86)

6 months

−8.83
(−21.54)
(−2.05)
(−1.30)

−2.47
(−7.29)
(−1.45)
(−0.76)

−4.16
(−7.19)
(−5.74)
(−0.74)

12 months

−5.40
(−13.60)
(−1.01)
(−0.53)

−1.38
(−4.59)
(−0.75)
(−0.30)

−1.89
(−3.86)
(−2.28)
(−0.34)

The results in Table 8 show that the central tendencies (mean and median) of the
MRS calculations differ significantly for different class number specifications. We can see
that the higher-class number model has a higher mean MRS calculation for the country
of origin. However, for the efficiency level and protection duration, we can already see
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that the two-class specification shows the most negative MRS estimates and the three-class
specification shows the most positive MRS estimates, with the four-class estimates falling
in between. It can also be seen that while for the two-class specification, the mean is always
lower than the median, for the three- and four-class cases, the mean is usually higher
(although there are exceptions).

Since there were significant differences between the MRS calculations for the different
class numbers of models (with several changes in the sign), we tested the more standard
scenario of including a coefficient estimated with a linear effect (the models were re-
estimated by calculating a single coefficient for vaccine efficiency, assuming the same
difference in utility between the levels) in the denominator of the MRS calculations. The
results are shown in Table 9.

Table 9. Results of the MRS calculations (with linear effect in the denominator).

Attribute

MRS Calculations for the Fixed-Parameter LC Specifications
(Using Posterior Probabilities)

Two-Class Three-Class Four-Class

Mean
(Q1)

(Median)
(Q3)

USA

0.53
(−0.79)
(1.24)
(1.32)

1.20
(1.14)
(1.25)
(1.27)

1.70
(−0.37)
(1.93)
(3.74)

European Union

2.13
(2.09)
(2.16)
(2.16)

1.68
(1.05)
(2.18)
(2.27)

2.08
(−0.41)
(1.62)
(5.00)

Hungary

1.92
(1.15)
(2.33)
(2.38)

2.15
(1.97)
(2.29)
(2.32)

2.61
(0.72)
(2.70)
(4.64)

Russia

1.01
(0.96)
(0.97)
(1.07)

1.27
(0.62)
(0.69)
(1.63)

1.68
(0.24)
(1.81)
(2.37)

As described in the
package leaflet

1.52
(1.11)
(1.75)
(1.77)

1.57
(1.01)
(1.90)
(1.98)

1.37
(0.48)
(0.83)
(2.72)

6 months

−8.88
(−19.45)
(−3.10)
(−2.51)

−2.97
(−4.64)
(−2.35)
(−2.31)

−2.70
(−4.37)
(−2.34)
(−1.96)

12 months

−5.16
(−11.87)
(−1.50)
(−1.13)

−1.43
(−2.46)
(−0.97)
(−0.94)

−1.34
(−2.43)
(−1.04)
(−0.75)

The results in Table 9 show that compared to the calculations presented earlier (Table 8),
we can see a much more balanced picture between the models. The MRS calculations are
closer to each other, while no sign change occurs in either case. Regarding the position of
the central tendencies, it can be seen that the average exceeds the median in only a few
cases, with the second quartile being larger in the majority of cases.
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It can therefore be seen that there are significant differences in the distributions of the
MRS calculations for the fixed-parameter LC models estimated at different class numbers.
Although these differences are reduced when a linear effect is included in the denominator
in the conventional form, it may nevertheless be advisable to examine the distributions of
MRS estimates before choosing the optimal class number. It can be seen, however, that for
RLC we did not perform MRS calculations assuming either a non-linear or a linear effect,
due to the difficulty and complexity caused by the handling of double heterogeneity.

4. Conclusions

In the paper, we examined which aspects should be considered in order to choose
the optimal number of classes for LC modeling. To examine this question, we analyzed
data from a discrete choice experiment in 2021, which examined preferences for COVID-19
vaccines in Hungary’s second-largest city, Debrecen.

To compare the fixed-parameter LC and RLC models, we tested a two-, three-, and
four-class version. In addition to the Bayesian information criterion, the ratio of estimated
significant parameters within the total estimated parameters was also considered when
comparing models with different class numbers. Based on the results, the two aspects
always led to other “best models”. Based on the information criterion, the decision favored
four-class fixed-parameter LC and three-class RLC, while the ratio of significant parameter
estimates favored three-class fixed-parameter LC and two-class RLC. In most cases, the
direction of the estimated coefficients for the models was as expected. Still, for the three- and
four-class RLCs, one class appeared with no significant parameter estimates. In addition,
significant differences in class probability values were also detected between the fixed- and
random-parameter models, i.e., in none of the class number cases were the same groups of
classes identified. It is also necessary to mention that non-significant standard deviations
have become more common in cases of RLC with more than two classes. Finally, it is worth
mentioning that the differences in the distributions of the MRS estimates were reduced
when we assumed a linear effect in the denominator in the traditional form.

Based on our conclusions, we can make the recommendations that for latent class
models (including both the fixed- and random-parameter cases), analysts should consider
additional aspects in addition to the information criteria, such as (1) the ratio of signifi-
cant parameter estimates (it may be interesting to examine this both between and within
specifications to find out which model type and class number has the most balanced ratio),
(2) the validity of the estimated parameters (we recommend focusing on whether the
conclusions are consistent with our theoretical model), (3) the justification for including
random parameters (it is important to find a balance between the complexity of the model
and its information content, i.e., to examine when (and to what extent) the introduction
of within-class heterogeneity is relevant), (4) the distributions of MRS calculations (since
they often function as a direct measure of preferences, it is necessary to test how consistent
the distributions of specifications with different class numbers are (if they are highly, i.e.,
relatively stable in explaining consumer preferences, it is probably worth putting more
emphasis on the aspects mentioned above when choosing a model)).

Our research has several limitations, among which it is necessary to mention that we
analyzed data from only one experiment with a given experimental design. In addition, it
is necessary to mention that in the comparison of the models, based on information criteria,
a strong emphasis was put on the BIC, and the other information criteria were not analyzed
(AIC was only mentioned). It is also necessary to mention that for the fixed-parameter LC
and RLC specifications estimated under different class numbers, the class allocation model
included only one constant, with no explanatory variables. Turning the focus to the RLC,
it is necessary to mention that only the normal distribution was tested and applied in the
definition of the random parameters, and that due to the complexity of the specification
(handling double heterogeneity), no MRS calculations were performed.

These limitations could represent future research directions. One such direction
could be to investigate the question (determining the optimal number of classes for LC
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modeling) through the analysis of further experiments. It may be possible to extend the
range of information criteria under investigation, further increasing the complexity of
the class allocation model through the inclusion of explanatory variables. In addition,
testing additional distributions in the determination of the random parameters for the RLC
specification could be a promising option. Finally, it is necessary to find the optimal method
of testing through MRS calculations.
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