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Abstract: We explore the application of integrated nested Laplace approximations for the Bayesian
estimation of stochastic volatility models characterized by long memory. The logarithmic variance
persistence in these models is represented by a Fractional Gaussian Noise process, which we ap-
proximate as a linear combination of independent first-order autoregressive processes, lending itself
to a Gaussian Markov Random Field representation. Our results from Monte Carlo experiments
indicate that this approach exhibits small sample properties akin to those of Markov Chain Monte
Carlo estimators. Additionally, it offers the advantages of reduced computational complexity and
the mitigation of posterior convergence issues. We employ this methodology to estimate volatility
dependency patterns for both the SP&500 index and major cryptocurrencies. We thoroughly assess
the in-sample fit and extend our analysis to the construction of out-of-sample forecasts. Furthermore,
we propose multi-factor extensions and apply this method to estimate volatility measurements from
high-frequency data, underscoring its exceptional computational efficiency. Our simulation results
demonstrate that the INLA methodology achieves comparable accuracy to traditional MCMC meth-
ods for estimating latent parameters and volatilities in LMSV models. The proposed model extensions
show strong in-sample fit and out-of-sample forecast performance, highlighting the versatility of the
INLA approach. This method is particularly advantageous in high-frequency contexts, where the
computational demands of traditional posterior simulations are often prohibitive.

Keywords: long memory; Gaussian Markov random fields; Laplace approximations; volatility
forecasting

1. Introduction

Conditional volatility models are an essential tool in the fields of financial economet-
rics and risk management, and because of this importance, the literature related to the
development of econometric models and inference methods to capture volatility patterns
over time is wide-ranging. The main problem is that conditional volatility is a latent process,
which adds a considerable degree of difficulty to traditional inference methods, such as
maximum likelihood estimators.

Stochastic volatility (SV) models play a crucial role in understanding the dynamic
behavior of financial time series, especially in capturing the inherent variability in returns
over time. A common and effective approach in these models is to use a first-order
autoregressive (AR(1)) structure for the latent log-variance, which is the natural logarithm
of the conditional variance of returns. This AR(1) specification, as proposed in Taylor (1986),
models the evolution of log-variance as a process that depends linearly on its past value
plus a stochastic innovation. The formulation is particularly attractive due to its simplicity
and ability to reproduce well-known stylized facts related to financial time series, such as
volatility clustering, heavy tails, and the non-Gaussian nature of return distributions.
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The AR(1) structure assumes a mean-reverting process where volatility tends to revert
to a long-term average level, capturing the short-memory property of financial volatility.
This property aligns with the observation that shocks to volatility have a significant but
temporary impact, decaying over time. Practical advantages of this structure lie in its
tractability and the relative ease of estimation using state-space methods such as the
Kalman filter or Bayesian inference techniques like Markov Chain Monte Carlo (MCMC).

Despite these advantages, the short-memory assumption inherent in AR(1) models
limits their ability to capture certain empirical characteristics of volatility. Specifically,
financial markets often exhibit persistent volatility patterns that decay more slowly for very
distant lags than an AR(1) process can represent. This phenomenon, known as long-range
dependence or long memory, implies that past volatility shocks can have prolonged effects
that influence future volatility over extended periods. Short-memory models, which rely
on exponential decay, fail to account for this feature, potentially leading to biased estimates
and suboptimal forecasting performance when applied to assets with strong persistence in
terms of volatility.

To address these limitations, long-memory structures for volatility, such as those
based on fractional Brownian motion or fractional Gaussian noise, have been proposed.
These models exhibit hyperbolic rather than exponential decay, capturing the persistence
seen in empirical studies of financial time series. The Long-Memory Stochastic Volatility
(LMSV) model is a prominent example, where the log-variance process follows a fractional
integration parameter that allows for gradual decays in dependence. This modification
enables the model to better represent the observed behavior of volatility, particularly in
markets with persistent volatility clusters.

The importance of long-memory structures is reinforced by studies demonstrating
their relevance for various asset classes and volatility measures. For instance, evidence
from stock market indices, commodities, and even cryptocurrency markets indicates that
incorporating long memory into volatility modeling can significantly improve in-sample fit
and out-of-sample forecasting performance. Additionally, the use of long-memory models
helps capture the slow mean reversion observed in realized volatility measures obtained
from high-frequency data, aligning with empirical findings in financial econometrics
(Christensen and Nielsen 2007; Maasoumi and McAleer 2008).

In summary, while first-order autoregressive structures are useful for modeling stochas-
tic volatility due to their simplicity and alignment with short-term volatility dynamics, they
fall short when addressing the long-term persistence seen in financial markets. Introducing
long memory into volatility models provides a more flexible framework that aligns with
the empirical properties of asset returns, enhancing both the modeling accuracy and the
practical application of these models in risk management and financial forecasting.

The modeling of stochastic volatility with the use of a long-memory structure presents
an additional complexity in relation to the models that assume an autoregressive struc-
ture. The key point is that the long-memory structure based on Fractional Brownian
Motion/Fractional Gaussian Noise is a non-Markovian and non-semimartingale process,
violating the usual assumptions regarding Markovian structures and the Martingale differ-
ence innovation processes used in the estimation of these models. As a direct example of
the difficulties generated by the introduction of long-memory structures, note that a good
portion of the methods used in the estimation of stochastic volatility models is based on a
linear Gaussian state space representation, whose fundamental assumption is the use of
a Markovian structure of dependence for latent states. Due to this difficulty, alternative
forms were proposed for the estimation of this class of models.

In this paper, we employed an alternative Bayesian estimation for long-memory
stochastic volatility models using an approximation of a Fractional Gaussian Noise process
that allows us to represent this process as a Gaussian Markov Random Field, as proposed
by in Sørbye et al. (2019). From this representation, we can use Integrated Nested Laplace
Approximations (INLA) to perform the Bayesian estimation of parameters and latent
log-variances (Rue et al. 2009). This formulation is interesting since it is computationally
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efficient, allowing for the fast and accurate estimation of this class of models without
necessitating the use of simulation-based methods, which can become computationally
prohibitive when the sample size is very large; this, for example, occurs in the estimation
using high-frequency data to realize volatility measurements. An application of this
methodology in modeling interest rates in multifactor models can be found in ?, showing
the good properties of this methodology for the approximation of long-memory structures.

The introduced methodology is also interesting in that it allows for modifications to
be introduced to long-memory models involving variance. In this paper, we propose two
extensions of the stochastic volatility model with long memory. The first extension is a
two-factor model, where the first factor is the long-memory component, and the second
component can be thought of as a smooth variation process in the long-term average of
the volatility process, similar to the formulation of a Spline-GARCH model (e.g., Engle
and Rangel 2008). The second modification is a stochastic volatility model with long
memory that is adapted to the persistence patterns observed in high-frequency data. For
this model, we employed a structure with two latent factors, with the first latent factor
being a long-memory process based on a Fractional Gaussian Noise representatio, and the
second latent factor allowing us to incorporate patterns of intraday seasonality into the
stochastic volatility structure. This structure allows for the simultaneous estimation of the
long-memory process and intraday seasonality pattern, avoiding the problems associated
with the two-stage estimation proposed in Deo et al. (2006).

We can summarize the main research hypotheses as follows: the INLA methodology
can estimate latent parameters and log-variances in LMSV models with a comparable
accuracy to traditional MCMC methods, while significantly reducing computational com-
plexity and alleviating convergence issues. By approximating the Fractional Gaussian Noise
process as a Gaussian Markov Random Field, the approach is hypothesized to be computa-
tionally efficient, making it suitable for high-frequency financial data analysis. Furthermore,
it is expected that multi-factor extensions of LMSV models using INLA will demonstrate a
strong in-sample fit and out-of-sample forecasting performance, particularly in applications
such as 5 min Bitcoin returns with integrated intra-day seasonal components.

Our simulation results suggest the INLA methodology can provide estimates of latent
parameters and log-variances in LMSV models, which are comparable in terms of accuracy
to traditional MCMC methods. The proposed extensions display good properties in terms
of their in-sample adjustment and out-of-sample forecast, showcasing the flexibility of
the INLA approach. The computational burden that arises from a large number of la-
tent variables often prohibits the application of traditional posterior simulation methods
in high-frequency settings. This is especially true for LMSV models. The LMSV speci-
fication we apply to 5 min Bitcoin returns incorporates the simultaneous estimation of
additive intra-day seasonal components and performs well in the construction of realized
volatility measures.

This paper is structured as follows. Section 3 exposes the formulation proposed for
the stochastic volatility models and discusses the estimation methods. Section 2 presents
a literature review of the estimation of SV models. In Section 4, we present a Monte
Carlo study of the small sample properties of the estimators. In Section 5, we apply the
methodology to the daily returns of major cryptocurrencies and S&P 500 Index, then
compare the in-sample fit and out-of-sample forecast performance to popular alternatives.
The method’s application to high-frequency Bitcoin data is presented in Section 6. Section 7
concludes the paper.

2. Literature Review

The literature on econometric models of conditional volatility can be divided into
two main classes of models based on the form of treatment applied for the latent volatility
process. The first important class is the class of observation-driven models, which considers
that the process of latent variance can be approximated by a structure that depends only on
observable processes. In this class of models, the main reference is the GARCH (Generalized
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Autoregressive Conditional Heteroskedasticity) family of models, introduced in Engle
(1982) and generalized in Bollerslev (1986), and later extended in several other directions.

In this structure, latent variance is considered a deterministic function of the past vari-
ance itself and the past squared returns or residues. A general framework for observation-
driven process modeling is the generalized score model class proposed in Creal et al. (2013),
which uses the model’s past score as the update mechanism for time-varying model pa-
rameters. The use of this observation-driven structure is interesting because, considering
that the variance process depends only on observable components in the current period, it
avoids the inference problems generated by the presence of latent variables in the model,
allowing for the direct use of maximum likelihood estimators.

The second class of models is based on the treatment of conditional volatility as a truly
stochastic dependent process, with the main reference in discrete time being the so-called
log-normal model of stochastic volatility (SV) introduced in Taylor (1986). In this model, the
dynamics of the conditional log-variance are derived through a first-order autoregressive
process. This structure is very convenient since this formulation is consistent with the
main stylized facts of financial series, such as volatility clusters, heavy tails, and the non-
Gaussianity of returns, and avoids the artificial assumption that volatility is deterministic.

However, assuming that the process of latent volatility is stochastic adds significant
difficulties in the inference procedures for parameters and for the filtering of the conditional
volatility itself. When assuming a stochastic structure, it is not possible to directly use
maximum likelihood estimators, since these require the marginalization of each unobserved
volatility, thus necessitating the calculation of a multiple integral with a dimension equal
to the sample size, which is not computationally feasible. Due to this difficulty, a series of
frequentist and Bayesian methods was created to estimate stochastic volatility models. The
estimation method proposed in Taylor (1986) is based on the method of moments, which
does not allow for an estimation of the latent volatility process itself, only the parameter
vector of the model.

Among the frequentist methods, the main reference is the Quasi-Maximum Likeli-
hood method based on the decomposition of the forecast error through the Kalman Filter
independently proposed in Harvey et al. (1992) and Nelson (1988). In this structure, the
log of the squared returns is composed of a mean component plus a latent autoregressive
process, which is the log-variance of the returns, formulated as a state-space process that
allows for the use of the Kalman Filter to filter this latent component. As this estimation
is based on a linearization of the model, the estimator is approximated and is therefore a
Quasi-Maximum Likelihood estimator. Although this estimator is computationally simple,
its performance may be sub-optimal due to the bias introduced by the linearization of
the model, as discussed in Andersen and Sørensen (1996). To circumvent this limitation,
other frequentist estimation methods use maximum simulated likelihood (Sandmann and
Koopman 1998), efficient method of moments (Andersen et al. 1999), empirical likelihood,
and minimum discrepancy (Laurini and Hotta 2017), among other possible treatments.

Several Bayesian estimation methods have been proposed for the class of stochastic
volatility models. Bayesian estimation is particularly interesting for the problem at hand
because latent processes can be treated as additional components of the model, and thus
additional parameters to be estimated. This allows for the use of traditional methods of
Bayesian inference without additional complications. Among the main works proposing
the use of Markov Chain Monte Carlo (MCMC) for estimating SV models, we have Kim
et al. (1998), Chib et al. (2002) and Asai (2005), and as examples of recent developments, we
have Kastner and Frühwirth-Schnatter (2014) and Kastner (2019).

Martino et al. (2011) proposed an alternative form of the Bayesian estimation of SV
models based on the Integrated Nested Laplace Approximations (INLA) framework of
Rue et al. (2009). The INLA methodology allows for one to perform Bayesian estimation
for parameters and latent factors for a wide class of models that can be represented or
approximated by Gaussian Markov Random Fields. Because INLA is based on an analytical
approximation, it does not require simulation procedures and thus is not affected by the
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chain convergence issues that sometimes effect MCMC algorithms. In addition, these
methods are very accurate and are generally computationally fast and efficient, since, in
conjunction with the INLA methodology, it is possible to use a series of sparse matrix
representations to represent the Gaussian Markov Random Field. The properties of this
method for the estimation of SV models are analyzed in Ehlers and Zevallos (2015), which
shows that the method is very accurate and has good properties for the calculation of
measures derived from conditional volatility, estimated as the Value at Risk. A multifactor
formulation of multivariate stochastic volatility models is presented in Nacinben and
Laurini (2024a).

An important point is that most of the models proposed for stochastic volatility mod-
eling are based on a short-memory structure for the dependency process, assuming a mean
reversion velocity compatible with an autoregressive process. An alternative possibility is
to assume that the process of dependence on volatility is provided by a long-memory pro-
cess, also known as a long-range dependence process. In this structure, the most used form
is an innovation structure based on a discrete version of the fractional Brownian Motion, a
representation based on a fractional Gaussian Noise, as described in Taqqu (2003). In this
case, the innovations of the dependency process follow a hyperbolic decay process, rather
than the standard exponential decay of short-memory models. References to the use of long-
memory structures in stochastic volatility models can be found in Harvey (1998), Breidt
et al. (1998), and Hurvich and Soulier (2009). The main model used is the Long-Memory
Stochastic Volatility (LMSV), where the log variance follows a long-memory process.

The use of long-memory models for variance may be interesting as there is empirical
evidence showing that this structure may be appropriate for classes of assets and measures
of volatility. Christensen and Nielsen (2007), Scharth and Medeiros (2009), Hillebrand
and Medeiros (2016), Shackleton et al. (2008), and Fleming and Kirby (2011) discuss the
importance of a long memory in conditional stock market volatility. Another important
point is the impact of long memory on the calculation of realized volatility measurements
using high-frequency data, as discussed in Maasoumi and McAleer (2008), McAleer and
Medeiros (2008), and Lieberman and Phillips (2008). There is recent interest in the use of
these models because of the ample evidence of the presence of long-range dependence
features in cryptocurrency markets, as shown by Mensi et al. (2019), Phillip et al. (2019),
Bouri et al. (2019), and Chaim and Laurini (2019), among other works.

Many methods have been proposed for the estimation of LMSV models. Harvey (1998)
and Breidt et al. (1998) employed a spectral approximation for the likelihood function,
while Arteche (2004) specified a semi-parametric form based on a local Whittle estimator.
Different formulations can be used using an approximation of the state space representation
through a truncated Autoregressive Fractionally Integrated Moving Average (ARFIMA)
process, as used in Chan and Palma (1998), Basak et al. (2001) and Ferraz and Hotta (2007)
in frequentist formulations, and Chan and Petris (2000) for the Bayesian estimation in a
Markov Chain Monte Carlo algorithm. Comparative reviews of estimation methods of
stochastic volatility models with long memory can be found in Perez and Ruiz (2001) and
Crato and Ray (2002).

3. Long-Memory Stochastic Volatility Models

The standard stochastic volatility (SV) model, introduced in Taylor (1986), is a log-
normal mixture model in which the log normal variance component follows a stationary
autoregressive process of the first order. Let {rt}N

t=1 be an equally spaced sequence of asset
returns; then, an SV model can be written as

rt = exp (ht/2)εt, εt ∼ N(0, 1), (1)

ht = µ + ϕ(ht−1 − µ) + zt, zt ∼ N
(

0, ((1 − ϕ2)τh)
−1

)
. (2)

This model has three parameters that dictate the AR(1) dynamics of latent log-variance
ht. The long-run mean is µ, autoregressive persistence depends on ϕ, and the latent log-
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variance negatively depends on the (marginal) precision τh. Due to the internal INLA
conventions, in this paper, we report the marginal precision of log-variance ht, τh. It is more
common to speak in terms of the precision of the i.i.d. error term zt, which can be easily
obtained by the relation τ = τh(1 − ϕ2).

Because log-variance is not an observed variable, maximum likelihood estimation
requires evaluating a multiple integral with a dimension equal to the sample size, which
is often computationally unfeasible. By employing the method of moments, originally
proposed by Taylor (1986), one can estimate parameters µ, ϕ, and τ, but is unable to
recover latent log-variance ht. A traditional frequentist solution is the Quasi-Maximum
Likelihood (QML) method, based on the forecast error decomposition obtained using
Kalman Filter (Harvey 1989). Here, log-squared returns are linearized and decomposed
into a mean. Additionally, a first-order autoregressive process is used, such that the
model has a linear state space representation, and is then amenable to Kalman filtering.
Alternative frequentist methods which can circumvent these issues include simulated
maximum likelihood (Sandmann and Koopman 1998), the efficient method of moments
(Andersen et al. 1999), empirical likelihood, and generalized minimum discrepancy (Laurini
and Hotta 2017), to mention a few.

There are several Bayesian estimation methods for the class of stochastic volatility
models. Because latent variables are treated as additional parameters, traditional Bayesian
inference methods are directly applicable to SV models. Markov Chain Monte Carlo al-
gorithms are commonly used for posterior sampling, e.g., Gamerman and Lopes (2006)
and Johanes and Polson (2005). It is known that due to the high correlation within la-
tent variables and between latent variables and deep parameters, MCMC methods can
require long chains to provide a good posterior characterization of SV models (Kastner and
Frühwirth-Schnatter 2014; Gong and Stoffer 2020).

Although estimation using posterior simulation methods is feasible in a wide range of
practical applications, MCMC methods still can be computationally demanding, especially
models involving latent variables, whose computational burden increases more than pro-
portionally with larger sample sizes. Martino et al. (2011) show how an SV model can be
estimated using Integrated Nested Laplace Approximations (INLA), a class of methods
introduced by Rue et al. (2009), which can be applied to the Bayesian estimation of parame-
ters and latent factors of models that can be represented by, or approximated by, a Gaussian
Markov Random Field (GMRF). Because INLA calculations are analytic, this avoids issues
inherent to posterior simulation MCMC methods, such as slow chain convergence.

Following Martino et al. (2011), if we assign mean parameter µ a Gaussian prior with
zero mean and a large known variance, the standard stochastic volatility model (1) and (2)
can be seen as a latent Gaussian model with latent field x:

x = {h1, . . . , hn, µ} ∼ N(0, Q−1(θ1)), (3)

where θ1 = {τh, ϕ} are the parameters driving the log-variance. The |x| = n-dimensional
latent Gaussian field is partially observed through the nd conditionally independent data
r = {r1, . . . , rnd} with the following likelihood:

π(r|x, θ2) =
nd

∏
t=1

π(rt|h, θ2),

where θ2 are parameters of the εt return process, which, in our case, is a precision of one,
since εt ∼ N(0, 1).

Let θ = {θ1, θ2}. The main goal in estimating SV models is to evaluate the marginal
distributions

π(x, θ|r) ∝ π(θ)π(x|θ)
n

∏
t=1

π(rt|ht, θ).
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The INLA procedure is a computationally efficient method to compute these marginal
distributions. At its core is a very fast Gaussian approximation to densities of the
following form:

π(x|r, θ) ∝ exp
{
−1

2
xTQx + ∑ gt(ht)

}
,

where gt(ht) = log π(rt|ht, θ). The Gaussian approximation π̄G(x|r, θ) is obtained by
matching the curvature at the posterior mode value m, which is computed iteratively using
a Newton–Raphson algorithm:

π̄G(x|r, θ) = K1 exp
{
−1

2
(x − m)T(Q + diag(c))(x − m)

}
,

where K1 is a normalizing constant, and the vector c is a correction term given by second-
order terms in the Taylor expansion of ∑ gt(ht) at the modal value m.

3.1. Long-Memory Stochastic Volatility Models

Although SV models capture key aspects of returns series such as there being almost
no autocorrelation in terms of levels and excess kurtosis, for some assets, the decay in
the autocorrelation of distant lags of squared returns can be slower than implied by the
autoregressive structure in Equation (2).

An alternative is to model log-variance as a stationary process with long memory.
Following Beran (2017), a weakly stationary process has long memory if its autocovariance
function γ(k) for distant lags k satisfies

γ(k) ∼ C1k2(H−1), as k → ∞,

for C1 > 0, with 1/2 < H < 1. Or, equivalently, in the frequency domain, if its spectral
density f (ω) for frequencies ω ∈ [−π, π] close to zero satisfies

f (ω) ∼ C2|ω|−2H+1, as ω → 0,

for C2 > 0 and 1/2 < H < 1.
If the log-variance component ht has long-range dependence properties, then we have

the long-memory stochastic volatility model (LMSV), as introduced by Harvey (1998) and
Breidt et al. (1998).

The traditional approach when introducing long-range dependence to SV models
involves characterizing latent log-variance dynamics as an ARFIMA process. In its simplest
form, log-variance ht follows an ARFIMA(0,d,0) and this model can be written as

rt = exp(ht/2)εt, εt ∼ N(0, 1), (4)

(1 − B)dht = ηt, ηt ∼ N(0, τ−1
η ), (5)

where B is the backshift operator and parameter d ∈ (−0.5, 0.5) determines the fractional
integration order.

Because long-memory processes do not have a finite state space representation, the
estimation of LMSV models is not straightforward. Notice that many of the presented
methods for estimating SV models take advantage of some sort of state-space representation
of the model. Estimations of LMSV models have traditionally been carried out in the
frequency domain using spectral likelihood estimators (Breidt et al. 1998), and in the
time domain using simulation-based Bayesian methods and Quasi-Maximum likelihood
estimators. The latter approaches are often based on a truncated state-space representation
of the long-memory process, as discussed in Chan and Palma (1998), Chan and Petris
(2000) and Ferraz and Hotta (2007). A popular approach is to deal with the approximate
representation of an ARFIMA process as a long lagged Autoregressive Moving Average
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(ARMA) model. A simple representation of this is the expansion of an ARFIMA(0, d, 0)
through an autoregressive process in the following form:

P

∑
i=0

Πiht−i = ηt (6)

with Π0 = 1, Πj = [(j − d − 1)/j]Πj−1, P as the order of approximation, ht as the latent
process, and ηt as a white noise process. This representation is quite interesting since it
is sufficient to rewrite the representation in state space as that of an AR(P) model, in this
case using the coefficients determined by the above expansion. The usual quasi-maximum
likelihood and MCMC estimators can easily be adapted to this representation.

The approach we use here involves introducing long-range dependence through a
fractional Gaussian noise (fGn) process rather than an ARFIMA. Conceptually, an ARFIMA
comes from the fractional difference of a discrete ARMA process, while an fGn comes from
the fractional differentiation of a continuous Brownian motion (Hosking 1981). The two
processes are closely related, especially if the autoregressive and moving average order
of the ARFIMA are 0. The relationship between the Hurst exponent H and the fractional
integration order d is such that H = d + 0.5.

The LMSV specification we explore here can be written as

rt = exp (ht/2)εt, εt ∼ N(0, 1), (7)

ht = µ + xt, (8)

where µ is a mean parameter, and xt is an fGn with parameters τ and H.
Specifically, x′ = (x1, . . . , xn) is a zero-mean multinormal vector such that

x ∼ N(0, τ−1Σ). (9)

The covariance matrix Σ has a Toeplitz structure, with the first-row elements given by
the autocorrelation function:

γ f Gn(k) =
1
2

(
|k − 1|2H − 2|k|2H + |k + 1|2H

)
, (10)

where k = 0, 1, . . . , n − 1. Note that the autocorrelation function is indeed a form of
hyperbolic decay, as γ f Gn(k) ∼ H(2H − 1)k2(H−1) when k → ∞. We will sometimes write
xt ∼ f Gn(H, τ) as a shorthand notation when referring to the structure described above.

3.2. Gaussian Markov Random Field Approximation of Fractional Gaussian Noise

Sørbye et al. (2019) took advantage of the known relationship between long memory
and cross-sectional aggregation (Granger 1980; Beran et al. 2010) to construct a Gaussian
Markov Random Field-based approximation of a fractional Gaussian noise model from
weighted sums of independent AR(1) components. They proposed matching the autocor-
relation function of this composite autoregressive process to the autocorrelation (10) of
a fGn.

Following Sørbye et al. (2019), consider m independent AR(1) processes

zj,t = ϕjzt−1 + ξ j,t, j = 1, · · · , m, t = 1, · · · , n,

where 0 < ϕj < 1 is the first-order autoregressive parameter of the j-th process. Also, let
{ξ j,t}m

j=1 be zero-mean independent Gaussian shocks with variance σ2
ξ,j = 1 − ϕ2

j . Define
the cross-sectional aggregation of the m processes as

z̄m = σ
m

∑
j=1

√
wjz(j), (11)
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where z(j) denotes (zj,1, zj,2, . . . , zj,n) and the weights wj sum to one. Haldrup and Valdés
(2017) studied the finite sample properties of similar aggregations of AR(1) processes.

The autocorrelation function of (11) is simply

γz̄m(k) =
m

∑
j=1

wjϕ
|k|
j , k = 0, 1, . . . , n − 1. (12)

The idea put forward in Sørbye et al. (2019) is to fit weights w = {wj}m
j=1 and coef-

ficients ϕ = {ϕj}m
j=1 such that the autocorrelation function (12) of the composite AR(1)

process matches the autocorrelation function of a true fGn process, as in Equation (10).
Values of (w, ϕ) are obtained by minimizing the squared error

(w, ϕ)H = argmin
(w,ϕ)

kmax

∑
k=1

1
k

(
γz̄m(k)− γ f Gn(k)

)2
, (13)

where kmax is an arbitrary upper limit to the number of lags included. Since the squared er-
ror is weighted by k, persistence at distant lags has little impact on the objective function (13).

With this approximation of the fGn process, we can represent the LMSV model (7)
and (8) as a latent GMRF using the INLA method, as shown in Martino et al. (2011).
Following the recommendations in Sørbye et al. (2019), we use a third-order approximation
to represent the fGn process. Further details on the implementation can be found in Sørbye
et al. (2019).

3.3. Alternative Specifications

The INLA methodology is not restrictive and SV models can be easily augmented
with additional latent factors. As long as the affine structure of log-variance is preserved,
the model has a GMRF representation similar to Equation (3), and can be estimated in the
same manner. To showcase this flexibility, we consider alternative formulations for both SV
and LMSV models, in which log-variance is composed of a smooth spline trend in addition
to either the AR(1) or fGn processes. These specifications are similar to the Spline-GARCH
model of Engle and Rangel (2008), where conditional volatility is subject to low-frequency
variations which work as a time-varying long-run average.

The AR(1) Spline-SV model can be written as

rt = exp ((ht + st)/2)εt, εt ∼ N(0, 1), (14)

ht = ϕht−1 + zt, zt ∼ N(0, ((1 − ϕ2)τh)
−1), (15)

where st follows a second-order random walk, which is constructed by assuming indepen-
dent second-order increments with precision τs. That is,

∆2st ∼ N(0, 1/τs). (16)

The use of a second-order random walk structure to represent a smoothly varying
spline process is common in statistics (see, for example, Lindgren and Rue 2008). Note
that an analogous relationship exists between the popular Hodrick–Prescott (HP) filter
and spline representations, as discussed in Harvey and Jaeger (1993), Harvey and Trimbur
(2008) and Paige and Trindade (2010).

Since we use an unrestricted specification for this component, i.e., the component
does not sum to zero, it can be used to capture a long-run average of a log-variance that
is varying smoothly. Hence, in this specification, it is not necessary to include the µ mean
parameter, which is already captured by the dynamics of this process.

Therefore, the AR(1) Spline model has three parameters: the autoregressive coefficient
ϕ, the marginal precision of log-volatility τh, and the precision of the spline (trend) compo-
nent τs. More details on the specification of the second-order random walk model can be
found in the Appendix A.
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Likewise, consider the LMSV Spline model

rt = exp ((ht + st)/2)εt, εt ∼ N(0, 1), (17)

ht = xt, xt ∼ f Gn(H, τh), (18)

∆2st ∼ N(0, 1/τs). (19)

This model has three parameters: the Hurst exponent H, which determines the tem-
poral persistence of the fGn process, the marginal precision of fGn component τh, and the
precision τs of the second-order random walk spline.

Another alternative specification explored here is the inclusion of an additive seasonal
component seast in conditional log-variance dynamics. The seasonal component seast has a
set periodicity M and is restricted such as the sum of the m individual components is zero.
This model can be written as

rt = exp (ht + seast)/2)εt, εt ∼ N(0, 1), (20)

ht = µ + xt, xt ∼ f Gn(H, τ), (21)

seast + seast−1 + ... + seast−m+1 ∼ N(0, 1/τseas). (22)

This seasonal component is of special interest when we are dealing with high-frequency
data. As discussed in Deo et al. (2006), there is evidence of periodic patterns in intraday
returns volatility. The periodicity M, and thus the number of seasonal components, depend
on the aggregation used to compute intraday returns. For example, in Section 6 we use
prices 5 min apart, and this defines the number of individual seasonal components.

The direct incorporation of this periodicity structure is advantageous since it avoids
the use of multi-stage methods for the estimation of the LMSV model for high-frequency
data. For example, in Deo et al. (2006) the periodicity pattern is estimated in the first
stage, and then returns adjusted for this pattern are modeled as an LMSV process. Our
formulation allows for the simultaneous estimation of these components, avoiding the
problems associated with estimation at different stages.

A flowchart presenting a summary of the steps required to apply the method is shown
in Figure 1.

Figure 1. Flowchart of stochastic volatility models’ implementation.
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4. Monte Carlo Simulation Study

We performed Monte Carlo experiments to evaluate the small sample properties of the
INLA fGn approximation and the estimation of LMSV models described in Section 2. INLA
estimates were compared to a traditional approach of employing an MCMC posterior sam-
pling algorithm based on a truncated state space representation of long-memory processes,
as proposed by Chan and Petris (2000). The long-memory process is approximated as an
AR(20). We sample parameters H and τ and the latent volatility ht using a Random Walk
Metropolis scheme, while parameter µ has a conjugate sampler. For a detailed description
of this method, see Chan and Petris (2000) or Ferraz and Hotta (2007). Each MCMC es-
timation was based on a chain of 20,000 samples, after discarding the first 4000. Longer
chains did not show significant gains in terms of MCMC accuracy performance in this
specific application.

Three prior specifications/estimation methods were compared. The first two had
the same prior configuration. For the MCMC estimation and the baseline INLA (INLA 1)
implementation, we considered a Gaussian prior with a mean −7 and precision of 0.01 for
the average volatility parameter µ, Gamma prior with the parameters (3, 0.01) for marginal
precision τ, and Gaussian with mean 0.9 and a precision of 0.01 for parameter H. We also
considered a second prior structure (INLA 2), which is based on the penalized complexity
priors framework (pc-priors), as introduced by Simpson et al. (2017). These define pc-priors
as invariant to reparameterization, having excellent robustness properties, and allowing for
a direct comparison between different conditional models. Sørbye and Rue (2018) showed
how to construct such priors for precision τ and persistence H parameters describing an
fGn process. See specific details in the Appendix A.

We chose two parameter configurations for the data-generating processes describing
different levels of volatility. The first one, θ1 = {µ = −9.90, H = 0.931, τ = 0.962},
represents the standard market conditions. The second parameter vector, θ2 = {µ =
−7.182, H = 0.938, τ = 0.294}, represents more volatile conditions, such as cryptocurrency
markets. For both parameter vectors, we simulated 1000 samples from an LMSV model
with 500 and 1000 observations. In each experiment, we compared the point estimates to
the true parameter value in terms of mean error (ME), root mean squared error (RMSE), and
mean absolute error (MAE). Tables 1 and 2 present the results for each parameter vector,
with sample sizes of 500 and 1000. It can be observed that the estimation of INLA presents
better results in terms of mean error (ME), root mean squared error (RMSE), and mean
absolute error (MAE) for parameters µ and τ for the two parameter configurations and
sample sizes. The different parameter configurations used in the estimation of the INLA do
not seem to have relevant impacts on the estimation of these parameters. When looking
at the Hurst exponent H, we find rather mixed results. For the first parameter vector in
Table 1, INLA fares better with respect to all three accuracy measures. Interestingly, the
opposite is true for the second parameter configuration in Table 2, whose values represent
more turbulent market conditions.

Table 1. Monte Carlo Experiment LMSV Model–First parameter set (µ = −9.9, H = 0.931, τ = 0.962)—
Sample sizes 500 and 1000. Note—INLA 1—Gamma/Gaussian Priors. INLA 2—Penalized Complex-
ity Priors.

Sample Size 500 Sample Size 1000
ME RMSE MAE ME RMSE MAE

MCMC −0.0640 0.2280 0.1840 −0.0380 0.1310 0.1050
µ INLA 1 0.0430 0.2140 0.1730 0.0090 0.1130 0.0900

INLA 2 −7.00 × 10−4 0.2010 0.1630 −5.20 × 10−4 0.1130 0.0900

MCMC −0.1220 0.1530 0.1240 −0.0430 0.0700 0.0520
H INLA 1 −0.0810 0.1010 0.0818 −0.0450 0.0610 0.0470

INLA 2 −0.0840 0.1100 0.0864 −0.0380 0.0620 0.0450

MCMC 3.35 × 10−4 0.0031 0.0020 −3.50 × 10−4 0.0020 0.0010
ht INLA 1 −2.20 × 10−4 0.0020 0.0010 −4.00 × 10−4 0.0020 0.0010

INLA 2 −4.40 × 10−4 0.0020 0.0010 −4.00 × 10−4 0.0020 0.0010
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Table 2. Monte Carlo experiment LMSV model; second parameter set (µ = −7.182, H = 0.938,
τ = 0.294); sample sizes 500 and 1000. Note—INLA 1; Gamma/Gaussian priors. INLA 2 penalized
complexity priors.

Sample Size 500 Sample Size 1000
ME RMSE MAE ME RMSE MAE

MCMC −0.050 0.379 0.306 −0.031 0.211 0.168
µ INLA 1 0.023 0.342 0.276 0.016 0.188 0.150

INLA 2 0.027 0.348 0.281 0.0174 0.206 0.161

MCMC −0.042 0.066 0.048 −0.002 0.033 0.025
H INLA 1 −0.052 0.068 0.053 −0.026 0.049 0.031

INLA 2 −0.045 0.065 0.048 −0.022 0.050 0.030

MCMC 0.258 0.319 0.260 0.435 0.475 0.435
τ INLA 1 0.250 0.302 0.255 0.133 0.182 0.150

INLA 2 0.183 0.239 0.193 0.102 0.164 0.125

MCMC −0.002 0.020 0.012 −0.002 0.019 0.012
ht INLA 1 −0.004 0.018 0.011 −0.003 0.018 0.011

INLA 2 −0.004 0.018 0.0116 −0.003 0.018 0.011

We also compared the performance of these methods in estimating the paths of latent
log-variance ht. In this case, we compute the ME, RMSE, and MAE between the true
and estimated log-variance for each replication of the experiment, and report the average
values between all simulations in Tables 1 and 2. The performances of the MCMC and
INLA methods in estimating latent log-variance are quite similar, with a marginally better
estimation performance being obtained using INLA for both parameter settings and sample
sizes. This result is very relevant, since the main objective in risk measurements is to
accurately recover the true volatility of the process, which is the necessary input for
the calculation of risk management measures such as Value at Risk. In this regard, the
proposed methodology has a satisfactory performance for empirical applications, showing
the validity of the method for real problems of risk measurement and management.

A major advantage of the INLA approach comes from its lower computational cost.
We performed the MCMC estimations using a compiled C++ code though the R pack-
age nimble and INLA with the r-inla1 package. The average time required for MCMC
estimations with a sample size of 1000 was 38.5 s, increasing to 106.8 s if we include com-
pilation time. Each INLA estimation was performed, on average, in 4.805 s. This very
simple comparison suggests an increase in speed of about eight times. The results of the
Monte Carlo experiment indicate that the INLA estimation presents a performance that
is generally equal or superior to the MCMC method. Thus, we have evidence of INLA’s
good performance in LMSV model estimations, in terms of both statistical performance an
computational time.

5. Application to Daily Data

Analyses of cryptocurrencies’ trading data have attracted increased research attention
in recent years. Many studies point to observed patterns of long-range dependence in the
volatility of cryptocurrencies’ returns (see, for example, Urquhart 2016; Bariviera et al. 2017;
Mensi et al. 2019; Cheah et al. 2018; Phillip et al. 2019; Chaim and Laurini 2019; Bouri et al.
2019; Charfeddine and Maouchi 2019; Tan et al. 2021; Assaf et al. 2022; Arouxet et al. 2022).
This mounting evidence motivated us to choose the two major cryptocurrencies as case
studies to acquire daily data: Bitcoin (btc) and Ethereum (eth). Our sample consists of daily
data from 1 January 2020 until 31 July 2024, which corresponds to 1672 observations. We
also repeated our analysis for daily returns of the S&P500 (sp500) index within the same
time period.

Table 3 reports descriptive statistics of teh daily log returns and absolute returns of
Bitcoin and Ethereum, as well as the S&P500 index. The trajectories are depicted in Figure 2.
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Table 3. Descriptive statistics—Bitcoin (btc), Ethereum (eth), and S&P 500 (sp500).

Returns Abs Returns

Btc Eth Sp500 Btc Eth Sp500

Min. −47.317 −56.791 −12.788 0.000 0.000 0.001
0.25q −1.500 −1.964 −0.567 0.648 0.869 0.265

Median −0.144 −0.063 0.066 1.457 2.010 0.651
Mean −0.128 −0.036 0.023 2.277 2.992 0.907
0.75q 1.345 2.081 0.715 3.112 4.024 1.184
Max. 16.504 24.254 8.947 47.317 56.791 12.788

Std. Dev. 3.462 4.485 1.387 2.611 3.340 1.049
Skew. −1.547 −1.326 −0.795 4.589 4.353 4.097
Kurt. 25.639 21.506 16.766 58.885 48.948 31.824
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−20
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2020 2021 2022 2023 2024

Bitcoin

−60

−40

−20

0

20

2020 2021 2022 2023 2024

Ethereum

−10
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10

2020 2021 2022 2023 2024

SP500

Figure 2. Returns—Bitcoin (btc), Ethereum (eth), and S&P 500 (sp500).

For each asset, we experimented with four specifications. The first one, denoted
Ar1SV, is a traditional stochastic volatility model with AR(1) conditional variance, as in
Equations (1) and (2). Our second specification is the LMSV model with volatility persis-
tence given by a fractional Gaussian noise, as described in Equations (7) and (8). Since
we employed penalized complexity priors for the fGn process, the LMSV specification is
equivalent to INLA 2 from the Monte Carlo simulation tables of Section 4. As discussed
in Section 3, to showcase the flexibility of the INLA method we augmented both Ar1SV
and LMSV with a smooth spline component following a second-order random walk, which
functions as a slow-moving unconditional average volatility. These specifications, Ar1SV
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Spline and LMSV Spline, are presented in Equations (14)–(19). For further details on
implementation and prior structure, we point to Appendix A.

5.1. Parameter Estimates

Tables 4 and 5 report descriptive statistics of the posterior distributions of the estimated
parameters for Bitcoin and S&P500, respectively. Due to space constraints, we do not present
the estimated parameters of Ethereum, but the results can be obtained from the authors.

Table 4. Posterior distribution estimated parameters—Bitcoin (btc).

Mean Sd. 0.025q 0.5q 0.975q

Ar1SV
µ −7.348 0.083 −7.510 −7.348 −7.185
ϕ 0.756 0.073 0.589 0.765 0.872

τh 0.846 0.103 0.661 0.840 1.068

LMSV
µ −7.437 0.040 −7.515 −7.437 −7.359
H 0.831 0.031 0.769 0.831 0.889
τh 0.760 0.088 0.601 0.755 0.947

Ar1SV Spline
µ
ϕ 0.284 0.081 0.120 0.285 0.438

τh 1.024 0.113 0.823 1.017 1.266
τspline 109,670.02 40,467.63 49,369.00 103,358.70 206,345.49

LMSV Spline
µ
H 0.691 0.050 0.600 0.690 0.792
τh 0.963 0.108 0.770 0.956 1.194

τspline 122,050.180 43,596.506 56,537.124 115,416.063 225,810.715

Table 5. Posterior distribution estimated parameters—S&P 500 (sp500).

Mean Sd. 0.025q 0.5q 0.975q

AR1SV
µ −9.270 0.230 −9.721 −9.270 −8.820
ϕ 0.972 0.009 0.952 0.973 0.987

τh 1.132 0.285 0.656 1.103 1.770

LMSV
µ −9.295 0.045 −9.384 −9.295 −9.207
H 0.978 0.014 0.942 0.982 0.996
τh 0.356 0.211 0.089 0.309 0.891

AR1SV-Spline
µ
ϕ 0.924 0.033 0.843 0.930 0.970

τh 2.524 0.830 1.285 2.395 4.515
τspline 82,149.686 39,133.007 29,518.874 74,417.060 179,789.999

LMSV-Spline
µ
H 0.949 0.037 0.852 0.958 0.992
τh 1.218 0.862 0.243 0.999 3.460

τspline 57,595.412 31,603.756 18,217.443 50,535.855 138,489.359

The qualitative implications of our estimations appear consistent over all three assets.
The estimated values for persistence parameters H and ϕ in models Ar1SV and LMSV are
large, but not so close to unity as to suggest the nonstationarity of latent volatility, which is
typical in applications to financial data.
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Incorporating a spline component into our stochastic volatility models has the effect
of diminishing the persistence of latent log-variance through lowering the values of pa-
rameters ϕ (Ar1SV-Spline) and H (LMSV-Spline). Since we did not include a constant in
the expressions for log-variance in our Ar1SV-Spline and LMSV-Spline specifications, the
second-order random walk component serves as a smoothly varying unconditional mean
log-variance. The effect of reduced persistence is more pronounced for Bitcoin than for
the S&P 500, which could be taken as a suggestion that mean log-variance itself varies
more over time for Bitcoin. This contributes to the body of empirical evidence showing
that cryptocurrencies display higher overall levels of volatility, but also a relatively higher
variability in the volatility level over time (e.g., Ghosh et al. 2023; Ahmed et al. 2024).

5.2. Model Selection

Table 6 reports the estimated log marginal likelihood (mlik) and widely applicable
information criterion (waic) measures for all assets and models. Vehtari et al. (2016)
introduced waic as an adequate method for choosing between Bayesian models of different
complexities with an interpretation analogous to traditional information criteria (the lower
the better).

The boldface entries in Table 6 indicate the best specification for each asset according
to waic. For the two cryptocurrencies, the LMSV spline model was chosen as the best
specification, while for S&P 500 the Ar1SV model was selected. These results seem to
indicate that the LMSV specification is suitable for increased volatility and persistent
cryptocurrencies, as the inclusion of a smoothly varying component in the unconditional
average log-variance seems to better capture the volatility dynamics of this market. The
inclusion of this component provides a way of incorporating a change in parameters into
the unconditional volatility process, and the results are consistent with the many changes
that occurred in these markets in the analyzed period.

Table 6. Model Fit Measures—marginal likelihood and waic.

Btc Eth Sp500
Mlik Waic Mlik Waic Mlik Waic

Ar1SV 3500.0 −7019.3 3095.9 −6259.5 3597.6 −7283.0
LMSV 3542.2 −7041.8 3129.0 −6297.5 3594.6 −7262.4

Ar1SV Spline 3513.7 −7088.7 3096.2 −6288.2 3583.6 −7282.3
LMSV Spline 3523.7 −7122.7 3107.7 −6315.9 3585.1 −7271.9

Note: Bold values denote the selected model.

In-sample fit measures, ME, RMSE, and MAE are reported in Table 7. Absolute returns
were taken as a proxy for the true unobserved volatility. We observe that the LMSV Spline
model was the best model in terms of in-sample fit for S&P500, achieving the best results for
all criteria, whereas for Bitcoin and Ethereum, the Ar1SV Spline model was chosen by ME,
RMSE, and MAE. An out-of-sample forecast analysis is presented in the next subsection.

Table 7. In-sample error measures.

Btc Eth Sp500
ME RMSE MAE ME RMSE MAE ME RMSE MAE

Ar1SV −0.00255 0.01927 0.01364 −0.00519 0.027109 0.01916 −0.00164 0.00771 0.00552
LMSV −0.00344 0.01847 0.01327 −0.00513 0.024536 0.01745 −0.00153 0.00719 0.00516

Ar1SV Spline −0.00209 0.01740 0.01208 −0.00361 0.023785 0.01655 −0.00165 0.00769 0.00551
LMSV spline −0.00322 0.01762 0.012549 −0.00481 0.023853 0.016890 −0.00172 0.00752 0.00540

Note: Bold values denote the best value.

Figures 3–6 present a comparison of the volatility implied by each model specification
and the observed absolute returns for Bitcoin and S&P 500. We can see that the adjust-
ment of estimated models is consistent with the pattern of volatility observed in all the
analyzed series.
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Figure 3. Bitcoin. (btc)—Fitted volatility and VaR (5%)—AR1SV and LMSV models.
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Figure 5. S&P 500 (sp500)—fitted volatility and VaR (5%)—AR1SV and LMSV models.
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Figure 6. S&P 500 (sp500)—fitted volatility and VaR (5%)—Ar1SV spline and LMSV spline models.
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5.3. Dynamic Value at Risk Estimation

Dynamic Value at Risk (VaR) measurements, calculated using different specifications,
are presented in the bottom panels of Figures 3–6. The values were computed using the
approximation VaR(α) = r̂ − qα × σt, where r̂ is the sample mean of the process, qα is the
α-quantile of a standard Normal distributionm and σt is the estimated conditional volatility.
In this experimentm we show the results for the calculation of a VaR with α = 0.05, a usual
measure of tail risk. The results for other VaR levels are available from the authors upon
request. In the same Figuresm we also show the dynamic Value at Risk (VaR) measurements
calculated using the different volatility components estimated using the four analyzed
specifications.

Broadly, dynamic VaR measurements appear to follow the observed tail risk for all
assets. In order to more carefully verify the performance of the different specifications for
conditional volatility, we show, in Table 8, the proportion of observed violations within
the sample (prop. viol.) and the p-values from the backtesting method for the VaR
proposed in Christoffersen (1998) to verify if the empirical coverage of the estimated VaR
is statistically equal to the VaR nominal value. This is compared against an alternative
hypothesis of empirical coverage that is distinct from the nominal, indicating a problem in
the VaR estimation.

Table 8. Value At Risk (VaR) statistics.

Btc Eth Sp500
Prop. Viol. p.Value Prop. Viol. p.Value Prop. Viol. p.Value

Ar1SV 0.04425 0.31218 0.05322 0.53688 0.05212 0.73500
LMSV 0.03110 0.00020 0.03588 0.00697 0.04083 0.17557

Ar1SV Spline 0.03050 0.00012 0.03887 0.03763 0.05212 0.73500
LMSV Spline 0.02631 1.67 × 10−6 0.03528 0.00493 0.04517 0.49878

For the calculation of VaR for BTC, the Ar1SV and LMSV spline models present
different performances. Ar1SV comes closest to the expected value of violations (5%),
while the LMSV spline tends to be conservative, underestimating the violations. For ETH,
Ar1SV is closest to the expected performance with respect to the VaR of 5%. The LMSV and
LMSV spline models consistently underestimate the violations. Finally, for the S&P 500
series, both Ar1SV and Ar1SV spline are well-calibrated with the VaR of 5%, with violation
proportions very close to 5%. The LMSV spline also presents a good adherence.

5.4. Out-of-Sample Forecast

Our previous analyses compared the in-sample performance of the conditional volatil-
ity models. To verify the predictive performance for conditional volatility out-of-sample,
we performed a forecast experiment using a rolling sample for the last 22 observations in
the sample, which were left out of the estimation procedure.

In this experiment, we employed rolling samples with a size equal to the size of the
original series minus 22, and with this new series, we estimate the four specifications
analyzed above. From these estimates, we predict future volatility for 1, 5, and 22 steps
ahead, and compare this with the observed values of absolute returns (proxy for true
unobserved volatility). Then, we added one more observation in the estimation sample, and
replicated the forecasting process until the end of this augmented sample. The prediction
results for each analyzed series, four different specifications, and the three forecast horizons
are presented in Table 9. The best results in each category are highlighted in bold.
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Table 9. Out-of-sample Forecast Measures.

ME RMSE MAE

Btc

Ar1SV 1-step 0.00402 0.01681 0.01328
LMSV 1-step 0.00023 0.01558 0.01200
Ar1SV spline 1-step −0.0012 0.01577 0.01214
LMSV spline 1-step 1 × 10−4 0.01595 0.01229

Ar1SV 5-steps 0.00474 0.01441 0.01197
LMSV 5-steps −0.00056 0.01375 0.01070
Ar1SV spline 5-steps −0.00281 0.01438 0.01074
LMSV spline 5-steps −0.0011 0.0142 0.0111

Ar1 22-steps 0.00996 0.01669 0.01452
LMSV 22-steps 0.00431 0.01419 0.01196
Ar1 spline 22-steps −0.00055 0.01429 0.01123
LMSV spline 22-steps 0.00101 0.01441 0.01164

Eth

Ar1SV 1-step 0.00435 0.01683 0.01334
LMSV 1-step 0.00081 0.01576 0.01227
Ar1SV spline 1-step −7 × 10−5 0.01571 0.01219
LMSV spline 1-step 0.00147 0.01573 0.01225

Ar1SV 5-steps 0.00841 0.01961 0.01644
LMSV 5-steps 0.00323 0.01700 0.01338
Ar1SV spline 5-steps 0.00143 0.01701 0.01320
LMSV spline 5-steps 0.0037 0.01766 0.01419

Ar1 22-steps 0.0134 0.02142 0.01953
LMSV 22-steps 0.00471 0.01719 0.01412
Ar1 spline 22-steps −0.00017 0.01738 0.01283
LMSV spline 22-steps 0.00218 0.01773 0.01371

SP500

Ar1SV 1-step 0.0022 0.00396 0.00371
LMSV 1-step 0.00222 0.00392 0.00366
Ar1SV spline 1-step 0.00169 0.00380 0.00359
LMSV spline 1-step 0.00186 0.00381 0.00361

Ar1SV 5-steps 0.00276 0.00386 0.00356
LMSV 5-steps 0.00283 0.0039 0.0036
Ar1SV spline 5-steps 0.00187 0.00334 0.00298
LMSV spline 5-steps 0.0021 0.00342 0.00309

Ar1 22-steps 0.00089 0.00504 0.00383
LMSV 22-steps 5 × 10−4 0.00507 0.00376
Ar1 spline 22-steps −0.00172 0.00507 0.00346
LMSV spline 22-steps −0.00142 0.00507 0.00345

Note: Bold values denote the best value.

To compare the predictive results, we evaluated three error indicators for each time
series (btc, eth, and sp500) and three forecast horizons (1-step, 5-step, and 22-step) for the
four forecast models: Ar1SV, LMSV, Ar1SV Spline, and LMSV Spline. For the btc series and
the one-step-ahead forecast, in terms of average error, the LMSV spline and Ar1SV spline
stand out as they present the values closest to zero (0.0001 and −0.0012), respectively. In
terms of RMSE, LMSV has the best performance (0.01558), which is repeated for the MAE in
this precision horizon (0.0120), showing that the LMSV stands out in this configuration. For
the five-step horizon, the LMSV model presents the best result in terms of ME (−0.00056),
RMSE (0.01375), and MAE (0.01070). For the 22-step horizon, the Ar1 spline (−0.00055) and
LMSV spline (0.00101) have the lowest mean errors, while the LMSV model has the lowest
RMSE (0.01419), and the Ar1 spline model has the lowest MAE (0.01123).
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Analyzing the predictive results for eth, for one-step-ahead, the Ar1SV spline model
stands out in terms of having the best ME (−7 × 10−5), RMSE (0.01571), and MAE (0.012190).
For the five-step horizon, the Ar1SV spline is again better in terms of ME (0.00143) and
MAE (0.01320), and the LMSV presents the lowest RMSE (0.01700). The results are similar
for the 22-step horizon, with a better ME (−0.00017) and MAE (0.01283) for the Ar1 spline
model and a better RMSE (0.017190) being obtained by the LMSV. The results for sp500
indicate that the AR1SV spline obtained the best performance for one-step-ahead, with
an ME, RMSE, and MAE of 0.001690, 0.00380, and 0.00359, respectively. Again, the best
performance for five-steps-ahead was achieved with an ME, RMSE and MAE of 0.00187,
0.00334, and 0.002980, and for 22-steps, the LMSV had the best ME (5 × 10−4), and Ar1
presented with the lowest RMSE (0.00504) and Ar1 spline with the lowest MAE (0.00346).

In summary, for btc, the LMSV model is consistently the best in terms of RMSE and
MAE, except for 22-steps, where the Ar1 spline excels in terms of MAE. For eth, the Ar1SV
spline is the most effective for 1-step, while for 5- and 22 steps, the LMSV and Ar1 spline
models present the best results in terms of RMSE and MAE, respectively, and for sp500, the
Ar1SV spline has a better performance for 1- and 5-steps, while for 22-steps, the Ar1 and
Ar1 spline stand out.

6. Application to High Frequency Data

A natural application of long-memory models is to model conditional volatility in
high-frequency return data (Deo et al. 2006). This type of application is important since it
is possible to use the estimated conditional variance for high-frequency data to calculate
the realized volatility measurements (e.g., Maasoumi and McAleer 2008; McAleer and
Medeiros 2008; Lieberman and Phillips 2008) for daily data. The estimation methodology
based on INLA and the approximation of an fGn by a Gaussian Markov Random Field
is especially interesting. It is computationally efficient in terms of computational speed
and memory usage, and thus can be used for the large number of observations observed in
high-frequency data. The second advantage is the possibility of directly incorporating a
latent variable into the model to capture patterns of intraday seasonality in market volatility
without the need for multi-step estimation procedures, as proposed in Deo et al. (2006).
The model uses the sum of fGN and zero-sum intraday periodic components, as provided
by Equation (20).

We estimated an LMSV model using 5 min intraday Bitcoin data from Bitstamp
exchange for the period from 1 January 2021 until 20 September 2024, corresponding to a
sample with 390,544 intraday observations. Figure 7 shows the intraday Bitcoin returns that
were analyzed. As described in Section 3, additive intraday seasonality was included. For
each 5 min window, one component was included, totaling 288 different intraday seasonal
fixed effects.

Table 10 shows the parameters estimated using the LMSV model for this series, and
Figure 8 shows the estimated conditional volatility compared to the absolute intraday
returns. We can observe that the model closely fits the temporal variation observed in the
intraday returns.

Table 10. Posterior Estimated Paramaters—LMSV for Bitcoin 5 min returns.

Mean Sd. 0.025q 0.5q 0.975q

µ −6.01 0.0892 −6.190 −6.010 −5.840
H 0.902 0.00199 0.898 0.902 0.906
τh 0.581 0.00776 0.566 0.581 0.596

τseas 8.81 × 10−5 1.64 × 10−5 6.12 × 10−5 8.64 × 10−5 0.000125
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The patterns of intraday seasonality estimated by the model can be seen in Figure 9,
which shows that there is substantial variation during the day. Log-variance is higher
during the night time (with a notable increase starting from 18:00 UTC) and lower during
the day, from 6:00 until 17:00. Shaded bands represent 95% credible intervals.
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Figure 9. Fitted Intraday Volatility Seasonality.

The mean error in the estimation of this model, using absolute returns as the metric of
true log-variance, was calculated as 0.00229, indicating a minimum bias in this estimation.
The root mean squared error was calculated with the value of 0.04588, and the mean
absolute error was calculated with the value of 0.02710, indicating an adequate adjustment
to the observed intraday data.

As previously discussed, one of the main advantages of using INLA in the Bayesian
estimation procedure is its computational efficiency, a problem that is a fundamental
limitation in the estimation of complex dynamic models with latent variables using intraday
data. The total computational time involved in estimating this model was 3905 s, which
is quite reduced compared to the complexity of a model with long memory and this high
number of observations, emphasizing the computational gains of this approach compared
to alternative methods, such as MCMC.

7. Conclusions

In this work, we explored the use of an estimation methodology for long-memory
stochastic volatility models using an approximation of a fractional Gaussian Noise process
as a Gaussian Markov Random Field, and with this approach we used the Integrated Nested
Laplace Approximations methodology to perform a Bayesian estimation of parameters and
latent variables.

This methodology is a useful addition to the set of tools used in the modeling of
conditional volatility in time series, since it is computationally efficient when compared to
traditional posterior simulation methods and the model specification can easily be extended
to include additional latent factors. In this work, we show that a simple extension, with the
addition of a smooth variation component to model the variation in the long-run average
of the conditional variance, analogous to a spline, allows for gains in terms of in-sample fit
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and out-of-sample forecasting. Another extension is that of an LMSV model that includes
seasonal patterns, which is especially important in the modeling of intraday returns.

The computational efficiency of this method is especially important in the modeling
of high-frequency data, which are characterized by a large number of observations. Sample
size may be an important limitation for other methods of conditional variance estimation,
such as quasi-maximum likelihood estimators and MCMC-based methods. We show how
the proposed estimator can be used to construct measures of realized variance, and also
to make out-of-sample forecasts for this measure, incorporating the entire dependence
structure in the conditional variance observed in the intraday returns.

The Integrated Nested Laplace Approximations (INLA) methodology, despite its no-
table computational efficiency and effectiveness, presents several limitations that warrant
consideration. Primarily, INLA excels in the estimation of latent Gaussian models; however,
its applicability may be constrained when addressing models that do not conform to this
framework. More intricate non-Gaussian or non-linear models can pose challenges for
estimation through INLA. While it is feasible to incorporate alternative distributions as
innovation processes within the observation equation, the reliance on Gaussian distribu-
tions for latent variables constitutes a fundamental assumption of the INLA approach.
Consequently, stochastic volatility models that incorporate non-Gaussian distributions
often necessitate modifications, such as the implementation of variational approximations
(Cabral et al. 2024; Van Niekerk et al. 2023), which can complicate the inference process and
increase computational demands.

Additionally, INLA employs numerical approximations to compute posterior marginals,
which may not consistently achieve the precision of fully simulated methods like the Markov
Chain Monte Carlo (MCMC), particularly in scenarios characterized by highly skewed or
multi-modal posterior distributions. Although INLA is well-suited to hierarchical and struc-
tured models, its flexibility may be more limited compared to MCMC, which can accom-
modate models with complex dependencies and structures that diverge from conventional
latent Gaussian settings. Furthermore, while INLA is adept at managing large datasets, the
computational time and memory requirements may significantly escalate when applied to
extremely high-frequency data or models with intricate dependencies, while remaining more
efficient than traditional MCMC-based methodologies.

This methodology can be extended in several directions. It is possible to construct
univariate multifactor models, for example, with permanent and transient components, or
factors with short and long memory, in the same model. It is possible to formulate a model
with both Ar1 and fGn components, and to verify whether there are different memory
patterns in the conditional variance. A model with Ar1 and fGn components would be
similar to an ARFIMA (1,d,0) specification for the conditional variance of the process, which
may be a useful specification for some time series.

The method presented in this article also can be used to generalize the structure of
multivariate stochastic volatility models estimated using INLA, as proposed in Nacinben
and Laurini (2024a). In this respect, the long-memory dynamics could be used as an
alternative to the first-order autoregressive structure in the construction of multivariate
models using a multifactor structure. Another possible application is to compare the fit and
predictions of the long memory model on conditional volatility with alternative models
using regime shifts and other forms of parameter variation. Since the approximation
structure for the long memory process used in our study is itself based on the aggregation
of short-memory models, it is expected that this method could be an alternative way to
predict volatility in the presence of changes in the process memory.

Another potential extension is the incorporation of non-Gaussian distributions into
the innovation process of latent factor dynamics. This approach could enhance the model’s
robustness in the presence of heavy-tailed distributions that affect the conditional volatil-
ity process. Furthermore, variational methods can be integrated with INLA to facilitate
inference in stochastic volatility models that employ non-Gaussian distributions, as demon-
strated in Cabral et al. (2024) and applied in the estimation of univariate SV models by
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Nacinben and Laurini (2024b). By combining long memory structures with non-Gaussian
distributions, we can broaden the applicability of stochastic volatility models to encompass
the two significant empirical features commonly observed in financial data.
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Appendix A. Specification Details

In all models, the mean parameters (that is, µ in SV and LMSV models) have a Normal
prior with a large known variance.

Appendix A.1. SV Model

rt = exp(ht/2)εt, εt ∼ N(0, 1), (A1)

ht = µ + ϕ(ht−1 − µ) + zt, zt ∼ N(0, 1/(1 − ϕ2)τ). (A2)

This model has three parameters: µ, ϕ, and τ.
The AR(1) structure has two hyperparameters θ1 and θ2:

θ1 = log(κ), κ = τ(1 − ϕ2), (A3)

θ2 = log
(

1 + ϕ

1 − ϕ

)
. (A4)

with the following prior distributions:

θ1 ∼ LogGamma(1, 5×10−5), (A5)

θ2 ∼ Normal(0, (0.15)−1). (A6)

Appendix A.2. LMSV Model

rt = exp(ht/2)εt, εt ∼ N(0, 1), (A7)

ht = µ + xt, xt ∼ f Gn(H, τh), (A8)

There are three estimated parameters: µ, H, and τh.

https://coinmarketcap.com/
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The fGn process ht has two hyperparameters θ1 and θ2.

τ = exp(θ1), θ1 ∼ pc.prec(0.2, 0.008) (A9)

H =
1
2

(
exp(θ2)

1 + exp(θ2)

)
, θ2 ∼ pc.cor1(0.9, 0.9) (A10)

Appendix A.3. SV Spline Model

In the SV spline model, the log volatility is as follows:

rt = exp (ht + st)/2)εt, εt ∼ N(0, 1), (A11)

ht = ϕht−1 + ηt, ht ∼ N(0, 1/τh), (A12)

∆2st = st − 2 st+1 + st+2, st ∼ N(0, 1/τs) (A13)

The second-order random walk spline component has one hyperparameter θ1, which
is the marginal precision of the following component:

θ1 = log(τs), (A14)

θ1 ∼ logGamma(0, 0.15). (A15)

This model has three parameters: τs, ϕ, and τh.
The AR(1) term has a prior structure similar to the standard SV model, with two

hyperparameters: θ3andθ2.

θ2 = log(κ), κ = (1 − ϕ), (A16)

θ3 = log
(

1 + ϕ

1 − ϕ

)
(A17)

θ2 ∼ pc.prec(0.2, 0.008), (A18)

θ3 ∼ pc.cor1(0.9, 0.9). (A19)

Appendix A.4. Spline LMSV Model

In the Spline LMSV model log volatility follows

rt = exp ((ht + st)/2)εt, εt ∼ N(0, 1), (A20)

ht = µ + f Gn(H, τ), (A21)

∆2st = st − 2 st+1 + st+2, st ∼ N(0, 1/τs). (A22)

The second-order random walk spline component has one hyperparameter, θ1, which
is the precision of the i.i.d Normal innovations, νt.

θ1 = log(τs), (A23)

θ1 ∼ logGamma(0, 0.15). (A24)

The fGn process yt has two hyperparameters: θ2 and θ3.

τ = exp(θ2), θ2 ∼ pc.prec(0.2, 8×10−5) (A25)

H =
1
2

(
exp(θ3)

1 + exp(θ2)

)
, θ3 ∼ pc.cor1(0.9, 0.9) (A26)

Appendix A.5. Seasonal LMSV Model

ht = seast + yt + ηt, ηt ∼ N(0, τh) (A27)

seast + seast−1 + · · ·+ seast−m+1 ∼ N(0, τseas) (A28)
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This model has three estimated parameters: τseas, τh, and H. Periodicity m is 288,
which reflects daily frequency with returns of 5 min apart.

The seasonal component seast has one hyperparameter: θ1

θ1 = log(τseas) (A29)

θ1 ∼ logGamma(0, 0.15). (A30)

The fGn component has two hyperparameters: θ2 and θ3

θ1 = log(κ), k = τ(1 − ρ2), (A31)

θ2 = log
(

1 + ρ

1 − ρ

)
(A32)

We employ the penalized complexity priors introduced by Sørbye and Rue (2018) for
both precision τ and persistence ρ.

Note
1 See https://r-nimble.org/, accessed on 20 December 2023 and https://www.r-inla.org/ package. The simulations here and the

estimation in Section 6 were performed in an Intel(R) Xeon(R) W-2265 CPU @ 3.50 GHz with 128gb Ram memory.
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