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Abstract: When estimating treatment effects, the gold standard is to conduct a randomized experiment
and then contrast outcomes associated with the treatment group and the control group. However, in
many cases, randomized experiments are either conducted with a much smaller scale compared to the
size of the target population or accompanied with certain ethical issues and thus hard to implement.
Therefore, researchers usually rely on observational data to study causal connections. The downside
is that the unconfoundedness assumption, which is the key to validating the use of observational
data, is untestable and almost always violated. Hence, any conclusion drawn from observational data
should be further analyzed with great care. Given the richness of observational data and usefulness
of experimental data, researchers hope to develop credible methods to combine the strength of the
two. In this paper, we consider a setting where the observational data contain the outcome of interest
as well as a surrogate outcome, while the experimental data contain only the surrogate outcome. We
propose an easy-to-implement estimator to estimate the average treatment effect of interest using
both the observational data and the experimental data.

Keywords: causal inference; treatment effects; observational studies; surrogate outcomes;
unconfoundedness

1. Introduction

In the realm of causal inference, randomized experiments stand as the gold standard
for estimating treatment effects (Imbens and Rubin 2015; Rubin 1974). By randomly
assigning individuals to treatment and control groups, researchers can contrast outcomes
to study the impact of the intervention. However, the practicality of conducting large-scale
randomized experiments often falls short, either due to logistical constraints or ethical
considerations. Consequently, researchers often turn to observational data to explore causal
relationships, despite its inherent limitations. The cornerstone of using observational data
lies in the unconfoundedness assumption (Rosenbaum and Rubin 1983), which states that
all confounding factors in the experiment are adequately controlled for. However, in reality,
this assumption is often untestable and frequently violated, casting doubt on the validity
of conclusions drawn from observational studies.

Due to the complementary strengths of both experimental and observational data,
researchers have been proposing methods to combine both experimental data and obser-
vational data to estimate treatment effects. For example, Kallus et al. (2018) estimates
the bias from using observational data to estimate the average treatment effect with a
linear estimator, and Rosenman et al. (2023) takes the advantage of the classic James–Stein
shrinkage estimator (James and Stein 1992) to combine the estimates from observational
data and experimental data while assuming unconfoundedness. In this paper, we address
this challenge within a specific context, where observational data include both the outcome
of interest and a surrogate outcome, while experimental data only provide the surrogate
outcome. Our objective is to propose an easily implementable estimator that leverages both
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sources of data to estimate the average treatment effect of interest. By bridging the gap
between observational and experimental data, our approach offers a robust and reliable
method for treatment effect estimation.

The remainder of the paper is organized as follows. Section 2 introduces the basic
setup. In Section 3, we develop our method to estimate the treatment effect of primary
outcome by using information from the experimental study. In Section 4, we discuss several
widely studied extensions to the basic setup and give a concrete solution to each extension.
Section 5 compares several different methods through simulations.

2. Setup

Suppose we want to estimate the treatment effect of an intervention on a primary out-
come YP ∈ R. We consider leveraging the data from two distinct studies: an observational
study and an experimental study. For each unit i in the observational study, we collect data
on treatment assignments Wi, the primary outcome YP

i , a surrogate outcome YS
i ∈ R, and a

set of pre-treatment covariates Xi. The surrogate outcome YS is any variable that changes
post-treatment, and while we primarily discuss the case where YS is one dimensional, our
methodology is readily extendable to multi-dimensional surrogate outcomes.

Under the assumption of unconfoundedness, i.e.,

Yi(1), Yi(0) ⊥⊥ Wi | Xi,

either the Inverse Probability Weighting (IPW) estimator or the Augmented Inverse Proba-
bility Weighting (AIPW) estimator would suffice for estimating the treatment effect. How-
ever, there are numerous scenarios in which the assumption of unconfoundedness is not
plausible. In such cases, estimating the treatment effect using only the observational data
becomes infeasible.

To address this challenge, we introduce a secondary source of data: a prior study
focusing on the surrogate outcome YS, where the assumption of unconfoundedness is
satisfied. Typically, this prior study takes the form of a small-scale randomized exper-
iment concerning the surrogate outcome. Therefore, we operate with two samples: an
observational sample and an experimental sample. Each unit i in the observational sample
provides a tuple (Xi, Wi, YS

i , YP
i ), while each unit i in the experimental sample provides a

tuple (Xi, Wi, YS
i ). It is important to note that the size of the experimental sample NE is

significantly smaller than the size of the observational sample NO.
Our primary objective is to estimate the quantity

τP = E[YP
i (1)− YP

i (0) | Gi = O],

where Gi is an indicator function denoting the sample to which unit i belongs. This setup is
consistent with the framework presented by Athey et al. (2020).

By integrating data from both the observational and experimental studies, we aim to
leverage the strengths of each approach. The observational study provides a large sample
size and detailed covariate information, while the experimental study offers reliable causal
inference for the surrogate outcome under the unconfoundedness assumption. This com-
bined approach allows us to robustly estimate the treatment effect on the primary outcome
YP, even in the presence of potential confounding factors in the observational study.

3. Method

In this section, we develop our method to estimate the average treatment effect (ATE)
of YP. To achieve point identification of the ATE, we assume the following structural model
for YP:

YP
i = f (Xi, YS

i , ϵi), ϵi ⊥⊥ Xi, YS
i , (1)

where ϵi is independent of Xi and YS
i . Note that this structural model is general in the sense

that the primary outcome can depend on the pre-treatment covariates in an arbitrary way.
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We assume the errors to be exogenous. Our estimating procedure can be extended to the
case of endogenous error settings like the instrumental variable setup easily. This model
implies that all the effect of treatment on the primary outcome is mediated through the
surrogate outcome. Consequently, the surrogate outcome, together with the pre-treatment
covariates, determines the primary outcome. Under this assumption, τP is identifiable.

To see this, we define

τS(x) = E[YS
i (1)− YS

i (0) | Xi = x]

and
µ(x, y) = E

[
YP

i | Xi = x, YS
i = y, Gi = O

]
.

Then, E
[
YP

i (w)
]

can be expressed as E[µ(Xi, YS
i (w))]. The joint distribution of Xi and

YS
i (w) is identifiable from the experimental sample due to unconfoundedness.

Consider a concrete model where YP
i = ρYS

i + f (Xi) + ϵi with ϵi being independent
of YS

i and Xi. For such a model, we can use the Robinson residual-in-residual method to
estimate ρ, ensuring the final estimate of the ATE is consistent. For the general case, we can
estimate τP using the following procedure:

1. Regress YP on YS and X to obtain an estimate of µ, denoted as µ̂.
2. Estimate the conditional average treatment effect τ(x) on the surrogate outcome YS,

obtaining an estimate τ̂.
3. Define ŶS

i (1) = YS
i if Wi = 1 and ŶS

i (1) = YS
i + τ̂(Xi) if Wi = 0.

4. Estimate E
[
YP

i (1)
]

by 1
NO

∑NO
i=1 µ̂(Xi, ŶS

i (1)).
5. Define ŶS

i (0) = YS
i if Wi = 0 and ŶS

i (0) = YS
i − τ̂(Xi) if Wi = 1.

6. Estimate E
[
YP

i (0)
]

by 1
NO

∑NO
i=1 µ̂(Xi, ŶS

i (0)).

7. The final estimate is τ̂P = 1
NO

∑NO
i=1 µ̂(Xi, ŶS

i (1))−
1

NO
∑NO

i=1 µ̂(Xi, ŶS
i (0)).

With this procedure, we can estimate the ATE on the primary outcome using a single
model for the conditional response function µ and one model for the conditional average
treatment effect (CATE) estimation. In the following sections, we will discuss various
adaptations of this procedure for different scenarios.

4. Applications

In the previous section, we develop a general procedure to combine both the experi-
mental sample and the observational sample. It relies on first estimating the conditional
average treatment effect on the surrogate outcome and then correcting the surrogate out-
comes in the observational sample. Estimating the conditional average treatment effect
(CATE) is usually a case-by-case problem and involves different estimation methods for
different settings. In this section, we discuss four settings where we can apply the estimator
in Section 3 with different versions of step 2. We also discuss the setting where we drop
the unconfoundedness assumption on the experimental sample. In fact, as long as the
conditional average treatment effect τ is identifiable, unconfoundedness is not necessary.

4.1. Covariate Support Mismatch between Samples

The first scenario we consider aligns with the setting discussed in Kallus et al. (2018),
where the support of pre-treatment covariates in the experimental sample differs from that
in the observational sample. We tackle this scenario by adding a calibration step on top of
estimating procedure. Such a situation often arises in practice because the experimental
sample typically derives from historical data, making it unlikely that the experimental
and observational studies target identical populations. Under these circumstances, using
only the experimental sample to estimate the conditional average treatment effect (CATE)
requires extrapolation to the observational sample. Such extrapolation becomes partic-
ularly problematic when the experimental sample size is much smaller than that of the
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observational sample. Therefore, it is essential to calibrate our CATE estimates on the
experimental sample to avoid potential biases.

Kallus et al. (2018) observed that if we define eE(x) = P(Wi = 1 | Xi = x, Gi = E) and
qE(Xi) =

Wi
eE(Xi)

− 1−Wi
1−eE(Xi)

, then

E[qE(Xi)Yi | Xi] = τ(Xi).

We now define ω(x) as

ω(x) = E[Yi | Wi = 1, Xi = x, Gi = O]−E[Yi | Wi = 0, Xi = x, Gi = O],

then the above observation motivates the following procedure to estimate the CATE of the
surrogate outcome on the observational sample:

1. Apply any CATE estimation algorithm on the observational sample to obtain an
estimate ω̂.

2. Solve the following optimization problem to obtain θ̂:

θ̂ = arg min
θ

NE

∑
i=1

(
qE(Xi)Yi − ω̂(Xi)− θTXi

)2
.

3. Define τ̂(x) = θ̂Tx + ω̂(x).

Using the above estimate of τ, we can proceed with the estimator described in Section 3.
We can view the above steps as performing additional calibrations. The core idea is to
leverage a loss function to estimate the difference between the ill-posed target ω and
the true quantity of interest τ. A more general approach can be achieved by fitting a
non-parametric function of Xi instead of a linear function.

In summary, this procedure helps to mitigate the issues arising from covariate support
mismatch between the experimental and observational samples. By calibrating the CATE
estimates from the experimental sample with information from the observational sample,
we improve the robustness and reliability of our treatment effect estimates.

4.2. Instrumental Variable (IV) Setting in the Experimental Sample

In this section, we drop our unconfoundedness assumption on the experimental sam-
ple and consider the instrumental variable setting which is widely studied in econometrics
literature. Note that without the unconfoundedness assumption, point identification is
limited to a few specific settings like instrumental variables. Future work could include
extending our estimating procedures to the setting where only observational data are avail-
able and incorporate our approach with the existing literature on estimating conditional
average treatment effects with observational data (Wang et al. 2022; Wu and Yang 2022; Xie
et al. 2012).

4.2.1. Constant Effect

We start with the simplest instrumental variable setting where the effect is constant. In
particular, we consider a setting where in the experimental sample, we have an instrumental
variable Z with the following structural model:

YS
i = αTXi + Wiτ + ϵi, ϵi ⊥⊥ Zi

Wi = βTXi + Ziγ + ξi.

Such a model is introduced in almost every econometrics textbook, for example,
in Angrist and Pischke (2009). It can be seen easily that the parameter τ is exactly the
conditional average treatment effect of YS. It is well known that we can then estimate τ by
two-stage least squares (2SLS) in the instrumental variable literature.
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4.2.2. Non-Parametric IV

Now, we consider a more general instrumental variable setting. Specifically, we
consider the following model:

YS
i = τ(Xi)Wi + g(Xi) + ϵi, ϵi ⊥⊥ Zi,

where the effect is a function of the covariates rather than a constant. This is in fact a special
case of the more general non-parametric instrumental variable model (Hall and Horowitz
2005; Horowitz 2011; Newey and Powell 2003). To estimate τ, we can follow Hall and
Horowitz (2005). First, note that

E[Y|W = 1, Z = z] = E[τ(X)|W = 1, Z = z] +E[g(X)|W = 1, Z = z]

=
∫ 1

0
(τ(x) + g(x)) fX|W=1,Z(x, z)dx

=
∫ 1

0
(τ(x) + g(x))

fXZ|W=1(x,z)

fZ|W=1(z)
dx

Therefore,

E[Y|W = 1, Z = z] fZ|W=1(z) =
∫ 1

0
(τ(x) + g(x)) fXZ|W=1(x, z)dx.

And hence,

E[Y|W = 1, Z = z] fZ|W=1(z) fXZ|W=1(u, z) =
∫ 1

0
(τ(x) + g(x)) fXZ|W=1(x, z) fXZ|W=1(u, z)dx. (2)

If we define

t(x, u) =
∫ 1

0
fXZ|W=1(x, z) fXZ|W=1(u, z)dz

and integrate both sides of (2) with respect to z, then we have

E[Y fXZ|W=1(u, Z)] =
∫ 1

0
(τ(x) + g(x))t(x, u)dx

for any u ∈ [0, 1], where the expectation on the left-hand side is taken with respect to the
conditional joint distribution (Y, Z|W = 1). If we define

(Th)(u) =
∫ 1

0
h(x)t(x, u)dx

and
r(u) = E[Y fXZ|W=1(u, Z)]

then we arrive at the following operator equation

r(u) = (T(τ + g))(u).

We can estimate τ + g using the Hall–Horowitz estimator. Similarly, we have another
operator equation, where only g is involved by conditioning on W = 0. With that equation,
we are able to estimate g. Then, we can estimate τ by taking the difference.

Hall and Horowitz (2005) give good theoretical properties of this method. However,
it involves estimating density functions, which is unstable in practice. In fact, Hall and
Horowitz (2005) aim to address the general non-parametric IV problem, while we only care
about τ(x).

While our structural model assumption represents a specific case within the broader
framework of non-parametric instrumental variable (IV) models, we can leverage alterna-
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tive methods for more general applications. Specifically, the generalized random forest
(GRF) methodology, proposed by Athey et al. (2019), offers a flexible and computationally
efficient approach for estimating the conditional average treatment effect (CATE), especially
under our structural model assumption.

The GRF framework extends the traditional random forest algorithm to accommodate
the estimation of heterogeneous treatment effects (more broadly, any quantity of interest
identified as the solution to a set of local moment equations Athey et al. (2019)).

We recommend the use of GRF for estimating τ for the following two reasons:

1. Flexibility: GRF is capable of modeling complex, non-linear relationships between the
covariates and the treatment effect, which is often essential in practical applications
where such relationships are not adequately captured by parametric models.

2. Generalizability: One notable advantage of GRF is its ability to generalize beyond
binary treatment variables. As discussed in Athey et al. (2019), GRF can be extended
to settings where the treatment variable W is a real-valued continuous variable.

4.3. Instrumental Variable Setting with Different Support of Pre-Treatment Covariates

In this section, we address the scenario where we have different support of pre-
treatment covariates and a non-parametric instrumental variable (IV) model for the ex-
perimental sample. This approach is particularly relevant when considering complex
experimental designs with multi-dimensional covariates.

To formalize our setup, we define the following conditional expectations:

µ(x) = E[Y | X = x],

π(x) = E[Z | X = x],

e(x) = E[W | X = x],

m(x) = E[YZ | X = x],

γ(x) = E[WZ | X = x].

Given these definitions, it follows that

τ(x)[γ(x)− e(x)π(x)]− [m(x)− µ(x)π(x)] = 0.

Thus, we can write the parameter of interest τ(x) as the solution to the following
minimization problem:

τ(x) = arg min
τ:X→R

E
[
(τ(x)[γ(x)− e(x)π(x)]− [m(x)− µ(x)π(x)])2

]
.

The direct estimation of τ(x) using the above loss function is possible; however, it
proves to be inefficient in practice, particularly when dealing with multi-dimensional pre-
treatment covariates. This inefficiency arises from the need to estimate numerous nuisance
parameters, leading to error accumulation and reduced robustness.

Inspired by the loss-defining property of τ(x), we propose an alternative estimation
procedure, which we term as the Kallus IV method, adapted from Kallus et al. (2018). The
procedure is as follows:

1. Apply any conditional average treatment effect (CATE) estimation algorithm, denoted
by Q, to the set {Xi, Wi, YS

i }
m
i=1 to obtain an initial estimate ω̂(x).

2. Solve the following optimization problem on the experimental sample to refine the
estimate:

θ̂ = arg min
θ

n

∑
i=1

(
[m̂(xi)− µ̂(xi)π̂(xi)]−

(
θTxi + ω̂(xi)

)
[γ̂(xi)− ê(xi)π̂(xi)]

)2
.
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3. Use the combined estimate ω̂(x) + θ̂Tx as the final estimate of the CATE on the
surrogate.

This procedure leverages the initial non-parametric estimate and refines it using an
optimization framework that adjusts for the instrumental variables’ influence. While
the optimization step is currently formulated linearly in θ, it is worth noting that a non-
parametric function of Xi could be fitted instead. However, empirical results indicate that
non-parametric adjustments may lead to unstable estimates when the dimensionality of
covariates is high, emphasizing the trade-off between flexibility and stability.

The Kallus IV method thus offers a robust approach to estimate the CATE in the
presence of multi-dimensional covariates and instrumental variables.

5. Simulations

In the previous sections, we outlined a procedure to estimate the average treatment
effect of the primary outcome using prior information in the experimental sample. We
considered three scenarios in which our procedure, as described in Section 3, can be utilized.
In this section, we compare several estimators through a series of simulations. Our primary
objective is to compare our proposed procedure with the canonical imputation estimator
presented by Athey et al. (2020), particularly in cases where we have an unconfounded
experimental sample.

We consider two primary settings in our analysis: one where there is no confounding
in the experimental sample (i.e., we have either a randomized experiment or an uncon-
founded experiment) and another where there is confounding (assuming a non-parametric
instrumental variable (IV) model for the experimental sample). For each of these settings,
we further divide our analysis into two subcases: (1) the support of the pre-treatment co-
variates in the experimental sample is the same as the support of pre-treatment covariates
in the observational sample, and (2) the support of the pre-treatment covariates in the
experimental sample is not the same as the support in the observational sample, though
they do overlap.

When there is no confounding, we compare three estimators: (1) the imputation
estimator as described by Athey et al. (2020), (2) our estimator with τ(x) estimated using a
generalized random forest, and (3) our estimator with τ(x) estimated using the approach
by Kallus et al. (2018). In the presence of confounding, both the imputation estimator
and the approach by Kallus et al. (2018) become invalid, as they require the experimental
sample to be unconfounded. Therefore, in these scenarios, we compare two estimators:
(1) our estimator with τ(x) estimated by a generalized random forest and (2) our estimator
with τ(x) estimated using the Kallus IV approach.

The simulations are designed to provide a robust comparison of these estimators under
varying conditions of confounding and covariate support. By doing so, we aim to identify
the strengths and limitations of each method, particularly focusing on the performance of
our proposed estimator in different scenarios.

We work with the following data generating mechanism:

Xi ∼ N (0, Ip×p),

ϵi ∼ N (0, 1),

Zi ∼ Binom(1/3),

Qi ∼ Binom(1/(1 + e−ωϵi )),

Wi = Zi ∧ Qi,

YS
i = µ(Xi) + (Wi − 1/2)τ(Xi) + ϵi.

and

YP
i =

κ

∑
j=1

X(j)
i + (X(p)

i )2 + 2YS
i + (X(p−2)

i + X(p−1)
i X(p−3)

i )YS
i + ξi
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i.e., YP = f (YS, X, ξ), where ξ is independent noise. The data generation mechanism above
is the same as in the appendix of Athey et al. (2019).

Now, we can adjust several parameters in the data generation mechanism to satisfy
different conditions:

1. Presence of Confounding: We vary ω to be either 0 or 1. If ω = 0, there is no
confounding; otherwise, there is confounding, and we are in the non-parametric
instrumental variable (IV) model.

2. Sparsity of the Signal: We set κτ to be either 2 or 4 to vary the sparsity of the signal.
3. Additivity of the Signal: When true, τ(x) = ∑κτ

j=1 max{0, xj}; when false, τ(x) =

max{0, ∑κτ
j=1 xj}.

4. Presence of Nuisance Terms: When true, µ(x) = 3 max{0, x5} + 3 max{0, x6} or
µ(x) = 3 max{0, x5 + x6} depending on the additive signal condition; when false,
µ(x) = 0.

5. Identical Support: When true, we assume the distribution of the covariates in the
experimental sample and that in the observational sample are the same; when false,
Xi ∼ N ([1, · · · , 1]T , Ip×p) in the observational sample.

In our setup, we fix the dimension of Xi (p) to be 10, the experimental sample size (n)
to be 300, and the observational sample size (m) to be 1000. We are particularly interested
in the treatment effect on YP.

To evaluate different methods, we compare their performance based on the mean
squared error (MSE). To calculate MSE, we use the Monte Carlo method to estimate the true
value of the average treatment effect (ATE) and generate 200 realizations. This approach
allows us to robustly assess the accuracy and reliability of the various methods under
different conditions.

Tables 1 and 2 present the simulation results. We observe that when the support of
the pre-treatment covariates is identical, the generalized random forest (GRF) method
outperforms the other two methods, regardless of the presence of confounding. This
outcome is expected, as identical support implies no need for extrapolation, rendering
the improvements from the Kallus method minimal. Conversely, when the support of
pre-treatment covariates differs, both the Kallus and Kallus IV methods demonstrate
competitive performance. Notably, in the presence of confounding, the Kallus IV method
surpasses the GRF method in terms of performance.

To further explore the scenario of differing supports, we modify the previous setting
slightly. Specifically, we now assume that when the support of the pre-treatment covariates
is not identical, the support of the pre-treatment covariates in the experimental sample is
contained within the support of the pre-treatment covariates in the observational sample,
rather than merely overlapping. Specifically, we have the following:

5a Identical support: When true, we assume the distribution of the covariates in the

experimental sample and that in the observational sample are the same: X(j)
i ∼

Uniform(−1, 1). When false, X(j)
i ∼ Uniform(−1, 1) in the experimental sample and

Xi ∼ N (0, Ip×p) in the observational sample.

Table 1. Simulation results for ω = 0.

ω κτ Additivity Nuisance Identical Support MC Estimate GRF Imputation Kallus Winner

0 2 Yes Yes Yes 1.62 0.19 1.02 0.34 GRF
0 2 Yes No Yes 1.58 0.12 0.22 0.24 GRF
0 4 No Yes Yes 2.10 0.22 1.13 0.55 GRF
0 4 No No Yes 2.10 0.14 0.26 0.41 GRF
0 2 Yes Yes No 8.73 30.91 43.38 72.83 GRF
0 2 Yes No No 8.67 27.28 36.00 6.45 Kallus
0 4 No Yes No 8.11 18.56 29.07 51.25 GRF
0 4 No No No 8.11 15.98 23.29 7.05 Kallus
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Table 2. Simulation results for ω = 1.

ω κτ Additivity Nuisance Identical Support MC Estimate GRF Kallus IV Winner

1 2 Yes Yes Yes 1.63 0.46 0.65 GRF
1 2 Yes No Yes 1.55 0.26 0.80 GRF
1 4 No Yes Yes 2.12 0.49 0.64 GRF
1 4 No No Yes 2.11 0.30 0.51 GRF
1 2 Yes Yes No 8.73 31.60 28.27 Kallus IV
1 2 Yes No No 8.72 27.84 10.80 Kallus IV
1 2 No Yes No 6.35 15.00 31.79 GRF
1 2 No No No 6.33 12.64 11.01 Kallus IV
1 4 No Yes No 8.11 17.93 32.65 GRF
1 4 No No No 8.09 15.35 16.72 GRF
1 4 Yes No No 17.30 109.78 28.89 Kallus IV
1 4 Yes Yes No 17.38 114.74 42.00 Kallus IV

Table 3 shows the simulation results. We see that similar to the simulation results
in the previous two tables, Kallus/Kallus IV performs better than GRF when we have
different support.

Table 3. Simulation results, inclusion of the support.

ω κτ Additivity Nuisance Identical Support MC Estimate GRF Kallus/Kallus IV Winner

0 2 Yes Yes No 1.61 0.60 0.30 Kallus
0 2 Yes No No 1.60 0.58 0.29 Kallus
0 4 No Yes No 2.11 1.12 0.54 Kallus
0 4 No No No 2.10 1.16 0.45 Kallus
1 2 Yes Yes No 1.60 0.77 0.71 Kallus IV
1 2 Yes No No 1.60 0.70 0.68 Kallus IV
1 2 No Yes No 1.34 0.61 0.83 GRF
1 2 No No No 1.35 0.58 0.71 GRF
1 4 No Yes No 2.10 1.21 0.66 Kallus IV
1 4 No No No 2.08 1.24 0.57 Kallus IV
1 4 Yes No No 3.21 2.37 0.60 Kallus IV
1 4 Yes Yes No 3.23 2.26 0.54 Kallus IV

6. A Real Data Example

In this section, we investigate the performance of our procedure on a real dataset.
We provided several applications in Section 4 and simulation studies in the previous
section. In this section, we use a real world example to demonstrate the robustness of
our procedure on real data. We utilize the famous Tennessee STAR study (Achilles et al.
2008). The Tennessee Student/Teacher Achievement Ratio (STAR) study was a large-scale,
longitudinal educational experiment conducted in the late 1980s to examine the effects of
class size on student performance. In this study, over 7000 students from kindergarten to
third grade across 79 schools were randomly assigned to one of three types of classrooms:
small classes (13–17 students), regular-sized classes (22–25 students), or regular-sized
classes with a teacher’s aide. The goal of the study was to assess whether smaller class
sizes would lead to improved academic outcomes, such as higher test scores and long-term
achievement. This dataset is also used in Kallus et al. (2018) and Athey et al. (2020). We use
it in a different manner. Specifically, we select the following covariates for each student:
gender, race, birth month, birthday, birth year, free lunch given or not, teacher id, and
student home location. We focus on two outcomes: average grade in year 1 and average
grade in year 3. We remove all the records with missing outcome variables. Now, in this
study, the treatment is whether or not the student is in a small class (treatment) or regular
class (control). After cleaning the data, we have a dataset with 2498 units, 9 covariates,
1 treatment variable and 2 outcome variables. We use the method in Athey et al. (2020) to
generate a large population, which we view as the ground truth. We call this ground truth
dataset Dgt. To assess different methods, we perform the following:

1. Use Dgt to calculate the average treatment effect of average grade in year 3. This
estimate τgt will be viewed as the ground truth.

2. Repeat the following steps 500 times.
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3. Sample nexp rural or inner-city students together with all the covariates except the
student location covariate, treatment variable and average grade in year 1. This is our
experimental sample DE.

4. Sample nobs/4 rural or inner-city students in control group that are not sampled in
experimental sample, sample nobs/4 rural or inner-city students in treatment group
whose year 1 average grade is in the lower half among treated rural or inner-city
students, sample nobs/4 urban or suburban students in control group, and finally
sample nobs/4 urban or suburban students in treatment group whose year 1 average
grade is in the lower half among treated urban or suburban students. This is our
observational sample (which is confounded because we remove students with higher
scores selectively from the population) DO.

5. Use different methods to estimate τgt based on DE and DO.
6. Compare based on mean squared error (MSE).

We will only compare the GRF and imputation estimators, as the Kallus method
involves estimating the coefficient of a linear function of the covariates but we only have
categorical variables. We also include the mean squared error of the AIPW estimator
(notice that AIPW estimator requires the sample to be unconfounded) on observational
sample. Table 4 gives the results. We see that in general, the GRF estimator outperforms
the imputation estimator, and these two estimators both outperform the AIPW estimator
significantly. In particular, as Table 5 shows, the empirical mean of AIPW estimates is
actually a negative number (and the true treatment effect is a positive number) and is far
from the true treatment effect.

Table 4. STAR study simulation.

nexp nobs GRF Imputation AIPW

300 1000 7.08 13.19 167.52
200 1500 9.36 12.76 167.43
500 2000 4.54 7.43 166.08

Table 5. STAR study simulation, empirical mean, and true treatment effect.

nexp nobs GRF Imputation AIPW τ

300 1000 6.64 7.90 −5.21 7.62
200 1500 6.89 8.21 −5.24 7.62
500 2000 6.70 8.06 −5.21 7.62

7. Conclusions

In this paper, we proposed a straightforward procedure to estimate the average
treatment effect (ATE) of the primary outcome in an observational study by leveraging
an experimental study for the surrogate outcome. We demonstrated that our procedure is
applicable in various settings, provided that the conditional average treatment effect (CATE)
of the surrogate outcome can be accurately estimated. Through a series of simulations,
we compared several methods and showed that our procedure produces a more precise
estimate, in terms of mean square error (MSE), than the canonical imputation estimator
proposed by Athey et al. (2020).

Our method’s robustness was examined across different scenarios, including settings
with and without confounding, as well as cases with identical and varying supports of
pre-treatment covariates between experimental and observational samples. Furthermore,
in our simulation study, we extended our discussions to scenarios where the support of
pre-treatment covariates in the experimental sample is contained within the support of
pre-treatment covariates in the observational sample. This setting provided additional
insights into the estimators’ performance under more structured support conditions, further
demonstrating the effectiveness of our proposed procedure.
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