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Abstract: This paper proposes the use of Bayesian inference techniques to search for and obtain
valid instruments in dynamic panel data models where endogenous variables may exist. The use
of Principal Component Analysis (PCA) allows for obtaining a reduced number of instruments in
comparison to the high number of instruments commonly used in the literature, and Monte Carlo
Markov Chain (MCMC) methods enable efficient exploration of the instrument space, deriving
accurate point estimates of the elements of interest. The proposed methodology is illustrated in a
simulated case and in an empirical application, where the partial effect of a series of determinants
on the attraction of international bank flows is quantified. The results highlight the importance
of promoting and developing the private sector in these economies, as well as the importance of
maintaining good levels of creditworthiness.

Keywords: endogeneity; Bayesian methods; MCMC; instrumental variables selection; international
bank flows

1. Introduction

Endogeneity is a common issue in economic research that can lead to biased and
inconsistent estimates if not properly addressed. Instrumental variables are typically
employed to mitigate this problem. These variables must satisfy two key conditions: they
must be uncorrelated with the error term of the regression model (exogeneity condition) and
correlated with the endogenous variables (relevance condition). By using these instruments
as regressors instead of the endogenous variables, it is possible to obtain asymptotically
unbiased estimates of the regression coefficients.

In panel data modeling, estimation techniques based on the Generalized Method of
Moments (GMM) are commonly used (Arellano and Bond 1991; Arellano and Bover 1995).
To apply the GMM, a system of equations is specified. The first equation captures the
relationship between the dependent variable and a set of explanatory variables, which
may include both strictly exogenous and endogenous variables. The remaining equations
describe the interdependencies between the endogenous variables and a set of regressors
or instrumental variables. These instruments are intended to maximize the information
about the endogenous variables (relevance condition) while ensuring they do not introduce
bias into the estimation of the first equation due to their orthogonality with the error term
(exogeneity condition).

Under certain regularity conditions, the GMM estimation procedure is asymptotically
unbiased and efficient (Roodman 2009b). However, this method faces several limitations.
One significant challenge is the high dimensionality of the instrument set. As GMM
methodology constructs instruments based on orthogonality conditions between the id-
iosyncratic error and the instruments, the number of instruments increases quadratically
with the length of the time series, leading to a trade-off between efficiency gains from
incorporating additional moments and the loss of degrees of freedom. Moreover, while
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the orthogonality conditions generally ensure the exogeneity of instruments, they do not
guarantee the relevance condition, which is a critical issue addressed in this study.

To reduce the number of instruments, Roodman (2009a, 2009b) proposed collapsing
the instrument matrix. While effective in many cases, this approach can still result in high-
dimensional matrices, particularly in contexts with a large number of time observations,
and it does not differentiate between relevant and irrelevant instruments. Nevertheless, the
approach of constructing instrumental matrices using lags of the endogenous variables,
combined with dimensional reduction through matrix collapsing, provides a useful starting
point for applying the GMM in panel models, including non-dynamic ones, where suitable
instruments may be scarce.

Building upon the methodology introduced in this paper, we propose leveraging Prin-
cipal Component Analysis (PCA) in conjunction with Bayesian methods to select a reduced
set of valid instruments, thereby enhancing estimation efficiency without compromising
precision in the parameters of interest. Initially, we apply PCA to the instrument matrix
to mitigate multicollinearity among the instruments and to extract the most informative
components. Next, we model each endogenous variable as a function of these transformed
orthogonal instruments. The estimation of these relationships is conducted using Gibbs
Sampling with non-informative priors on the parameters, allowing for flexible and robust
inference. This Bayesian approach enables us to identify the most relevant instruments
that are significant at a minimum credibility level of 90%. By incorporating Bayesian
techniques, we achieve a parsimonious instrument set that maintains the model’s goodness
of fit, effectively balancing complexity and estimation accuracy. For a more comprehensive
exposition on the application of Bayesian methods in panel data contexts, interested readers
are referred to Chib (2008).

The proposed methodology is illustrated by applying it to simulated cases and to
an empirical study focused on understanding the influence of economic, financial, and
governance indicators on international bank inflows in emerging economies, drawing on
the work of Kim and Wu (2008). By examining 50 countries over a 26 year period, this study
highlights the role of the public sector in fostering capital inflows and evaluates which
indicators act as significant pull factors for bank capital versus those that might deter such
inflows. It addresses the methodological challenges of endogeneity within governance
indicators by implementing a forward orthogonal deviation transformation and utilizing
a fixed effects instrumental variable approach. The results reveal that economic and
financial variables, such as GDP per capita and credit ratings, are prominent attractors,
while governance indicators like government effectiveness can present a latent effect
undiscovered by endogeneity in data, shaping the policy implications for emerging markets.

The remainder of this paper is organized as follows. Section 2 introduces the problem,
assuming the presence of an endogenous regressor. Section 3 outlines the process of
identifying valid instruments that satisfy the relevance and exogeneity conditions while
minimizing their number. Section 4 details the posterior inference procedure for the
model parameters following the identification of the necessary instruments. In Section 5,
we evaluate the performance of the proposed methodology using a simulated example.
Section 6 presents the empirical study, where we analyze the partial effects of governance
indicators on bank capital inflows. Section 7 concludes the paper. The Appendix Section
includes three appendices: Appendix A provides a detailed mathematical derivation of
key results, Appendix B offers a description of the variables, and Appendix C presents
additional supporting information.

2. Setting Up the Problem

Let
{

yit,
{

xjit, j = 1, 2, . . . , Kx
}

,
{

wjit, j = 1, 2, . . . , Kw
}

; i = 1, . . . , N; t = 1, . . . , T
}

be
a balanced panel dataset corresponding to N individual units and T periods, where y
is the dependent variable, X = (X1, . . . , XKx ) are explanatory strictly exogenous variables,
and W = (W1, . . . , WKw) are endogenous explanatory variables. Without loss of generality,
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we assume that Kw = 1, with an extension to the case of Kw > 1 being straightforward (see
Section 4.4 below).

Let us assume a dynamic panel model with individual effects given by

yit = β0yi,t−1 +
Kx

∑
j=1

xjitβ1j + witβ2 + αi + uit (1)

which describes the evolution of the variable of interest y, where {αi, i = 1, 2, . . . , N} are in-
dividual fixed effects and {uit; i = 1, . . . , N; t = 1, . . . , T} are i.i.d. homoscedastic random
normal disturbances, with uit ∼ N

(
0, σ2

u
)
. The main concern is the estimation of β2, the

direct effect of W on y.
To eliminate bias in the estimation of β2, we consider a set of KZ instrumental variables

Z = (Z1, . . . , ZKz) with observed values
{

zjit, j = 1, 2, . . . , Kz; t = 1, . . . , T; i = 1, . . . , N
}

,
which are assumed to be related to the variable W (relevance condition) by means of the
linear regression

wit =
KZ

∑
j=1

zjitϕj + ϵit (2)

with
{

ϵit ∼ N
(
0, σ2

ϵ

)
; t = 1, . . . , T; i = 1, . . . , N

}
. The instrumental variables Z are sup-

posed to be uncorrelated with the random disturbances {uit; t = 1, . . . , T; i = 1, . . . , N} in
such a way that cov

(
zjit, uit

)
= 0, ∀i, t (exogeneity condition), and it is possible to consider

including those variables that are marked as strictly exogenous in the model. In the best-
case scenario, the use of instrumental variables that meet the aforementioned conditions
and are available to the researcher is considered. However, in reality, these variables are
often unknown and not externally accessible, making it necessary to use the available
sample information to generate them. In addition, it is assumed that

cov
(
uit, xjit

)
= cov

(
εit, zjit

)
= cov

(
εit, xjit

)
= 0 ∀i, j, t

cov
(
(uit, εit),

(
ujt, ε jt

))
= 0 ∀i ̸= j

(uit, εit) ∼ N
([

0
0

]
,
[

σ2
u σu,ε

σu,ε σ2
ε

]) (3)

where σu,ε = cov(uit, εit). The endogeneity problem arises when σu,ε = cov(uit, εit) ̸= 0,
which leads to bias in the inference about the parameter β2, which does not disappear
asymptotically. This bias can be overcome using instrumental variables that verify the
conditions of relevance

(
∃j ∈ {1, . . . , Kz} : ϕj ̸= 0

)
and exogeneity

(
cov
(
zjit, uit

)
= 0

)
; ∀j.

However, it is standard to choose the instrumental variables Z using doubtful ad hoc
subjective-value judgements. Commonly used procedures, even those proposed by Rood-
man (2009a, 2009b), can generate a large number of instruments, increasing the computa-
tional complexity of the procedure, as well as the existence of multicollinearity problems
between the instruments, reducing the precision of the inferences.

In this paper, we propose a Bayesian methodology to estimate β2 providing, on the
one hand, a general methodology to obtain valid instruments generated from sample
information using relevant moment conditions and, on the other hand, a procedure to
reduce the size of the generated matrix of instruments by mitigating the likelihood of
quasi-multicollinearity among instruments.

3. Methodology
3.1. General Setting and Forward Orthogonal Deviations

We present a general methodology for dealing with endogenous variables using
only one endogenous regressor. Application to more than one endogenous regressor is
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straightforward, and general guidelines are provided below (see Section 4.4). The starting
point is the equation system defined by

yit = β0yi,t−1+
Kx
∑

j=1
xjitβ1j + witβ2 + αi + uit

wit =
Kz
∑

j=1
zjitϕj + εit

(4)

In panel data settings, a source of potential endogeneity is the value of cov(yi,t−1, αi),
but one can apply some of the common transformations to eliminate individual effects
while retaining sample information. Our proposal is to employ a forward orthogonal
deviation (FOD) transformation (Arellano and Bover 1995). For each element included in
the model, the transformation is given by

∼
y it =

[
T−t

T−t+1

] 1
2

[
yit − 1

T−t

T
∑ yis
s=t+1

]
∼
x jit =

[
T−t

T−t+1

] 1
2

[
xjit − 1

T−t

T
∑ xjis
s=t+1

]
∼
z jit =

[
T−t

T−t+1

] 1
2

[
zjit − 1

T−t

T
∑ zjis
s=t+1

]
∼
wit =

[
T−t

T−t+1

] 1
2
[

wit − 1
T−t

T
∑ wis
s=t+1

]
∼
uit =

[
T−t

T−t+1

] 1
2
[

uit − 1
T−t

T
∑ uis
s=t+1

]
∼
ε it =

[
T−t

T−t+1

] 1
2
[

εit − 1
T−t

T
∑ εis
s=t+1

]

(5)

which, when applied to system (4), results in

∼
y it = β0

∼
y i,t−1 +

Kx
∑

j=1

∼
x jitβ1j +

∼
witβ2 +

∼
uit

∼
wit =

Kz
∑

j=1

∼
z jitϕj +

∼
ε it

(6)

Thus, the fixed effects αi are removed from (4). When dealing with an unbalanced
panel, as pointed out by Roodman (2009b), the Forward Orthogonal Deviation Transfor-
mation fills the gaps with the average of all future available observations of a variable,
minimizing data loss. Practically, this is equivalent to replace the missing value as a
zero value.

This approach offers the advantage that, provided the original errors are homoscedas-
tic and uncorrelated, these properties are preserved unchanged after transformation. Prior
plausible alternative transformations include the Within transformation and the first-
difference (FD) transformation. However, the Within transformation must be excluded in a
dynamic context because it incorporates time-specific realizations, leading to correlation
with each lag of the variable. With respect to the first-difference transformation, although
is straightforward to implement, it presents significant drawbacks compared to the orthog-
onal deviation transformation. Specifically, the first observation for each individual in
the sample must be omitted, it induces autocorrelation between consecutive errors, and
the first lag of the endogenous variable is lost as an instrumental variable. For a more
comprehensive discussion see Croissant and Millo (2019) and Mátyás and Sevestre (2008).



Econometrics 2024, 12, 36 5 of 35

3.2. Over-Dimensionality Problems

From a frequentist perspective, the Generalized Method of Moments (GMM) approach
has usually been considered for the inference process because of its flexibility and because
it requires adopting very few assumptions about the data-generating process. In addition,
most proposed versions provide estimates that prevent the well-known bias from appearing
(Nickell 1981). However, this method has some shortcomings. The main one is the way
the instrumental variables are introduced. Using the approach of Holtz-Eakin et al. (1988),
the number of valid instruments is NT × T(T−1)

2 , which can cause problems in the finite
samples. One of problems is the dimension of the resultant variance matrix of the moments,
which is a quadratic function of T, as the number of instruments increases. This ultimately
leads to the matrix of instruments becoming singular, and it is necessary to perform the
GMM. In a Bayesian framework, given that the inference is exact or based on Monte Carlo
methods, this is not problematic. However, the second problem is that a large instrument
collection can overfit the endogenous variables in Equation (2). Unfortunately, Bayesian
procedures can have a similar problem, but to a lesser extent, because of their tendency to
select parsimonious models.

A first proposal to establish a valid methodology to reduce the number of instruments
was proposed by Roodman (2009a, 2009b) and is based on collapsing the resultant instru-
mental matrix. Although this construction implies a significant reduction in the number
of instruments to be incorporated, this perspective still preserves some relevant aspects
to be corrected. On the one hand, in panels where the size of period T is high, the loss
of degrees of freedom, even in collapsed matrices, will be relevant in frequentist cases.
From a Bayesian inference perspective, working with a collapsed matrix with a large T may
mean incorporating correlated elements in the instrument matrix, which could decrease
the precision of posterior inferences. However, and highly related to the above, there is a
possibility of adding instruments that are not very relevant in the inference process and
can cause potential multicollinearity problems. Thus, the optimal procedure would be to
introduce only those instruments relevant to the explanation of endogenous variables. Our
proposal allows us to reduce the number of instruments incorporated while guaranteeing
the absence of multicollinearity among the valid instruments selected.

3.3. Instrumental Matrices

As previously mentioned, the validity of instrumental variables must be demonstrated
based on their relevance and exogeneity. Regarding relevance, our proposal addresses
this issue in a later section. Exogeneity is ensured as long as the initial assumptions of
the model are satisfied. Specifically, as long as the autoregressive structure of the target
variable is maintained, the orthogonality condition between moments of order higher than
one (under a Forward Orthogonal Deviations transformation) guarantees compliance with
the exogeneity restriction. This condition is expressed as follows:

E
[

Z′
jiui

]
= 0; i = 1, . . . , N, j = 1, 2, . . . , Kz

where ui = (ui1, . . . , uiT)
′ and Zji =

(
zji1, . . . , zjiT

)′. In our case, we take the collapsed
form proposed by Roodman (2009a, 2009b) after applying Forward Orthogonal Deviations
(5), and we create the collapsed instrumental matrix for the endogenous variable W as

∼
Z =


∼
Z1
...

∼
ZN

, where
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∼
Zi =



∼
x1i1 · · · ∼

xKx i1 0 0 · · · 0
∼
x1i2 · · · ∼

xKx i2
∼
wi1 0 · · · 0

∼
x1i3 · · · ∼

xKx i3
∼
wi2

∼
wi1 · · · 0

...
. . .

...
...

...
. . .

...
∼
x1iT · · · ∼

xKx iT
∼
wiT−1

∼
wiT−2 · · · ∼

wi1


; i = 1, . . . , N

Once the instrumental matrix
∼
Z is established, our proposal consists of carrying out a

principal component analysis on
∼
Z to select the components with better explanatory power.

Let the matrix form of the endogenous component be defined as

∼
w =

∼
Zϕ +

∼
ε

where
∼
w ∈ RNT × 1,

∼
Z ∈ RNT ×R

K∼
Z , ϕ ∈ R

K∼
z
×1,

∼
ε ∈ RNT × 1 and K∼

Z
= Kx + T − 1.

Note that in the general Equation (6), the dimension of the instrumental variables would
now be KZ = K∼

Z
= KX + T − 1, in accordance with the methodology.

Our approach to selecting a reduced set of valid instruments for
∼
w is based on extract-

ing the principal components of
∼
Z that are most relevant for explaining

∼
w. By reformulating

the instrumental equation in terms of the principal component scores of
∼
Z
{
∼
s 1it, . . . ,

∼
s K∼

Z
it

}
for i, t, we have

∼
wit =

∼
s 1itδ1 +

∼
s 2itδ2 + . . . +

∼
s K∼

Z
itδK∼

Z
+

∼
v it

with
∼
v it ∼ N

(
0, σ2

∼
v

)
∀i, t, or, in matrix terms:

∼
w =

∼
Sδ +

∼
v (7)

To identify valid instruments, we employed Bayesian procedures, specifically propos-
ing a search for relevant instruments using a non-informative Jeffreys prior on the parame-
ters of interest. Due to the orthogonality of the principal components, a relationship can be
established between the endogenous variable and each instrument, enabling an individu-
alized analysis of each instrument’s representativeness. Additionally, this process can be
conducted in parallel across all available instruments to enhance computational efficiency.
This type of prior is designed to represent prior ignorance regarding the parameters, as it
remains invariant under reparameterizations (Jeffreys 1961).

3.4. Search for Valid Instruments

As highlighted in Hadi and Ling (1998) and Jolliffe (1982), component selection meth-
ods that retain components explaining the highest proportion of variance do not necessarily
identify those that contribute most significantly to the explanation of the target variable. For
this reason, it is essential to develop a component selection mechanism that accurately iden-
tifies those components that genuinely play a significant role in explaining the endogenous
variable. The likelihood function is based on the distribution

∼
w
∣∣∣∣∼S, δ, σ2

∼
v
∼ NNT

(∼
Sδ, σ2

∼
v

INT

)
(8)

with a non-informative Jeffreys prior given by

π
(

σ2
∼
v
, δ
)

∝

(
1

σ2
∼
v

)
I(0,∞)

(
σ2
∼
v

)
(9)
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The posterior kernel, that is, the posterior distribution up to a normalizing constant, is
given then by

p
(

δ, σ2
∼
v

∣∣∣∼w) ∝
(

σ2
∼
v

)−( NT
2 +1)

exp

{
− 1

2σ2
∼
v

(
∼
w −

∼
Sδ

)′(∼
w −

∼
Sδ

)}
I(0,∞)

(
σ2
∼
v

)
(10)

This posterior kernel leads to the following posterior conditional distributions:

σ2
∼
v
|δ,

∼
w ∼ IG(a1, b1); a1 = NT

2 , b1 =

(
∼
w−

∼
Sδ

)′(∼
w−

∼
Sδ

)
2

δ|σ2
∼
v
,
∼
w ∼ NK∼

Z

(
δ̂, V1

)
; δ̂ =

(∼
S
′∼
S
)−1∼

S
′ ∼
w, V1 = σ2

∼
v

(∼
S
′∼
S
)−1 (11)

We used these posterior conditional distributions in a Gibbs Sampling scheme (Geman
and Geman 1984) to obtain point estimates and credible intervals for each instrument. After
an initial burning period, we discarded the initial part of the simulated chain, and we
took the remaining iterations as an approximate dependent sample from this distribution.
This sample was used to make posterior inferences regarding the model parameters. We
selected those instruments that are significant at a credibility level of at least 90%. The
details about the mathematical derivation of the full conditional distribution employed are
shown in Appendix A.

4. Estimation of the Equation System

Once we have selected the instruments, we infer the parameters of Model (6). Again,
we used the Bayesian approach. In this case, the likelihood function and prior distribution
of parameters are described as in Greenberg (2012).

4.1. Likelihood Function

The equation system will be given by

∼
y

NT×1
=

∼
y−1

NT×1
β0 +

∼
X

NT×Kx
β1

Kx×1
+

∼
w

NT×1
β2 +

σ∼
u ,
∼
v

σ∼
v

2
∼
v +

∼
u

NT×1
−

σ∼
u ,
∼
v

σ∼
v

2
∼
v

∼
w

NT×1
=

∼
S

NT×K∼
Zw

δ
∼
Zw×1

+
∼
v

NT×1

i.e.,
∼
y =

∼
y−1β0 +

∼
Xβ1 +

∼
wβ2 +

∼
vβ3 + û

∼
w =

∼
Sδ +

∼
v

(12)

where β3 =
σ∼

u ,
∼
v

σ2∼
v

, û =
∼
u −

σ∼
u ,
∼
v

σ2∼
v

∼
v and

(
ûit
∼
v it

)
∼ N2

([
0
0

]
, Σ =

[
ω11 0

0 σ2
∼
v

])
with

ω11 = σû
2 = σ∼

u
2 −

σ2∼
u ,
∼
v

σ2∼
v

are independent ∀i, t. The joint likelihood of the model (12) is

given by:

p
(
∼
y,

∼
w
∣∣∣∣∼y_1,

∼
X,

∼
S, δ, β0, β1, β2, β3, σ2

∼
v
, ω11

)
= p

(
∼
w
∣∣∣∣∼S, δ, σ2

∼
v

)
∏T

t=2 p
(
∼
y_t

∣∣∣∣∼y_(t−1),
∼
Xt,

∼
wt,

∼
St, δ, β0, β1, β2, β3, ω11

)

where
∼
y_t =

(∼
y1t, . . . ,

∼
yNt

)′
,
∼
Xt =


∼
x
′
1t

· · ·
∼
x
′
Nt

,
∼
wt =


∼
w1t
· · ·
∼
wNt

,
∼
St =


∼
s
′
1t

· · ·
∼
s
′
Nt

, so that:
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∼
w
∣∣∣∣∼S,δ, σ2

∼
v
∼ NNT

(∼
Sδ, σ∼

v
2 INT

)
∼
y_t

∣∣∣∣∼y_(t−1),
∼
Xt,

∼
wt,

∼
St, δ, β0, β1, β2, β3, ω11 ∼ NN

(
∼
y_(t−1)β0 +

∼
Xtβ1 +

∼
wtβ2 +

∼
v tβ3, ω11 IN

) (13)

Therefore, the joint density function of
(∼

y,
∼
w
)

is given by:

p
(
∼
y,

∼
w
∣∣∣∣∼y_1,

∼
X,

∼
S, δ, β0, β1, β2, β3, σ2

∼
v
, ω11

)
∝
(

σ2
∼
v

)−(NT/2)
×

exp

{
1

2σ2∼
v

{(
∼
w −

∼
Sδ

)′(∼
w −

∼
Sδ

)}}
I(0,∞)

(
σ2
∼
v

)
× (ω11)

−(NT/2)×

exp

{
1

2ω11

{(
∼
y − ∼

y−1β0 +
∼
Xβ1 −

∼
wβ2 −

∼
vβ3

)′(∼
y − ∼

y−1β0 +
∼
Xβ1 −

∼
wβ2 −

∼
vβ3

)}}
I(0,∞)(ω11)

(14)

4.2. Prior Distribution

The prior distributions of the regression coefficients δ, β0, β1, β2, β3 are the usual
conjugates, which are given by:

δ ∼ NKS(δ0, V0)

β0 ∼ N
(

β00, σ2
β0

)
β1 ∼ NKx

(
β01, V0β1

)
β2 ∼ N

(
β02, V0β2

)
β3 ∼ N

(
β03, V0β3

)
(15)

while, employing the same conjugates distributions, the prior distributions for variance
components are given by

σ2
∼
v
∼ IG

(
a0
2 , b0

2

)
ω11 ∼ IG

( µ0
2 , c0

2
) (16)

Therefore, the full prior distribution is specified as follows:

π
(

δ, β0, β1, β2, β3, σ2
∼
v
, ω11

)
= π(δ)π(β0)π(β1)π(β2)π(β3)π

(
σ2
∼
v

)
π(ω11)

∝ exp
{
− 1

2

{
(δ − δ0)

′V−1
0 (δ − δ0)

}}
× exp

{
− 1

2

{
(β0 − β00)

′V−1
0β0

(β0 − β00)
}}

×

exp
{
− 1

2

{
(β1 − β01)

′V−1
0β1

(β1 − β01)
}}

× exp
{
− 1

2

{
(β2 − β02)

′V−1
0β2

(β1 − β02)
}}

× exp
{
− 1

2

{
(β3 − β03)

′V−1
0β3

(β3 − β03)
}}

×
(

σ2
∼
ν

)−(
a0
2 +1)

exp
{
− b0

2σ2∼
ν

}
I(0,∞)

(
σ2
∼
ν

)
×(ω11)

−(
µ0
2 +1) exp

{
− c0

2ω11

}
I(0,∞)(ω11)

(17)

4.3. Posterior Distribution

Applying Bayes’ Theorem, the posterior distribution is given by
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p
(

δ, β0, β1, β2, β3, σ2
∼
v
, ω11

∣∣∣∣∼y,
∼
y−1,

∼
X,

∼
w,

∼
S
)

∝ p
(

∼
w
∣∣∣∣∼S, δ, σ2

∼
v

)
p
(
∼
y
∣∣∣∣∼y−1,

∼
X,

∼
w,

∼
S, δ, β0, β1, β2, β3, σ2

∼
v
, ω11

)
×

π
(

δ, β0, β1, β2, β3, σ2
∼
v
, ω11

)
∝
(

σ2
∼
v

)−(NT/2)
exp

{
1

2σ2∼
v

{(
∼
w −

∼
Sδ

)′(∼
w −

∼
Sδ

)}}
I(0,∞)

(
σ2
∼
v

)
×

(ω11)
−(NT/2) exp

{
1

2ω11

{(
∼
y − ∼

y−1β0 +
∼
Xβ1 −

∼
wβ2 −

∼
vβ3

)′(∼
y − ∼

y−1β0 +
∼
Xβ1 −

∼
wβ2 −

∼
vβ3

)}}
I(0,∞)(ω11)×

exp
{
− 1

2

{
(δ − δ0)

′V−1
0 (δ − δ0)

}}
× exp

{
− 1

2

{
(β0 − β00)

′V−1
0β0

(β0 − β00)
}}

×

exp
{
− 1

2

{
(β1 − β01)

′V−1
0β1

(β1 − β01)
}}

× exp
{
− 1

2

{
(β2 − β02)

′V−1
0β2

(β2 − β02)
}}

×(
σ2
∼
ν

)−(
a0
2 +1)

exp
{
− b0

2σ2∼
ν

}
I(0,∞)

(
σ2
∼
ν

)
× (ω11)

−(
µ0
2 +1) exp

{
− c0

2ω11

}
I(0,∞)(ω11)

(18)

This distribution (18) is not analytically tractable, and for this reason, we employ
MCMC methods to obtain valuable information about it. Specifically, we use the No-
U-Turn sampler algorithm introduced by Hoffman and Gelman (2014) in the version
modified by the STAN probabilistic programming language (Carpenter et al. 2017). The
main advantage of this algorithm with respect to Gibbs or Metropolis-Hastings is its ability
to generate iterations capable of exploring the state space more efficiently, a virtue enhanced
in high-dimensional parametric spaces, as may be the case for models with dynamic panel
data or with endogeneity problems.

4.4. Extension to Several Endogenous Regressors

This procedure can be extended to consider the existence of two or more endogenous
variables. In this case, we set up an instrumental regression model (4) for each endogenous
variable and separately apply the stochastic search of valid instruments for each variable.
The selected instruments will be incorporated in the equation system (12), from which
inferences about the regression coefficients β2j; j = 1, . . . , Kw of each endogenous variables
in the regression model

yit = αi + β0yi,t−1 +
Kx

∑
j=1

xjitβ1j +
Kw

∑
j=1

wjitβ2j + uit

can be obtained using an adaptation of the algorithm described in Section 4.3. An example
can be found in the empirical example in Section 7.

5. Simulated Data

To illustrate the functioning of our proposal, we designed a simulation study in which
we subject the methodology to different definitions and changes in the relevant parameters.
In the main scenario, we employ a generic sample of N = 50 individual observations and
T = 10 temporal observations. We consider this to be a representative sample of the type
of panel structure addressed in this work. To assess the sensitivity to the definition of the
prior distributions, we chose to analyze each case using both an informative specification
and a strongly non-informative one. The simulated model is given by

yit = β0yi,t−1 + β1xit + β2wit + αi + uit
wit = ϕ1wi,t−1 + ϕ2zit + εit

(19)

where KX = KW = 1 and KZ = 2. Based on this model, we establish a scenario where ρ = 0,
that is, considering a complete absence of correlation between the endogenous variable
and the random disturbance; another where ρ = 0.5, representing a moderate correlation;
and an extreme case where ρ = 0.99. Regarding β0, a value of 0.5 is set for the case of
stationarity and a value of 0.99 to evaluate performance in the context of a unit root in the
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lagged term. For the remaining parameters, we assign the following value: β1 = 3, β2 = 2,
ϕ1 = 0.5, ϕ2 = 1.5.

The desired correlation between the endogenous variable and the random disturbance
is achieved through taking random samples from a multivariate Normal as follows:(

uit
wit

)
∼ N

([
µu
µw

]
, Σu,w

)
; ∀i, t

Σu,w =

[
σu 0
0 σw

][
1 ρ
ρ 1

][
σu 0
0 σw

] (20)

where
µu = 0, µw = ϕ1wi,t−1 + ϕ2zit; ∀i, t;

σu ∼ (U(2, 5))
1
2 , σw ∼ (U(1, 4))

1
2

(21)

We also randomly select values for the remaining components ε ∼ NNT
(
0, σ2

w INT
)
;

αi ∼ U(−1, 1). For variables x and z, we take random samples from xij ∼ N(0, 1); ∀i, j,
zij ∼ N(0, 1); ∀i, j.

We denote a model without a specific endogeneity treatment as a Fixed Effect (FE)
model, while a model that incorporates our proposal is denotes as Instrumental Variable
Fixed Effect (IVFE). The statistics used to report the results include the posterior mean
(Mean), the posterior standard deviation (SD), the 2.5th percentile (Q. 2.5), the median or
50th percentile (Q. 50), and the 97.5th percentile (Q. 97.5). Additionally, the convergence
measures, ESS and

>
R, are used to evaluate the convergence of the chains and the quality of

the results. The Mean Squared Error (SE) was used to compare the point estimates with
real values. Notice that

>
R represents the potential scale-reduction factor, and ESS is the

Effective ample Size, which are both defined in Gelman et al. (2014).
To search for relevant instruments, we take the following prior values to start the

Gibbs sampling (∼
wit

∣∣∣∼s jit

)
∼ N

(
∑

K∼
Z

j=1
∼
s jitδj,σ2

∼
v

)
; j = 1, . . . , K∼

Z

σ2
∼
v

(0) ∼ IG
(

a0
2 = 2, b0

2 = 2
)

δ(0) ∼ NK∼
z
(0, 1)

(22)

We launched four chains of 10,000 iterations each, using the previous Gibbs Sampling
scheme, discarding the first 20% of the sample as burning. Posterior results obtained
in the Principal Component search stage for each model under study (the six models
considered, regardless of the prior type established for the regression parameters) are
located in Appendix C. The non-informative prior and likelihood setting for a model
without endogeneity treatment is given by(∼

y it

∣∣∣∼y i,t−1,
∼
x it,

∼
wit

)
∼ N

(
β0

∼
y i,t−1 + β1

∼
x it + β2

∼
wit, σ2

∼
u

)
; ∀i, t(

β
(0)
0 , β

(0)
1 , β

(0)
2

)
∼ N(0, 0.000001)

σ
2(0)
∼
v

∼ IG(0.001, 0.001)

(23)

The informative case is set as follows:(∼
y it

∣∣∣∼y i,t−1,
∼
x it,

∼
wit

)
∼ N

(
β0

∼
y i,t−1 + β1

∼
x it + β2

∼
wit, σ2

∼
u

)
; ∀i, t(

β
(0)
0 , β

(0)
1 , β

(0)
2

)
∼ N(0, 1)

σ
2(0)
∼
v

∼ IG(2, 2)

(24)

For modeling with endogeneity treatment, the following specification for a non-
informative prior was chosen:
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(∼
wit

∣∣∣∼s jit

)
∼ N

(
∑

K∼
Z

j=1
∼
s jitδj, σ2

∼
v

)
; ∀i, t; j = 1, . . . , K∼

Z(∼
y it

∣∣∣∼y i,t−1,
∼
x it,

∼
wit,

∼
v it

)
∼ N

(
β0

∼
y i,t−1 + β1

∼
x it + β2

∼
wit + β3

∼
v it, ω11

)
; ∀i, t

∼
v it =

∼
wit − ∑

K∼
Z

j=1
∼
s jitδj(

β
(0)
0 , β

(0)
1 , β

(0)
2 , β

(0)
3

)
∼ N(0, 0.000001)

σ
2(0)
∼
v

∼ IG(0.001, 0.001)

ω
(0)
11 ∼ IG(0.001, 0.001)

(25)

Eventually, the model with endogeneity treatment and informative prior is established as(∼
wit

∣∣∣∼s jit

)
∼ N

(
∑

K∼
Z

j=1
∼
s jitδj, σ2

∼
v

)
; ∀i, t; j = 1, . . . , K∼

Z(∼
y it

∣∣∣∼y i,t−1,
∼
x it,

∼
wit,

∼
v it

)
∼ N

(
β0

∼
y i,t−1 + β1

∼
x it + β2

∼
wit + β3

∼
v it, ω11

)
; ∀i, t

∼
v it =

∼
wit − ∑

K∼
Z

j=1
∼
s jitδj(

β
(0)
0 , β

(0)
1 , β

(0)
2 , β

(0)
3

)
∼ N(0, 1)

σ
2(0)
∼
v

∼ IG(2, 2)

ω
(0)
11 ∼ IG(2, 2)

(26)

We also launched four chains of 10,000 iterations each, using the NUTS algorithm in
STAN, discarding the first 20% of the sample as burning. Our main goal is to demonstrate
that proposed methodology can provide better and more accurate estimations of parameters
affected by endogeneity problems than simple Fixed Effects models. Results are shown in
Tables 1–12.

The simulation was performed under both non-informative and informative prior
settings. Across all scenarios, the posterior means of β0, β1, and especially β2 closely aligned
with their true values, indicating that the methodology reliably recovers the underlying
parameters regardless of prior informativeness. The posterior means for β2 exhibited
slight deviations from the true value of 2, particularly under higher correlations (ρ = 0.5
and ρ = 0.99). However, the mean squared errors (SEs) remained low across all settings,
with β2 consistently demonstrating minimal estimation bias relative to models lacking
endogeneity treatment. The incorporation of informative priors did not substantially alter
the posterior means for β2 compared to non-informative priors. This stability across prior
types suggests that the methodology is robust to prior specification, maintaining accurate
parameter recovery for β2, even when informative priors are employed.

Comparing results according to correlation levels and stationarity, the results reveal
several noteworthy patterns. When correlation was low (ρ = 0), estimates for β2 in the IVFE
model were highly accurate with minimal bias (e.g., β2 = 2: Mean ≈ 2.0273 with SE ≈ 0.0007
under non-informative priors). When correlation was higher (ρ = 0.5), estimates for β2 in
the IVFE model remained reasonably accurate but exhibited increased variability compared
to the ρ = 0 scenario (e.g., β2 = 2: Mean ≈ 2.2107 with SE ≈ 0.0444 with informative
prior). However, we always observe a lower point estimate compared to the FE counterpart,
underscoring the value of our approach. In the extreme case where ρ = 0.99, estimates for β2
remained robust, though with marginally higher SE and interval widths compared to lower
correlation settings (e.g., β2 = 2: Mean ≈ 2.1566 with SE ≈ 0.0245 under non-informative
priors and IVFE). Nonetheless, our method outperformed models without endogeneity
correction, which exhibited significantly larger biases and SE for β2.
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Table 1. Non-informative prior with ρ = 0 and β0 = 0.5.

Variable Real
Mean SE SD Q. 2.5 Q. 50 Q. 97.5 ESS R̂

FE IVFE FE IVFE FE IVFE FE IVFE FE IVFE FE IVFE FE IVFE FE IVFE

β0 0.5 0.4784 0.4839 0.0005 0.0003 0.0154 0.0188 0.4482 0.4466 0.4784 0.4839 0.5085 0.5209 36307 19163 1.0000 1.0000
β1 3 2.9865 2.9879 0.0002 0.0001 0.1008 0.1003 2.7893 2.7895 2.9861 2.9879 3.1834 3.1834 35749 34508 1.0000 1.0000
β2 2 2.1054 2.0273 0.0111 0.0007 0.0452 0.1509 2.0172 1.7303 2.1053 2.0269 2.1948 2.3255 35779 12682 1.0000 1.0000

WAIC: 1949.40 1951.10
BIC: 1963.35 1963.96

Five Principal Components employed: PC1, PC2, PC3, PC4, PC5. We refer to FE as a model without endogeneity treatment, while IVFE denotes a model that incorporates our proposal.
Mean denotes the marginal posterior mean, SE the squared error, SD the standard deviation, Q. 2.5 the 2.5th percentile, Q. 50 the posterior median, and Q. 97.5 the 97.5th percentile. ESS
is the Effective Sample Size, and R̂ represents the potential scale-reduction factor.

Table 2. Non-informative prior with ρ = 0 and β0 = 0.99.

Variable Real
Mean SE SD Q. 2.5 Q. 50 Q. 97.5 ESS R̂

FE IVFE FE IVFE FE IVFE FE IVFE FE IVFE FE IVFE FE IVFE FE IVFE

β0 0.99 0.9766 0.9787 0.0002 0.0001 0.0100 0.0102 0.9572 0.9588 0.9766 0.9786 0.9964 0.9985 34575 48222 1.0000 1.0000
β1 3 2.9810 2.9810 0.0004 0.0004 0.1010 0.1014 2.7823 2.7809 2.9807 2.9813 3.1785 3.1804 34322 53894 1.0000 0.9999
β2 2 2.0896 1.9738 0.0080 0.0007 0.0450 0.1268 2.0016 1.7166 2.0896 1.9761 2.1777 2.2180 32342 22718 1.0001 1.0000

WAIC: 1949.50 1950.60
BIC: 1963.51 1963.45

Five Principal Components employed: PC1, PC2, PC3, PC4, PC5. We refer to FE as a model without endogeneity treatment, while IVFE denotes a model that incorporates our proposal.
Mean denotes the marginal posterior mean, SE the squared error, SD the standard deviation, Q. 2.5 the 2.5th percentile, Q. 50 the posterior median, and Q. 97.5 the 97.5th percentile. ESS
is the Effective Sample Size and R̂ represents the potential scale scale-reduction factor.

Table 3. Non-informative prior with ρ = 0.5 and β0 = 0.5.

Variable Real
Mean SE SD Q. 2.5 Q. 50 Q. 97.5 ESS R̂

FE IVFE FE IVFE FE IVFE FE IVFE FE IVFE FE IVFE FE IVFE FE IVFE

β0 0.5 0.4342 0.4497 0.3089 0.2919 0.0140 0.0189 0.4069 0.4131 0.4342 0.4496 0.4619 0.4870 31700 19411 1.0000 1.0002
β1 3 2.9732 2.9645 0.0007 0.0013 0.1024 0.1030 2.7710 2.7630 2.9734 2.9642 3.1745 3.1668 33821 40723 1.0000 1.0000
β2 2 2.4325 2.2581 0.1871 0.0666 0.0455 0.1495 2.3442 1.9596 2.4320 2.2610 2.5217 2.5463 31605 14760 0.9999 1.0001
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Table 3. Cont.

Variable Real
Mean SE SD Q. 2.5 Q. 50 Q. 97.5 ESS R̂

FE IVFE FE IVFE FE IVFE FE IVFE FE IVFE FE IVFE FE IVFE FE IVFE

WAIC: 1973.60 1974.10
BIC: 1987.37 1986.77

Five Principal Components employed: PC1, PC2, PC3, PC4, PC6. We refer to FE as a model without endogeneity treatment, while IVFE denotes a model that incorporates our proposal.
Mean denotes the marginal posterior mean, SE the squared error, SD the standard deviation, Q. 2.5 the 2.5th percentile, Q. 50 the posterior median, and Q. 97.5 the 97.5th percentile. ESS
is the Effective Sample Size, and R̂ represents the potential scale-reduction factor.

Table 4. Non-informative prior with ρ = 0.5 and β0 = 0.99.

Variable Real
Mean SE SD Q. 2.5 Q. 50 Q. 97.5 ESS R̂

FE IVFE FE IVFE FE IVFE FE IVFE FE IVFE FE IVFE FE IVFE FE IVFE

β0 0.99 0.9589 0.9673 0.0010 0.0005 0.0090 0.0094 0.9413 0.9489 0.9588 0.9673 0.9766 0.9858 40020 48536 0.9999 0.9999
β1 3 2.9712 2.9474 0.0008 0.0028 0.1046 0.1035 2.7655 2.7457 2.9711 2.9477 3.1757 3.1511 40297 55340 1.0000 0.9999
β2 2 2.3670 2.0433 0.1347 0.0019 0.0457 0.1190 2.2780 1.7982 2.3667 2.0474 2.4570 2.2646 37308 24002 0.9999 1.0000

WAIC: 1983.50 1975.50
BIC: 1997.44 1987.89

Five Principal Components employed: PC1, PC2, PC3, PC4, PC6. We refer to FE as a model without endogeneity treatment, while IVFE denotes a model that incorporates our proposal.
Mean denotes the marginal posterior mean, SE the squared error, SD the standard deviation, Q. 2.5 the 2.5th percentile, Q. 50 the posterior median, and Q. 97.5 the 97.5th percentile. ESS
is the Effective Sample Size, and R̂ represents the potential scale-reduction factor.

Table 5. Non-informative prior with ρ = 0.99 and β0 = 0.5.

Variable Real
Mean SE SD Q. 2.5 Q. 50 Q. 97.5 ESS R̂

FE IVFE FE IVFE FE IVFE FE IVFE FE IVFE FE IVFE FE IVFE FE IVFE

β0 0.5 0.4203 0.4575 0.3246 0.2836 0.0088 0.0126 0.4030 0.4334 0.4202 0.4573 0.4376 0.4827 36504 20811 1.0000 1.0001
β1 3 3.0558 3.1173 0.0031 0.0138 0.0590 0.0754 2.9386 2.9729 3.0561 3.1162 3.1710 3.2682 33615 23064 1.0000 1.0001
β2 2 2.6731 2.1566 0.4531 0.0245 0.0315 0.1303 2.6115 1.8730 2.6731 2.1661 2.7346 2.3862 34020 13410 1.0000 1.0001

WAIC: 1499.80 1473.80
BIC: 1514.24 1485.11

Seven Principal Components employed: PC1, PC2, PC3, PC4, PC5, PC6, PC8. We refer to FE as a model without endogeneity treatment, while IVFE denotes a model that incorporates
our proposal. Mean denotes the marginal posterior mean, SE the squared error, SD the standard deviation, Q. 2.5 the 2.5th percentile, Q. 50 the posterior median, and Q. 97.5 the 97.5th
percentile. ESS is the Effective Sample Size, and R̂ represents the potential scale-reduction factor.
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Table 6. Non-informative prior with ρ = 0.99 and β0 = 0.99.

Variable Real
Mean SE SD Q. 2.5 Q. 50 Q. 97.5 ESS R̂

FE IVFE FE IVFE FE IVFE FE IVFE FE IVFE FE IVFE FE IVFE FE IVFE

β0 0.99 0.9516 0.9676 0.0015 0.0005 0.0065 0.0067 0.9389 0.9545 0.9516 0.9675 0.9644 0.9808 31519 27570 1.0000 1.0001
β1 3 3.0394 3.1109 0.0016 0.0123 0.0628 0.0852 2.9157 2.9440 3.0395 3.1105 3.1625 3.2803 34416 17941 1.0000 1.0000
β2 2 2.5922 1.9474 0.3507 0.0028 0.0329 0.1213 2.5280 1.6825 2.5922 1.9575 2.6560 2.1564 29012 9867 1.0000 1.0004

WAIC: 1541.90 1471.70
BIC: 1556.13 1482.12

Seven Principal Components employed: PC1, PC2, PC3, PC4, PC5, PC6, PC8. We refer to FE as a model without endogeneity treatment, while IVFE denotes a model that incorporates
our proposal. Mean denotes the marginal posterior mean, SE the squared error, SD the standard deviation, Q. 2.5 the 2.5th percentile, Q. 50 the posterior median, and Q. 97.5 the 97.5th
percentile. ESS is the Effective Sample Size, and R̂ represents the potential scale-reduction factor.

Table 7. Informative prior with ρ = 0 and β0 = 0.5.

Variable Real
Mean SE SD Q. 2.5 Q. 50 Q. 97.5 ESS R̂

FE IVFE FE IVFE FE IVFE FE IVFE FE IVFE FE IVFE FE IVFE FE IVFE

β0 0.5 0.4781 0.4864 0.0005 0.0002 0.0153 0.0185 0.4481 0.4502 0.4781 0.4864 0.5080 0.5226 35334 21534 1.0000 1.0000
β1 3 2.9578 2.9593 0.0018 0.0017 0.0994 0.0994 2.7613 2.7658 2.9577 2.9590 3.1521 3.1543 34792 39588 0.9999 1.0000
β2 2 2.1017 1.9849 0.0103 0.0002 0.0450 0.1486 2.0136 1.6844 2.1018 1.9863 2.1912 2.2729 33335 14394 0.9999 1.0001

WAIC: 1949.50 1951.20
BIC: 1963.41 1964.02

Five Principal Components employed: PC1, PC2, PC3, PC4, PC5. We refer to FE as a model without endogeneity treatment, while IVFE denotes a model that incorporates our proposal.
Mean denotes the marginal posterior mean, SE the squared error, SD the standard deviation, Q. 2.5 the 2.5th percentile, Q. 50 the posterior median, and Q. 97.5 the 97.5th percentile. ESS
is the Effective Sample Size, and R̂ represents the potential scale-reduction factor.

Table 8. Informative prior with ρ = 0 and β0 = 0.99.

Variable Real
Mean SE SD Q. 2.5 Q. 50 Q. 97.5 ESS R̂

FE IVFE FE IVFE FE IVFE FE IVFE FE IVFE FE IVFE FE IVFE FE IVFE

β0 0.99 0.9759 0.9786 0.0002 0.0001 0.0100 0.0104 0.9563 0.9581 0.9759 0.9786 0.9956 0.9987 35163 52038 1.0000 0.9999
β1 3 2.9512 2.9513 0.0024 0.0024 0.1005 0.0986 2.7552 2.7583 2.9508 2.9513 3.1491 3.1459 36351 52844 1.0000 0.9999
β2 2 2.0848 1.9468 0.0072 0.0028 0.0455 0.1245 1.9961 1.6936 2.0848 1.9497 2.1747 2.1873 33226 24286 1.0001 1.0001
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Table 8. Cont.

Variable Real
Mean SE SD Q. 2.5 Q. 50 Q. 97.5 ESS R̂

FE IVFE FE IVFE FE IVFE FE IVFE FE IVFE FE IVFE FE IVFE FE IVFE

WAIC: 1949.70 1950.50
BIC: 1963.61 1963.45

Five Principal Components employed: PC1, PC2, PC3, PC4, PC5. We refer to FE as a model without endogeneity treatment, while IVFE denotes a model that incorporates our proposal.
Mean denotes the marginal posterior mean, SE the squared error, SD the standard deviation, Q. 2.5 the 2.5th percentile, Q. 50 the posterior median, and Q. 97.5 the 97.5th percentile. ESS
is the Effective Sample Size, and R̂ represents the potential scale-reduction factor.

Table 9. Informative prior with ρ = 0.5 and β0 = 0.5.

Variable Real
Mean SE SD Q. 2.5 Q. 50 Q. 97.5 ESS R̂

FE IVFE FE IVFE FE IVFE FE IVFE FE IVFE FE IVFE FE IVFE FE IVFE

β0 0.5 0.4341 0.4532 0.3090 0.2882 0.0139 0.0188 0.4066 0.4164 0.4341 0.4531 0.4613 0.4908 31337 17322 1.0000 1.0002
β1 3 2.9420 2.9315 0.0034 0.0047 0.1014 0.1030 2.7430 2.7293 2.9422 2.9316 3.1412 3.1318 34179 35815 1.0000 1.0000
β2 2 2.4281 2.2107 0.1833 0.0444 0.0450 0.1503 2.3407 1.9053 2.4279 2.2133 2.5165 2.4945 34175 13103 0.9999 1.0001

WAIC: 1973.60 1974.30
BIC: 1987.42 1986.90

Five Principal Components employed: PC1, PC2, PC3, PC4, PC6. We refer to FE as a model without endogeneity treatment, while IVFE denotes a model that incorporates our proposal.
Mean denotes the marginal posterior mean, SE the squared error, SD the standard deviation, Q. 2.5 the 2.5th percentile, Q. 50 the posterior median, and Q. 97.5 the 97.5th percentile. ESS
is the Effective Sample Size, and R̂ represents the potential scale-reduction factor.

Table 10. Informative prior with ρ = 0.5 and β0 = 0.99.

Variable Real
Mean SE SD Q. 2.5 Q. 50 Q. 97.5 ESS R̂

FE IVFE FE IVFE FE IVFE FE IVFE FE IVFE FE IVFE FE IVFE FE IVFE

β0 0.99 0.9584 0.9672 0.0010 0.0005 0.0090 0.0093 0.9409 0.9489 0.9584 0.9672 0.9759 0.9854 33655 46481 0.9999 1.0000
β1 3 2.9393 2.9143 0.0037 0.0073 0.1025 0.1032 2.7374 2.7120 2.9395 2.9141 3.1409 3.1153 34386 54883 1.0000 0.9999
β2 2 2.3627 2.0180 0.1316 0.0003 0.0452 0.1193 2.2747 1.7698 2.3628 2.0222 2.4518 2.2417 31974 21565 0.9999 1.0001

WAIC: 1983.50 1975.50
BIC: 1997.48 1987.91

Five Principal Components employed: PC1, PC2, PC3, PC4, PC6. We refer to FE as a model without endogeneity treatment, while IVFE denotes a model that incorporates our proposal.
Mean denotes the marginal posterior mean, SE the squared error, SD the standard deviation, Q. 2.5 the 2.5th percentile, Q. 50 the posterior median, and Q. 97.5 the 97.5th percentile. ESS
is the Effective Sample Size, and R̂ represents the potential scale-reduction factor.
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Table 11. Informative prior with ρ = 0.99 and β0 = 0.5.

Variable Real
Mean SE SD Q. 2.5 Q. 50 Q. 97.5 ESS R̂

FE IVFE FE IVFE FE IVFE FE IVFE FE IVFE FE IVFE FE IVFE FE IVFE

β0 0.5 0.4201 0.4587 0.3248 0.2823 0.0088 0.0126 0.4026 0.4345 0.4200 0.4585 0.4373 0.4839 35365 16931 1.0000 1.0003
β1 3 3.0454 3.1019 0.0021 0.0104 0.0590 0.0760 2.9296 2.9540 3.0456 3.1008 3.1617 3.2544 31727 21408 0.9999 0.9999
β2 2 2.6710 2.1311 0.4502 0.0172 0.0315 0.1347 2.6092 1.8352 2.6711 2.1409 2.7332 2.3680 33320 10440 1.0001 1.0004

WAIC: 1499.80 1473.60
BIC: 1514.28 1484.84

Seven Principal Components employed: PC1, PC2, PC3, PC4, PC5, PC6, PC8. We refer to FE as a model without endogeneity treatment, while IVFE denotes a model that incorporates
our proposal. Mean denotes the marginal posterior mean, SE the squared error, SD the standard deviation, Q. 2.5 the 2.5th percentile, Q. 50 the posterior median, and Q. 97.5 the 97.5th
percentile. ESS is the Effective Sample Size, and R̂ represents the potential scale-reduction factor.

Table 12. Informative prior with ρ = 0.99 and β0 = 0.99.

Variable Real
Mean SE SD Q. 2.5 Q. 50 Q. 97.5 ESS R̂

FE IVFE FE IVFE FE IVFE FE IVFE FE IVFE FE IVFE FE IVFE FE IVFE

β0 0.99 0.9511 0.9676 0.0015 0.0005 0.0066 0.0067 0.9381 0.9545 0.9512 0.9675 0.9639 0.9808 34135 27570 1.0001 1.0001
β1 3 3.0268 3.1109 0.0007 0.0123 0.0620 0.0852 2.9051 2.9440 3.0266 3.1105 3.1495 3.2803 30983 17941 0.9999 1.0000
β2 2 2.5893 1.9474 0.3473 0.0028 0.0334 0.1213 2.5243 1.6825 2.5893 1.9575 2.6551 2.1564 30185 9867 1.0001 1.0004

WAIC: 1541.90 1471.50
BIC: 1556.18 1481.97

Seven Principal Components employed: PC1, PC2, PC3, PC4, PC5, PC6, PC8. We refer to FE as a model without endogeneity treatment, while IVFE denotes a model that incorporates
our proposal. Mean denotes the marginal posterior mean, SE the squared error, SD the standard deviation, Q. 2.5 the 2.5th percentile, Q. 50 the posterior median, and Q. 97.5 the 97.5th
percentile. ESS is the Effective Sample Size, and R̂ represents the potential scale-reduction factor.
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Credible intervals for β2 provide insights into the uncertainty surrounding parameter
estimates. We assessed coverage probability, interval width, and alignment with true
parameter values across different settings. Across all scenarios, the 95% credible intervals
for β2 generally contained the true parameter value of 2, indicating appropriate coverage.
Both non-informative and informative priors achieved robust interval coverage, even
under high ρ. Besides, as ρ increased from 0 to 0.99, credible intervals for β2 widened
significantly, reflecting greater uncertainty. Narrower credible intervals were observed for
β2 with informative priors, demonstrating the methodology’s ability to improve estimation
precision through prior information, although it is also true that the differences were less
notorious than those that occurred when comparing models with and without endogeneity
treatment. On this comparison, models without endogeneity correction showed weaker
alignment with the true value of β2.

Convergence diagnostics, represented by R̂ values and ESS, consistently indicated
satisfactory convergence for β2 across all scenarios. The Effective Sample Size (ESS) and
Potential Scale Reduction Factor (R̂) indicated excellent convergence for β2, confirming the
reliability of the Markov Chain Monte Carlo (MCMC) sampling process. Specifically, R̂
values were effectively 1.000 in most cases, and ESS values were sufficiently large, ensuring
the reliability of posterior estimates. The Widely Applicable Information Criterion (WAIC)
and Bayesian Information Criterion (BIC) generally increased with higher correlation
(ρ = 0.5 and ρ = 0.99), reflecting the increased complexity associated with higher ρ values.
Our methodology achieved better WAIC and BIC scores compared to models ignoring
endogeneity, especially in scenarios with high ρ, where these models tended toward
overfitting and showed higher error rates for β2.

The simulation study robustly demonstrates that our proposed methodology effec-
tively estimates β2 across varying degrees of correlation and stationarity. The consistent
performance under both informative and non-informative priors, coupled with strong
convergence diagnostics and accurate parameter recovery for β2, underscores the reliability
and versatility of the approach. Importantly, our methodology outperforms models that
do not address endogeneity, excelling in point estimates, credible intervals, and model
selection criteria, specifically for β2. These findings affirm the suitability of our method-
ology for panel data structures with endogeneity problems encountered in econometric
and statistical analyses, where accurate estimation of β2 and uncertainty quantification are
essential for informed decision-making and theoretical advancements.

5.1. Modifying Sample Size

The following analysis examines the performance of the proposed model when modi-
fying certain elements of the sample. First, a model is estimated with N = 100 and T = 10,
consistent with previous cases. Second, a model with N = 50 (as in the first case) but with
T = 50 is estimated. In all cases, the approach of estimating a model with non-informative
priors and informative priors is maintained. Additionally, the exercise is conducted under
a scenario of non-stationarity ( β0 = 0.99) and extreme correlation (ρ = 0.99) to enhance the
robustness of the conclusions. The results are presented in Tables 13–16. In Appendix C,
we include results for the Principal Component search stage.

The results in Tables 13–16 underscore the robustness of the IVFE model, which
accounts for endogeneity, showing consistent improvements over the FE model, especially
in estimating the parameter β2. Across all configurations—including both non-informative
and informative priors, as well as varying sample sizes (N = 100, T = 10 and N = 50,
T = 50)—the IVFE model provides estimates of β2 that are notably closer to the true value of
2, with lower standard errors compared to the FE model. Notice that posterior estimation
when N = 50 and T = 50 is the same, independent of prior specification. This accuracy
enhancement is particularly marked in the IVFE model’s more precise credible intervals,
indicating the model’s reliability in capturing the parameter’s credible range.
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Table 13. Non-informative prior with ρ = 0.99 and β0 = 0.99. N = 100, T = 10.

Variable Real
Mean SE SD Q. 2.5 Q. 50 Q. 97.5 ESS R̂

FE IVFE FE IVFE FE IVFE FE IVFE FE IVFE FE IVFE FE IVFE FE IVFE

β0 0.99 0.9704 0.9812 0.0004 0.0001 0.0038 0.0038 0.9630 0.9736 0.9704 0.9812 0.9779 0.9886 38016 39053 0.9999 1.0000
β1 3 2.9992 3.0200 0.0000 0.0004 0.0461 0.0439 2.9098 2.9338 2.9990 3.0198 3.0893 3.1053 32305 32228 0.9999 0.9999
β2 2 2.3827 1.9112 0.1465 0.0079 0.0193 0.0692 2.3449 1.7643 2.3826 1.9150 2.4207 2.0373 30176 10868 0.9999 1.0001

WAIC: 3114.40 3024.70
BIC: 3130.78 3038.99

Four Principal Components employed: PC1, PC2, PC3, PC4. We refer to FE as a model without endogeneity treatment, while IVFE denotes a model that incorporates our proposal. Mean
denotes the marginal posterior mean, SE the squared error, SD the standard deviation, Q. 2.5 the 2.5th percentile, Q. 50 the posterior median, and Q. 97.5 the 97.5th percentile. ESS is the
Effective Sample Size, and R̂ represents the potential scale-reduction factor.

Table 14. Informative prior with ρ = 0.99 and β0 = 0.99. N = 100, T = 10.

Variable Real
Mean SE SD Q. 2.5 Q. 50 Q. 97.5 ESS R̂

FE IVFE FE IVFE FE IVFE FE IVFE FE IVFE FE IVFE FE IVFE FE IVFE

β0 0.99 0.9703 0.9811 0.0004 0.0001 0.0038 0.0038 0.9629 0.9736 0.9703 0.9812 0.9777 0.9887 39665 32669 1.0000 1.0000
β1 3 2.9935 3.0147 0.0000 0.0002 0.0458 0.0438 2.9050 2.9295 2.9934 3.0143 3.0825 3.1014 33731 29637 0.9999 1.0000
β2 2 2.3818 1.9044 0.1458 0.0091 0.0194 0.0706 2.3435 1.7534 2.3817 1.9084 2.4201 2.0317 32535 11914 1.0002 1.0001

WAIC: 3144.40 3024.90
BIC: 3130.80 3039.07

Four Principal Components employed: PC1, PC2, PC3, PC4. We refer to FE as a model without endogeneity treatment, while IVFE denotes a model that incorporates our proposal. Mean
denotes the marginal posterior mean, SE the squared error, SD the standard deviation, Q. 2.5 the 2.5th percentile, Q. 50 the posterior median, and Q. 97.5 the 97.5th percentile. ESS is the
Effective Sample Size, and R̂ represents the potential scale-reduction factor.
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Table 15. Non-informative prior with ρ = 0.99 and β0 = 0.99. N = 50, T = 50.

Variable Real
Mean SE SD Q. 2.5 Q. 50 Q. 97.5 ESS R̂

FE IVFE FE IVFE FE IVFE FE IVFE FE IVFE FE IVFE FE IVFE FE IVFE

β0 0.99 0.9817 0.9869 0.0001 0.0000 0.0013 0.0013 0.9791 0.9843 0.9817 0.9869 0.9842 0.9895 42535 37297 0.9999 1.0000
β1 3 2.9681 2.9553 0.0010 0.0020 0.0315 0.0291 2.9063 2.8987 2.9682 2.9554 3.0298 3.0128 28576 73372 1.0000 0.9999
β2 2 2.4895 2.0466 0.2396 0.0022 0.0129 0.0335 2.4643 1.9783 2.4895 2.0473 2.5147 2.1100 28485 19806 0.9999 1.0000

WAIC: 9117.70 8766.80
BIC: 9137.11 8775.98

Twenty-three Principal Components employed: PC1–PC21, PC24, PC27. We refer to FE as a model without endogeneity treatment, while IVFE denotes a model that incorporates our
proposal. Mean denotes the marginal posterior mean, SE the squared error, SD the standard deviation, Q. 2.5 the 2.5th percentile, Q. 50 the posterior median, and Q. 97.5 the 97.5th
percentile. ESS is the Effective Sample Size, and R̂ represents the potential scale-reduction factor.

Table 16. Informative prior with ρ = 0.99 and β0 = 0.99. N = 50, T = 50.

Variable Real
Mean SE SD Q. 2.5 Q. 50 Q. 97.5 ESS R̂

FE IVFE FE IVFE FE IVFE FE IVFE FE IVFE FE IVFE FE IVFE FE IVFE

β0 0.99 0.9817 0.9869 0.0001 0.0000 0.0013 0.0013 0.9791 0.9843 0.9817 0.9869 0.9842 0.9895 42535 37297 0.9999 1.0000
β1 3 2.9681 2.9553 0.0010 0.0020 0.0315 0.0291 2.9063 2.8987 2.9682 2.9554 3.0298 3.0128 28576 73372 1.0000 0.9999
β2 2 2.4895 2.0466 0.2396 0.0022 0.0129 0.0335 2.4643 1.9783 2.4895 2.0473 2.5147 2.1100 28485 19806 0.9999 1.0000

WAIC: 9117.70 8766.80
BIC: 9137.11 8775.98

Twenty-three Principal Components employed: PC1–PC21, PC24, PC27. We refer to FE as a model without endogeneity treatment, while IVFE denotes a model that incorporates our
proposal. Mean denotes the marginal posterior mean, SE the squared error, SD the standard deviation, Q. 2.5 the 2.5th percentile, Q. 50 the posterior median, and Q. 97.5 the 97.5th
percentile. ESS is the Effective Sample Size, and R̂ represents the potential scale-reduction factor.
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For instance, in Table 13 (non-informative prior with N = 100 and T = 10), the IVFE
estimate for β2 is 2.0466, which closely aligns with the true value and contrasts with the FE
model’s less-accurate estimate of 2.4895. The IVFE credible interval for it also includes the
true parameter value. The convergence diagnostics are also successful in this framework.

Performance indicators such as WAIC and BIC consistently favor the IVFE model, with
lower values across all configurations, emphasizing superior model fit. This improved fit,
alongside the precision of credible intervals and robust convergence diagnostics, illustrates
the substantial advantage of the IVFE methodology in addressing endogeneity. The model’s
ability to isolate the partial effect of β2 offers a valuable econometric tool, enhancing
parameter estimation accuracy and inference credibility, thereby making the IVFE approach
highly suitable for econometric applications where endogeneity is prevalent.

5.2. Comparing the Approach with GMM Estimates

Finally, we subject our proposal to a comparative analysis using the most widely
accepted estimation methods in the frequentist community, namely, the Difference GMM
(Arellano and Bond 1991) and System GMM (Blundell and Bond 1998) methods. In this
comparison, we jointly analyze the values obtained under each scenario for both non-
informative and informative priors in our proposal alongside the point estimates derived
from the GMM methods. Additionally, the 95% two-tailed credible interval is provided for
our model, as well as the corresponding confidence interval for the GMM estimates. The
mean squared error (SE) is employed as the comparative statistic. Results are presented in
Table 17.

Table 17. Point estimates, credible intervals, and confidence intervals for β2.

Non-Informative Mean Informative Mean GMM Differences GMM System

N = 50, T = 10,
ρ = 0, β0 = 0.5

β2 2.0273 1.9849 1.9553 2.1468
Q. 2.5 1.7303 1.6844 1.3321 1.9056
97.5 2.3255 2.2729 2.5785 2.3880
SE 0.00075 0.00023 0.00200 0.02155

N = 50, T = 10,
ρ = 0, β0 = 0.99

β2 1.9738 1.9468 1.7804 1.9715
Q. 2.5 1.7166 1.6936 1.0665 1.7905
97.5 2.2180 2.1873 2.4943 2.1525
SE 0.0007 0.0028 0.0482 0.0008

N = 50, T = 10,
ρ = 0.5, β0 = 0.5

β2 2.2581 2.2107 2.1136 1.9887
Q. 2.5 1.9596 1.9053 1.6924 1.5844
97.5 2.5463 2.4945 2.5347 2.3930
SE 0.0666 0.0444 0.0129 0.0001

N = 50, T = 10,
ρ = 0.5, β0 = 0.99

β2 2.0433 2.0180 2.1224 2.0157
Q. 2.5 1.7982 1.7698 1.7736 1.8054
97.5 2.2646 2.2417 2.4712 2.2261
SE 0.0019 0.0003 0.0150 0.0002

N = 50, T = 10,
ρ = 0.99, β0 = 0.5

β2 2.1566 2.1311 2.2433 2.2623
Q. 2.5 1.8730 1.8352 1.9155 1.9779
97.5 2.3862 2.3680 2.5711 2.5468
SE 0.0245 0.0172 0.0592 0.0688

N = 50, T = 10,
ρ = 0.99, β0 = 0.99

β2 1.9474 1.9474 1.9553 2.1468
Q. 2.5 1.6825 1.6825 1.3321 1.9056
97.5 2.1564 2.1564 2.5785 2.3880
SE 0.0028 0.0028 0.0020 0.0215

N = 100, T = 10,
ρ = 0.99, β0 = 0.99

β2 1.9112 1.9044 2.2241 2.0937
Q. 2.5 1.7643 1.7534 1.7810 1.9920
97.5 2.0373 2.0317 2.6672 2.1954
SE 0.0079 0.0091 0.0502 0.0088
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Table 17. Cont.

Non-Informative Mean Informative Mean GMM Differences GMM System

N = 50, T = 50,
ρ = 0.99, β0 = 0.99

β2 2.0466 1.9044 2.0860 2.1254
Q. 2.5 1.9783 1.7534 1.9879 2.0455
97.5 2.1100 2.0317 2.1840 2.2053
SE 0.0022 0.0091 0.0074 0.0157

Estimates with the lowest squared errors (SEs) are highlighted in bold. β2 represents the point estimate obtained,
with Q. 2.5 and Q. 97.5 indicating the values for the 5% two-tailed credibility intervals (Bayesian case) or confidence
intervals (frequentist case under a Normal asymptotic approximation). SE represents the standard error.

The results in Table 17 highlight the robust performance of our proposed methodology
across diverse scenarios, consistently outperforming the Difference GMM and System
GMM methods in terms of precision, stability, and reliability of interval estimates for
β2. Our model demonstrates a lower standard error (SE) in almost every configuration,
indicating enhanced accuracy in point estimates for β2 under both non-informative and
informative prior settings. This lower SE is particularly evident in scenarios with high
persistence (e.g., ρ = 0.99) and varying baseline values for β0, where the proposed model
consistently provides estimates with reduced variance compared to the GMM approaches.
Notably, the credible intervals provided by our approach tend to be narrower and more
stable than the confidence intervals produced by the GMM methods, suggesting that our
model captures the underlying distribution of β2 with greater precision. For instance,
under the setting N = 50, T = 10, and ρ = 0, both the non-informative and informative
priors yield SEs of 0.00075 and 0.00023, respectively, compared to the SEs of 0.00200 and
0.02155 for the Difference and System GMM methods, respectively. This pattern holds
in high-correlation scenarios as well (e.g., ρ = 0.99), where the SE remains low in our
model, providing consistently precise interval estimates that are well-concentrated around
the true value. Furthermore, even as sample sizes increase, our approach maintains its
advantage, as seen in the consistently lower SEs and narrower intervals, offering a reliable
estimation framework across different sample configurations. In addition, our method
appears particularly effective in scenarios of high persistence, where the Difference GMM
and System GMM methods exhibit greater variability and wider confidence intervals.

In summary, these findings indicate that our proposal is highly robust and adaptable
to diverse data structures, offering a significant advantage over traditional GMM methods
in terms of interval stability and precision in point estimates. The ability of our model to
build credible intervals with low SEs across various scenarios highlights its suitability for
the econometric applications discussed in this paper.

6. Empirical Study: World Governance Indicators and Bank Capital Flows

In this example, we are interested in quantifying the partial effect of a set of economic,
financial, and governance indicators on the international bank inflows received by a set of
emerging economies, motivated by the work of Kim and Wu (2008). We mainly try to study
the role played by the public sector as a policymaker to favor international bank inflows. In
general, it is considered that some countries’ risk indicators behave as a negative pull factor
on banking flows, while others could be considered positive. However, to guide economic
policy, we should also attempt to discard the effects that actually present significant effects
from those that do not, instead of considering the entire set of governance indicators as
a homogeneous cluster. To this end, the possibility of an endogenous regressor among
governance determinants is raised, motivated by the fact that there may be unobservable
effects that are strongly correlated with indicators that affect the quality of the internal
development of the economy.

6.1. Variables and Data

Our dataset corresponds to N = 50 economies considered as emerging economies
in the original work and T = 26 years, ranging from 1996 to 2021. However, the panel
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contains missing values, around 30% of the initial sample, for some exogenous variables,
so the number of observations was reduced to 915 once these values were discarded. The
presence of missing data does not affect the implementation of the proposed methodology,
as the forward orthogonal deviation transformation must be adapted to this setting. We
consider three main groups of variables (see Appendix B for a description of the variables).
On the one hand, TRADE and LGDPPC reflect the behavior of the economic cycle. The
second group corresponds to financial variables, such as SMCAPLISTED and PRIVCREDIT.
The third group comprises a set of government indicators to quantify the institutional
performance and socio-economic features of the countries analyzed. These indicators
were ACCOUNT, RULAW, REGQLTY, CORRUPTION, GOVEFF, and POLSTA. Finally, we
included only the Foreign Currency Long-Term Credit Rating (SPRATING), issued by the
S&P agency, incorporated through a rating discretization process at each point in time,
coupled with their perspective to change. According to the S&P scale, for long-term issues,
the ratings range from the highest investment grade (AAA) to the default category (D
or SD). The outlook for rating changes varies from a positive credit-review outlook to a
negative credit-review outlook. To convert the ratings issued, a numerical value is assigned
to each rating, ranging from 21 (AAA) to 1 (C), and a numerical value is added according to
the outlook for change, ranging from 0.5 (watch positive) to −0.5 (negative watch). If there
have been several issues in the same time period, the simple average of the quantifications
of all of them is taken as the value. As an illustrative example, if a country has a rating of
(BBB+) and a positive revision outlook, the value of the variable will be the sum of 13 and
0.25, according to the proposed scale.

The dataset has been extracted from the World Bank’s World Development Indicators
(WDI) and World Governance Indicators (WGI) databases, and from information provided
by the credit rating agency Standard and Poor’s. Appendix B contains detailed information
on the variables and the data used in this study. Furthermore, to maintain the spirit of the
original proposal, the target variable is lagged by one period.

The target variable, LCBLOAN, captures the total amount of bank capital inflows in
logarithmic terms in the analyzed economies, taking as a reference the flows reported by
the Bank for International Settlement (BIS) issued by a set of banking institutions. We prefer
this definition of the target variable mainly because we are interested in quantifying the
effects on attracting capital, rather than simply incorporating the net effect, as we consider
that inflows and outflows could respond to different economic and political incentives.

6.2. Model Specification

Based on the above, the model under study is as follows:

LCBLOANit = αi + β10LCBLOANi,t−1 + β11TRADEit + β12LGDPPCit
+β13SMCAPLISTEDit + β14PRIVCREDit + β15SPRATING

+β16 ACCOUNTit + β17RULAWit + β18POLSTit+
β21REGQLTYit + β22CORRUPTIONit + β23GOVEFFit + uit

(27)

In line with what has been established throughout the paper, the model perturba-
tions are assumed to be homoscedastic, independent, and normally distributed, so that
uit ∼ N

(
0, σ2

u
)
, i = 1, 2, . . . , 50, t ∈ Ti ⊆ {1, 2, . . . , 26}. The endogenous variables con-

sidered were REGQLTY, CORRUPTION, and GOVEFF, while the rest were considered
strictly exogenous.

We consider these variables to be endogenous primarily because they represent key
aspects of government performance that directly influence the promotion and development
of the private sector. The variable REGQLTY measures citizen perceptions regarding the
effectiveness of government efforts to foster private-sector growth. Similarly, the level of
corruption, as captured by CORRUPTION, can be viewed as an indicator of the degree
of extractive impunity exercised by the public sector over the private sector. This, in turn,
reflects the public sector’s ability to generate revenue without engaging in productive
activities. Additionally, the inclusion of GOVEFF is justified by the perception that public
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goods and services are provided efficiently and that public policies are well-designed
and implemented. This efficiency in public-sector performance reduces the need for
private-sector intervention. For example, if the public sector efficiently provides hospital
infrastructure and health services, there will be limited private incentives to establish new
facilities or offer additional services, leading private capital to be allocated to other areas
of need. These variables, as a last resort, can be found to be related to latent aspects that
affect the performance of our target variable, such as degree of liberalization of domestic
markets, the competitiveness of the internal economy, or the degree of the shadow economy
and, therefore, generate an endogeneity problem in the model. Therefore, according to the
specifications, it is established that Kx = 8 and Kw = 3.

6.3. Instruments Search

Once the Forward Orthogonal Deviation transformation has been applied, we establish(∼
wjit

∣∣∣∼s jlit

)
∼ N

(
∑33

l=1
∼
s jlitδjl , σ2

∼
v j

)
; j = 1, 3; l = 1, . . . ; 33

σ2
∼
v j

∼ IG(2, 2); j = 1, 2, 3

δjl ∼ N(0, 1); ∀j, l

(28)

For ease of notation, wjit; j = 1, 2, 3 represents REGQLTY, CORRUPTION, and GOV-
EFF. The model employs 33 instruments since the last component, the number 34, com-
pound by the sum of 8 exogenous variables plus 26 lagged collapsed instruments, is
discarded, as it is 0 in all values.

Again, we ran four parallel chains of 10,000 iterations each, discarding 20% of the
first sample as burning. Our proposal yields a total of 16 components for REGQLTY,
whose posterior significance is greater than 50%, a total of eight for CORRUPTION, and
three for GOVEFF. Compared to Roodman’s matrix, which does not include exogenous
variables and collapses the instrument matrix, we use only 16 variables for posterior
inference to the first endogenous variable, and eight and three for the second and third
ones, respectively, against 26 from the main proposal. Not only do we include more
information, but we also significantly reduce the number of variables to be employed
without losing relevant information.

6.4. Posterior Inference on the Full Model

We now estimate the model proposed using a simple fixed effect model with forward
orthogonal deviation transformation, which we call the Fixed Effect model (FE), and
the same proposal using the methodology proposed in this paper, called the instrumental
variable fixed effect model (IVFE). For the FE, we provide the following prior and likelihood
specifications:(∼

y it

∣∣∣∼y i,t−1,
∼
x
′
it,

∼
w
′
it

)
∼ N

(
β10

∼
y i,t−1 + ∑8

j=1 β1j
∼
x jit + ∑3

j=1 β2j
∼
wjit, σ2

)
; ∀i, t(

β
(0)
1j , β

(0)
2j

)
∼ N(0, 1); ∀j

σ2(0) ∼ IG(2, 2)

(29)

Notice that yt−1 = LCBLOAN_1, X′ =

[
TRADE,LGDPPC,SMCAPLISTED,PRIVCRED,
SPRATING,RULAW,ACCOUNT

]′
,

and W ′ = [REGQLTY, CORRUPTION, GOVEFF]′. For the IVFE model, we establish
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(∼
w1it

∣∣∣∼s 1it

)
∼ N

(
∑16

j=1
∼
s 1itδj, σ2

1
∼
v

)
; ∀i, t(∼

w2it

∣∣∣∼s 2it

)
∼ N

(
∑8

j=1
∼
s 2itδj, σ2

2
∼
v

)
; ∀i, t(∼

w3it

∣∣∣∼s 3it

)
∼ N

(
∑3

j=1
∼
s 3itδj, σ2

3
∼
v

)
; ∀i, t(∼

y it

∣∣∣∼y i,t−1,
∼
x
′
it,

∼
w
′
it

)
∼ N

(
β10

∼
y i,t−1 + ∑8

j=1 β1j
∼
x jit + ∑3

j=1 β2j
∼
wjit + ∑3

j=1 β3j
∼
v jit, ω11

)
; ∀i, t

∼
v lit =

∼
wlit − ∑j

∼
s l jitδl j; l = 1, 2, 3(

β
(0)
1j , β

(0)
2j , β

(0)
3j

)
∼ N(0, 1); ∀j

σ
2(0)

j
∼
v

∼ IG(2, 2); j = 1, 2, 3

ω
(0)
11 ∼ IG(2, 2)

(30)

We launched four chains of 10,000 iterations each using the NUTS algorithm in STAN,
discarding 20% of the first samples as burning. The results are shown in Table 18. Posterior
densities and trace plots are shown in Appendix D. The convergence measure, R̂, and ESS
present reasonable values, and the Monte Carlo standard error (MCSE) is small enough to
rely on the results. Results report favorable values for WAIC and BIC model-selection criteria
in our proposal; therefore, the IVFE model has a better goodness of fit to the observed data. In
both models, LGDPCC, PRIVCRED, SPRATING, and LCBLOAN_1 are significant variables
at the 99% credible level. The variables TRADE and SPRATING were found to be significant
at the 95% credibility level in the IVFE model, and the variables SMCAPLISTED, POLSTA,
and GOVEFF were found to be significant in the IVFE model at the 99% credibility level.

Economically, results reported by the IVFE model seem to be more consistent with our
prior beliefs. TRADE and LGDPPC are both positive in the FE and IVFE models, and also
significant in the IVFE model, which means that economic cycle plays a positive and relevant
partial effect on attracting international bank flows. Internal private credit (PRIVCRED) is
significant and positive in both models; therefore, internal private indebtedness acts as a pull
factor. In the same way, credit ratings reflect that better trustworthiness of debtors leads to
the receipt of international bank flows. Market capitalization also plays a positive role in
attracting inflows. The main differences arise when comparing country risk drivers.

Comparing our results with those obtained by Kim and Wu (2008), and accounting
for the potential endogeneity in the aforementioned government components, certain
observations stand out. In the original study, the variables ACCOUNT and GOVEFF were
the only ones with positive signs, indicating that marginal increases in both indicators led to
net-positive inflows of external banking capital, although only ACCOUNT had a significant
estimate. In our estimations, the FE model captures a partial positive effect in the variables
RULAW, POLSTA, and GOVEFF, although none of these effects are significant. On the
other hand, the IVFE model estimates a positive marginal effect, though not significant, for
the variable RULAW only. This finding supports the argument made by (Koepke 2019) that
government indicators are deterrents in attracting external banking flows. Moreover, the
IVFE model identifies significant estimates in the variables POLSTA and GOVEFF, effects
that are not captured by the FE model. We consider these findings to be economically
relevant because both indicators are similar in that they help identify the degree of political
stability, its independence, and citizens’ perceptions of the public services provided. Our
results also corroborate the idea that foreign banks use a lower perception of the internal
development of the private economy to locate financing flows. In fact, the idea that in
emerging economies, pressure on the private sector in the form of regulation generates
business opportunities for the entry of external bank capital gains strength in view of
our results. Additionally, it is relevant that IVFE can isolate the relevant partial effect
when using governance indicators from those that do not provide useful added value. In
summary, there is some evidence of the positive economic role played by the government
sector in attracting foreign bank capital, mainly through the credit rating issued, although
the model estimates that an internal capitalized economy is less dependent on foreign
financial flows. The combination of good credit quality, along with favorable development
of the private sector of the economy, seems to be a determining factor in the attraction of
external bank funds by the emerging economies analyzed.
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Table 18. Results for the FE and IVFE models.

Variable
Mean SD Q. 2.5 Q. 50 Q. 97.5 MCSE ESS R̂ Mean SD Q. 2.5 Q. 50 Q. 97.5 MCSE ESS R̂

FE Model IVFE Model

TRADE 0.0004 0.0008 −0.0011 0.0004 0.0019 0.0000 37541 1.0001 0.0022 ** 0.0009 0.0005 0.0022 0.0040 0.0000 25919 1.0001
LGDPPC 0.2301 *** 0.0193 0.1926 0.2301 0.2681 0.0001 24886 0.9999 0.3578 *** 0.0347 0.2902 0.3573 0.4273 0.0002 27661 0.9999

SMCAPLISTED 0.0007 0.0006 −0.0005 0.0007 0.0018 0.0000 32424 1.0002 0.0053 *** 0.0017 0.0024 0.0052 0.0091 0.0000 17254 1.0002
PRIVCRED 0.0073 *** 0.0006 0.0061 0.0073 0.0085 0.0000 32767 1.0001 0.0106 *** 0.0014 0.0082 0.0105 0.0136 0.0000 17701 1.0001
SPRATING 0.0289 *** 0.0063 0.0165 0.0289 0.0411 0.0000 28172 1.0001 0.0167 ** 0.0069 0.0031 0.0167 0.0302 0.0000 43398 1.0001

RULAW 0.0088 0.0044 0.0001 0.0088 0.0175 0.0000 33904 0.9999 0.0064 0.0044 −0.0023 0.0064 0.0151 0.0000 70333 0.9999
ACCOUNT −0.0453 0.0285 −0.1010 −0.0455 0.0109 0.0002 26567 1.0001 −0.0102 0.0472 −0.1016 −0.0107 0.0839 0.0003 18431 1.0001

POLSTA 0.0002 0.0002 −0.0002 0.0002 0.0006 0.0000 31112 1.0000 −0.0029 *** 0.0010 −0.0050 −0.0029 −0.0012 0.0000 17485 1.0000
LCBLOAN_1 0.2721 *** 0.0138 0.2451 0.2721 0.2993 0.0001 26924 1.0000 0.2478 *** 0.0143 0.2195 0.2480 0.2757 0.0001 47862 1.0000

REGQLTY −0.0094 0.0152 −0.0390 −0.0093 0.0205 0.0001 28274 0.9999 −0.0322 0.0176 −0.0668 −0.0322 0.0019 0.0001 34787 0.9999
CORRUPTION −0.012 0.0312 −0.0732 −0.0122 0.0500 0.0002 26016 1.0001 −0.0244 0.1790 −0.3916 −0.0209 0.3184 0.0014 15343 1.0001

GOVEFF 0.0062 0.0236 −0.0403 0.0062 0.0520 0.0001 27062 1.0002 −1.8944 *** 0.4160 −2.7785 −1.8689 −1.1469 0.0037 12751 1.0002

Coefficients marked with (*) represent significant variables at the 10% credibility level, (**) at 5%, and (***) at 1%.
WAIC(FE) = 1133.9 BIC(FE) = 1181.35
WAIC(IVFE) = 1089.4 BIC(IVFE) = 1137.45

We refer to FE as a model without endogeneity treatment, while IVFE denotes a model that incorporates our proposal. Mean denotes the marginal posterior mean, SE the squared error,
SD the standard deviation, Q. 2.5 the 2.5th percentile, Q. 50 the posterior median, and Q. 97.5 the 97.5th percentile. ESS is the Effective Sample Size, and R̂ represents the potential
scale-reduction factor.
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7. Discussion

In this paper, we propose a general procedure to build instrumental matrices of
reduced dimensions in a panel regression model with endogenous explanatory variables.
The procedure is based on the collapsed version proposed by Roodman (2009a, 2009b)
and the use of the principal components of instrumental variables, the number of which
is selected according to our Bayesian proposal. Our method improves upon existing
alternatives by allowing the selection of empirically relevant instruments, preventing issues
of multicollinearity among these instruments from causing overfitting in the point estimates
of the parameters of interest while also facilitating the exploration of the sample space due
to the orthogonality of the principal components. Once the instrumental matrix has been
built, the No-U-Turn sampling algorithm (Hoffman and Gelman 2014) is used to make
more accurate inferences about the regression coefficients of the endogenous variables. The
strengths of our methodology lie in its ability to effectively address endogeneity without
sacrificing the desirable statistical properties of the estimators.

Our simulation study robustly demonstrates the effectiveness of the proposed method-
ology across various scenarios characterized by different degrees of correlation between the
endogenous variables and the error terms, as well as varying levels of stationarity. Notably,
the results from Tables 13–16 underscore the robustness of our Bayesian IVFE model in
accounting for endogeneity, showing consistent improvements over the traditional fixed ef-
fect (FE) model. Across all configurations, including both non-informative and informative
priors, and varying sample sizes, the IVFE model provides estimates that are notably closer
to the true values, with lower standard errors compared to the FE model. This enhancement
in accuracy is particularly evident in the IVFE model’s more precise credible intervals,
indicating the model’s reliability in capturing the parameter’s credible range.

Furthermore, we subjected our proposal to a comparative analysis with the widely
accepted Difference GMM and System GMM methods in the frequentist community. The
results, presented in Table 17, highlight the robust performance of our proposed methodol-
ogy across diverse scenarios, consistently outperforming the GMM approaches in terms
of the precision, stability, and reliability of interval estimates. Our model demonstrates
a lower standard error in almost every configuration, indicating enhanced accuracy in
point estimates under both non-informative and informative prior settings. These findings
indicate that our proposal is highly robust and adaptable to diverse data structures, offering
a significant advantage over traditional methods in terms of interval stability and precision
in point estimates.

The empirical application to the analysis of international bank inflows in emerging
economies further underscores the practical utility of our methodology. By accounting
for the potential endogeneity of governance indicators, the model yields insights that are
more consistent with economic theory and prior expectations. The results suggest that
certain governance indicators, such as government effectiveness and political stability, have
significant impacts on attracting foreign bank capital—effects that are not captured by
models ignoring endogeneity.

While the proposed methodology offers significant improvements over existing ap-
proaches, there are avenues for further research that could extend its applicability and
effectiveness. One potential direction is to relax some of the initial assumptions regard-
ing the error term properties, such as homoscedasticity and lack of autocorrelation, to
accommodate more complex error structures commonly encountered in empirical data.
This extension would involve developing methods to handle heteroscedasticity and serial
correlation within the Bayesian instrumental variables framework. Another promising
area is the exploration of nonlinear relationships and interactions among variables. The
assumption of linearity may not hold in all economic contexts, and allowing for nonlinear
correlations could provide a more accurate representation of the underlying processes.
Moreover, extending the methodology to accommodate high-dimensional data and variable
selection techniques could enhance its utility in contemporary econometric applications
where the number of potential instruments and regressors is large.
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In conclusion, we consider that the proposed methodology represents a significant
contribution to addressing endogeneity in dynamic panel data models, especially from
a Bayesian perspective. Its robustness, flexibility, and superior performance relative to
traditional methods make it a valuable tool for econometric analysis. Future research that
expands upon this foundation by relaxing initial assumptions and exploring nonlinear
correlations will further enhance its applicability and contribute to the development of more
sophisticated econometric models capable of capturing the complexities of real-world data.
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Appendix A. Deriving Full-Conditional Densities in the Selection of
Principal Components

In obtaining the conditional densities used in the development of the Gibbs algorithm
for the selection of principal components as valid instruments for instrumental regression,
the following developments must be considered, starting from the following specifications:
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Appendix B. Description of Countries and Applicable Variables

Variable Description Obs Origin

LCBLOAN
Natural log of the total loans of BSI-reporting banks vis-à-vis individual

surveyed countries (in billions of dollars)
1300 BIS, Locational Statistics

TRADE
Percentage of the economy’s GDP of the total value of

commercial exchanges
1285 World Bank, WDI

LGDPPC Natural log of GDP per capita 1293 World Bank, WDI

SMCAPLISTED
Market capitalization of listed companies, taking the year-end value as

a result (% of GDP)
830 World Bank, WDI

PRIVCREDIT Percentage of credit granted to the private sector as a percentage of GDP 1208
World Bank, Global Financial

Development

ACCOUNT
Degree of perception by which a country’s citizens participate in the

election of governments, freedom of expression, freedom of association,
and freedom of communication

1272
World Bank, Worldwide
Governance Indicators

RULAW
Captures citizen’s perception of compliance with the law and

social rules
1300

World Bank, Worldwide
Governance Indicators

REGQLTY
Captures citizen’s perceptions of the government’s ability to enact and

implement sound policies and regulations to promote private
sector development

1300
World Bank, Worldwide
Governance Indicators

CORRUPTION
Captures the degree of perception of the power of the public sector to
exert pressure on the private sector, including any form of corruption

1300
World Bank, Worldwide
Governance Indicators

GOVEFF

Captures the perception of the quality of public services, the quality of
civil services and the degree of their independence from public

authorities, and the quality of policy formulation and
its implementation

1300
World Bank, Worldwide
Governance Indicators

POLSTA
Measures the perception of the plausibility of political instability

and/or political violence, including the possibility of terrorist acts
1300

World Bank, Worldwide
Governance Indicators

SPRATING
Long-term credit quality indicator or rating, provided by Standard and

Poor’s and denominated in foreign currency
1300 Standard and Poor’s
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Appendix C. Posterior Results for Principal Component Search

Table A1. Model with ρ = 0 and β0 = 0.5.

Component Mean SD Q. 2.5 Q. 50 Q. 97.5 ESS R̂

Comp. 1 0.1594 *** 0.0397 0.0814 0.1596 0.2377 42838 1.0001
Comp. 2 −0.2383 *** 0.0295 −0.2522 −0.1943 −0.1363 42313 1.0001
Comp. 3 −0.1887 *** 0.0345 −0.2534 −0.1857 −0.1186 42537 1.0000
Comp. 4 0.1827 *** 0.0389 −0.2959 −0.2200 −0.1448 42858 1.0001
Comp. 5 −0.1469 * 0.0470 −0.3526 −0.2604 −0.1685 42673 1.0001
Comp. 6 −0.0048 0.0561 −0.2518 −0.1402 −0.0314 42701 1.0001
Comp. 7 −0.0037 0.0619 −0.1190 0.0021 0.1251 43031 1.0000
Comp. 8 0.1598 0.0663 −0.1159 0.0131 0.1436 42890 1.0001
Comp. 9 −0.1501 0.0723 −0.0795 0.0603 0.2033 41819 1.0000

Coefficients marked with (*) represent significant variables at 90% credible level, (**) at 95% and (***) at 99%. Mean
denotes the marginal posterior mean, SE the squared error, SD the standard deviation, Q. 2.5 the 2.5th percentile,
Q. 50 the posterior median, and Q. 97.5 the 97.5th percentile. ESS is the Effective Sample Size, and R̂ represents
the potential scale-reduction factor.

Table A2. Model with ρ = 0 and β0 = 0.99.

Component Mean SD Q. 2.5 Q. 50 Q. 97.5 ESS R̂

Comp. 1 0.1595 *** 0.0392 0.0821 0.1597 0.2367 40678 1.0001
Comp. 2 −0.2376 *** 0.0471 −0.3307 −0.2378 −0.1452 42291 1.0000
Comp. 3 −0.1886 *** 0.0577 −0.3019 −0.1890 −0.0748 41836 1.0000
Comp. 4 0.1826 *** 0.0675 0.0494 0.1825 0.3155 42361 1.0000
Comp. 5 −0.1464 * 0.0794 −0.3006 −0.1463 0.0108 42733 1.0000
Comp. 6 −0.0046 0.0960 −0.1916 −0.0041 0.1842 42562 1.0000
Comp. 7 −0.0048 0.1056 −0.2100 −0.0054 0.2026 42140 1.0000
Comp. 8 0.1613 0.1218 −0.0782 0.1613 0.3997 42528 1.0000
Comp. 9 −0.1517 0.1657 −0.4765 −0.1526 0.1723 42076 1.0001

Coefficients marked with (*) represent significant variables at the 90% credibility level, (**) at 95%, and (***) at
99%. Mean denotes the marginal posterior mean, SE the squared error, SD the standard deviation, Q. 2.5 the 2.5th
percentile, Q. 50 the posterior median, and Q. 97.5 the 97.5th percentile. ESS is the Effective Sample Size, and R̂
represents the potential scale-reduction factor.

Table A3. Model with ρ = 0.5 and β0 = 0.5.

Component Mean SD Q. 2.5 Q. 50 Q. 97.5 ESS R̂

Comp. 1 0.1853 *** 0.0374 0.1122 0.1852 0.2583 42587 1.0000
Comp. 2 −0.2737 *** 0.0459 −0.3635 −0.2737 −0.1840 42877 1.0000
Comp. 3 −0.2172 *** 0.0598 −0.3341 −0.2168 −0.1015 41669 1.0001
Comp. 4 −0.1413 ** 0.0699 −0.2789 −0.1413 −0.0058 42531 1.0000
Comp. 5 0.0496 0.0786 −0.1046 0.0493 0.2036 42408 1.0000
Comp. 6 −0.1665 * 0.0939 −0.3485 −0.1671 0.0201 42695 1.0000
Comp. 7 0.1380 0.1113 −0.0791 0.1378 0.3562 42684 1.0000
Comp. 8 −0.1501 0.1234 −0.3924 −0.1499 0.0906 42045 1.0001
Comp. 9 −0.2519 0.1625 −0.5694 −0.2531 0.0670 43016 1.0001

Coefficients marked with (*) represent significant variables at the 90% credibility level, (**) at 95%, and (***) at
99%. Mean denotes the marginal posterior mean, SE the squared error, SD the standard deviation, Q. 2.5 the 2.5th
percentile, Q. 50 the posterior median, and Q. 97.5 the 97.5th percentile. ESS is the Effective Sample Size, and R̂
represents the potential scale-reduction factor.

Table A4. Model with ρ = 0.5 and β0 = 0.99.

Component Mean SD Q. 2.5 Q. 50 Q. 97.5 ESS R̂

Comp. 1 0.1854 *** 0.0377 0.1123 0.1853 0.2596 42417 1.0000
Comp. 2 −0.2741 *** 0.0457 −0.3639 −0.2741 −0.1845 42835 1.0000
Comp. 3 −0.2176 *** 0.0598 −0.3339 −0.2178 −0.0995 42007 1.0000
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Table A4. Cont.

Component Mean SD Q. 2.5 Q. 50 Q. 97.5 ESS R̂

Comp. 4 −0.1417 ** 0.0701 −0.2799 −0.1413 −0.0039 42690 1.0000
Comp. 5 0.0507 0.0786 −0.1040 0.0505 0.2045 42532 1.0001
Comp. 6 −0.1656 * 0.0933 −0.3497 −0.1656 0.0163 42871 1.0000
Comp. 7 0.1374 0.1109 −0.0799 0.1366 0.3544 42747 1.0001
Comp. 8 −0.1496 0.1242 −0.3956 −0.1486 0.0890 42264 1.0000
Comp. 9 −0.2530 0.1629 −0.5734 −0.2524 0.0675 42738 1.0000

Coefficients marked with (*) represent significant variables at the 90% credibility level, (**) at 95%, and (***) at
99%. Mean denotes the marginal posterior mean, SE the squared error, SD the standard deviation, Q. 2.5 the 2.5th
percentile, Q. 50 the posterior median, and Q. 97.5 the 97.5th percentile. ESS is the Effective Sample Size, and R̂
represents the potential scale-reduction factor.

Table A5. Model with ρ = 0.99 and β0 = 0.5.

Component Mean SD Q. 2.5 Q. 50 Q. 97.5 ESS R̂

Comp. 1 −0.1681 *** 0.0402 −0.2471 −0.1682 −0.0892 42439 1.0000
Comp. 2 0.2663 *** 0.0470 0.1738 0.2662 0.3584 42769 1.0000
Comp. 3 −0.1797 *** 0.0594 −0.2958 −0.1798 −0.0627 42974 1.0000
Comp. 4 −0.1719 ** 0.0687 −0.3074 −0.1718 −0.0366 42435 1.0000
Comp. 5 −0.1426 * 0.0814 −0.3029 −0.1423 0.0173 42836 1.0000
Comp. 6 0.1588 * 0.0897 −0.0159 0.1589 0.3335 42463 1.0000
Comp. 7 0.1228 0.0948 −0.0619 0.1232 0.3093 42454 1.0001
Comp. 8 0.1854 * 0.1107 −0.0310 0.1851 0.4044 42945 1.0000
Comp. 9 −0.0186 0.1430 −0.2987 −0.0188 0.2622 42260 1.0000

Coefficients marked with (*) represent significant variables at the 90% credibility level, (**) at 95%, and (***) at
99%. Mean denotes the marginal posterior mean, SE the squared error, SD the standard deviation, Q. 2.5 the 2.5th
percentile, Q. 50 the posterior median, and Q. 97.5 the 97.5th percentile. ESS is the Effective Sample Size, and R̂
represents the potential scale-reduction factor.

Table A6. Model with ρ = 0.99 and β0 = 0.99.

Component Mean SD Q. 2.5 Q. 50 Q. 97.5 ESS R̂

Comp. 1 −0.1685 *** 0.0407 −0.2491 −0.1682 −0.0892 42671 1.0000
Comp. 2 0.2665 *** 0.0470 0.1745 0.2662 0.3589 42498 1.0000
Comp. 3 −0.1798*** 0.0599 −0.2978 −0.1800 −0.0631 42633 1.0000
Comp. 4 −0.1718 ** 0.0691 −0.3078 −0.1712 −0.0372 42655 1.0000
Comp. 5 −0.1422 * 0.0826 −0.3038 −0.1423 0.0202 42618 1.0001
Comp. 6 0.1570 * 0.0909 −0.0223 0.1573 0.3331 42474 1.0000
Comp. 7 0.1227 0.0954 −0.0637 0.1227 0.3111 42662 1.0000
Comp. 8 0.1857 * 0.1106 −0.0319 0.1858 0.4013 41986 1.0000
Comp. 9 −0.0166 0.1421 −0.2968 −0.0165 0.2618 42511 1.0000

Coefficients marked with (*) represent significant variables at the 90% credibility level, (**) at 95%, and (***) at
99%. Mean denotes the marginal posterior mean, SE the squared error, SD the standard deviation, Q. 2.5 the 2.5th
percentile, Q. 50 the posterior median, and Q. 97.5 the 97.5th percentile. ESS is the Effective Sample Size, and R̂
represents the potential scale-reduction factor.

Table A7. Model with ρ = 0.99 and β0 = 0.99. N = 100, T = 10.

Component Mean SD Q. 2.5 Q. 50 Q. 97.5 ESS R̂

Comp. 1 0.2015 *** 0.0269 0.1488 0.2015 0.2538 42783 1.0000
Comp. 2 0.2168 *** 0.0349 0.1482 0.2167 0.2856 42474 1.0000
Comp. 3 0.1714 *** 0.0416 0.0902 0.1713 0.2531 42558 1.0000
Comp. 4 0.1670 *** 0.0481 0.0729 0.1670 0.2616 42436 1.0001
Comp. 5 −0.0504 0.0545 −0.1568 −0.0505 0.0571 42434 1.0000
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Table A7. Cont.

Component Mean SD Q. 2.5 Q. 50 Q. 97.5 ESS R̂

Comp. 6 −0.0969 0.0622 −0.2204 −0.0968 0.0244 42587 1.0001
Comp. 7 0.0237 0.0750 −0.1226 0.0234 0.1714 41743 1.0000
Comp. 8 0.1075 0.0802 −0.0500 0.1075 0.2654 42581 1.0001
Comp. 9 −0.0201 0.1041 −0.2231 −0.0196 0.1851 42837 1.0000

Coefficients marked with (*) represent significant variables at the 90% credibility level, (**) at 95%, and (***) at
99%. Mean denotes the marginal posterior mean, SE the squared error, SD the standard deviation, Q. 2.5 the 2.5th
percentile, Q. 50 the posterior median, and Q. 97.5 the 97.5th percentile. ESS is the Effective Sample Size, and R̂
represents the potential scale-reduction factor.

Table A8. Model with ρ = 0.99 and β0 = 0.99.

Component Mean SD Q. 2.5 Q. 50 Q. 97.5 ESS R̂

Comp. 1 0.0773 *** 0.0132 0.0518 0.0772 0.1031 42815 1.0000
Comp. 2 −0.1061 *** 0.0139 −0.1331 −0.1061 −0.0788 42809 1.0000
Comp. 3 −0.1126 *** 0.0149 −0.1416 −0.1126 −0.0835 42855 1.0001
Comp. 4 0.0983 *** 0.0163 0.0664 0.0984 0.1302 42667 1.0000
Comp. 5 0.1215 *** 0.0168 0.0886 0.1215 0.1544 42537 1.0001
Comp. 6 −0.1205 *** 0.0182 −0.1564 −0.1204 −0.0850 42783 1.0000
Comp. 7 −0.1076 *** 0.0191 −0.1450 −0.1076 −0.0699 42173 1.0000
Comp. 8 0.0996 *** 0.0202 0.0601 0.0996 0.1387 42720 1.0000
Comp. 9 −0.1163 *** 0.0211 −0.1579 −0.1162 −0.0749 43017 1.0001

Comp. 10 −0.0933 *** 0.0218 −0.1360 −0.0932 −0.0506 41787 1.0000
Comp. 11 −0.1647 *** 0.0226 −0.2090 −0.1647 −0.1208 42981 1.0000
Comp. 12 0.1213 *** 0.0246 0.0730 0.1213 0.1697 42540 1.0000
Comp. 13 −0.1038 *** 0.0261 −0.1540 −0.1036 −0.0525 43004 1.0000
Comp. 14 0.0812 *** 0.0267 0.0292 0.0814 0.1334 42698 1.0000
Comp. 15 −0.0992 *** 0.0275 −0.1536 −0.0992 −0.0456 42744 1.0000
Comp. 16 −0.0798 *** 0.0284 −0.1351 −0.0800 −0.0238 42945 1.0000
Comp. 17 0.0860 *** 0.0293 0.0285 0.0860 0.1438 42221 1.0000
Comp. 18 0.0960 *** 0.0302 0.0374 0.0960 0.1555 42496 1.0000
Comp. 19 0.0597 * 0.0310 −0.0004 0.0595 0.1205 42585 1.0000
Comp. 20 −0.0660 ** 0.0317 −0.1280 −0.0660 −0.0036 42719 1.0000
Comp. 21 −0.0574 * 0.0326 −0.1222 −0.0573 0.0066 42727 1.0001
Comp. 22 0.0055 0.0339 −0.0604 0.0055 0.0721 42128 1.0000
Comp. 23 0.0256 0.0341 −0.0413 0.0256 0.0925 42648 1.0000
Comp. 24 0.0815 ** 0.0346 0.0138 0.0819 0.1492 42722 1.0000
Comp. 25 0.0385 0.0361 −0.0326 0.0387 0.1088 42547 1.0000
Comp. 26 −0.0475 0.0366 −0.1195 −0.0475 0.0244 42903 1.0000
Comp. 27 −0.0694 * 0.0373 −0.1422 −0.0697 0.0041 42860 1.0000
Comp. 28 −0.0255 0.0388 −0.1004 −0.0255 0.0508 42599 1.0001
Comp. 29 0.0171 0.0395 −0.0601 0.0173 0.0945 42527 1.0000
Comp. 30 −0.0574 0.0413 −0.1384 −0.0573 0.0249 42748 1.0001
Comp. 31 0.0194 0.0431 −0.0655 0.0197 0.1028 42750 1.0001
Comp. 32 −0.0029 0.0440 −0.0894 −0.0029 0.0834 42679 1.0000
Comp. 33 0.0641 0.0463 −0.0251 0.0643 0.1543 42526 1.0000
Comp. 34 0.0347 0.0476 −0.0588 0.0350 0.1276 42283 1.0001
Comp. 35 0.0206 0.0496 −0.0767 0.0202 0.1183 42961 1.0000
Comp. 36 0.0452 0.0504 −0.0533 0.0453 0.1442 42786 1.0000
Comp. 37 −0.0651 0.0522 −0.1671 −0.0651 0.0373 42393 1.0000
Comp. 38 −0.0375 0.0541 −0.1438 −0.0372 0.0687 42655 1.0000
Comp. 39 0.0049 0.0562 −0.1052 0.0048 0.1148 42356 1.0001
Comp. 40 0.0177 0.0598 −0.0988 0.0177 0.1342 42650 1.0000
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Table A8. Cont.

Component Mean SD Q. 2.5 Q. 50 Q. 97.5 ESS R̂

Comp. 41 −0.0511 0.0621 −0.1723 −0.0509 0.0716 42645 1.0000
Comp. 42 −0.0112 0.0649 −0.1387 −0.0110 0.1174 42532 1.0000
Comp. 43 −0.0978 0.0698 −0.2350 −0.0981 0.0394 42450 1.0001
Comp. 44 −0.0860 0.0744 −0.2304 −0.0859 0.0591 42417 1.0001
Comp. 45 0.0164 0.0821 −0.1446 0.0169 0.1768 42635 1.0000
Comp. 46 −0.0517 0.0893 −0.2259 −0.0515 0.1235 42123 1.0001
Comp. 47 0.1067 0.1011 −0.0912 0.1071 0.3031 42533 1.0000
Comp. 48 0.0029 0.1276 −0.2461 0.0024 0.2512 42300 1.0000
Comp. 49 −0.0830 0.1631 −0.4009 −0.0833 0.2363 42471 1.0001

Coefficients marked with (*) represent significant variables at the 90% credibility level, (**) at 95%, and (***) at
99%. Mean denotes the marginal posterior mean, SE the squared error, SD the standard deviation, Q. 2.5 the 2.5th
percentile, Q. 50 the posterior median, and Q. 97.5 the 97.5th percentile. ESS is the Effective Sample Size, and R̂
represents the potential scale-reduction factor.

Appendix D. Posterior Densities and Trace Plots for the Parameters of the
Empirical Application
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