Asymptotic Distribution and Finite Sample Bias Correction of QML Estimators for Spatial Error Dependence Model
Abstract
:1. Introduction
2. Asymptotic Properties of QMLEs for SED Model
2.1. The Model and the QML Estimation
2.2. Consistency and Asymptotic Normality
3. Finite Sample Bias Correction for the QML Estimators
3.1. The General Method for Bias Correction
3.2. Bias of the QMLE of the Spatial Parameter of the SED Model
3.3. Bootstrap Method for Implementing the Bias Correction
- (1)
- Compute the QMLEs based on the original data,
- (2)
- Compute the standardized QML residuals, .4 Denote the empirical distribution function (EDF) of the centered by ,
- (3)
- Draw a random sample of size n from , and denote it by ,
- (4)
- Compute , and hence, and ,
- (5)
- Repeat Steps (3) and (4) B times, and the bootstrap estimates of and are given by:
4. An Alternative Model Specification
5. Simulation
- (i)
- suffers from severe downward bias for almost all of the ρ values considered. The severity of the bias varies according to variations in: (1) the sample size; (2) the spatial layout; and (3) the distribution of the errors considered.
- (ii)
- is almost unbiased in all cases, even at considerably small sample sizes, which ascertains the effectiveness of the proposed bias correction procedure. These corrections can be attained without compromising the efficiency of the original QMLEs.
- (iii)
- The spatial layout has a considerable impact on the finite sample performance of in terms of the bias, RMSE and SE. A relatively sparse , as in contiguity schemes, results in lower bias, RMSE and SE, while a relatively dense , as in the group interaction scheme, results in the opposite.
- (iv)
- The bias of the original QMLE seems to worsen as the error distribution deviates from normality. In contrast, attains a similar level of accuracy in all cases.
- (v)
- The performance of is not so sensitive to changes in the values of σ and β in terms of bias, and the bias correction works well regardless of the true value set for the parameters.
- (vi)
- The impact of the degree of spatial dependence on the rate of convergence is clearly revealed when comparing the results in Table 3 with those in Table 4 under the group interaction scheme. When the degree of spatial dependence is stronger as in the case where , the rate of convergence is slower than in the case where .
Normal Errors | Mixed Normal Errors | Log-Normal Errors | |||||
---|---|---|---|---|---|---|---|
ρ | n | ||||||
0.50 | 50 | 0.440[0.175](0.164) | 0.495[0.169](0.169) | 0.445[0.166](0.157) | 0.499[0.161](0.161) | 0.452[0.152](0.144) | 0.503[0.147](0.147) |
100 | 0.472[0.116](0.112) | 0.501[0.114](0.114) | 0.471[0.112](0.108) | 0.499[0.110](0.110) | 0.473[0.104](0.101) | 0.500[0.102](0.102) | |
200 | 0.487[0.079](0.077) | 0.501[0.078](0.078) | 0.486[0.077](0.075) | 0.500[0.076](0.076) | 0.487[0.072](0.071) | 0.500[0.071](0.071) | |
500 | 0.495[0.049](0.049) | 0.501[0.049](0.049) | 0.495[0.049](0.048) | 0.500[0.049](0.049) | 0.495[0.046](0.046) | 0.500[0.046](0.046) | |
0.25 | 50 | 0.202[0.192](0.186) | 0.248[0.195](0.195) | 0.203[0.182](0.176) | 0.248[0.184](0.184) | 0.207[0.169](0.163) | 0.250[0.170](0.170) |
100 | 0.228[0.130](0.128) | 0.252[0.131](0.131) | 0.225[0.127](0.124) | 0.248[0.127](0.127) | 0.228[0.119](0.117) | 0.251[0.120](0.120) | |
200 | 0.239[0.091](0.090) | 0.251[0.091](0.091) | 0.239[0.090](0.090) | 0.250[0.090](0.090) | 0.240[0.085](0.084) | 0.251[0.085](0.085) | |
500 | 0.246[0.057](0.057) | 0.250[0.057](0.057) | 0.246[0.057](0.057) | 0.251[0.058](0.058) | 0.246[0.055](0.055) | 0.251[0.055](0.055) | |
0.00 | 50 | −0.032[0.192](0.189) | 0.002[0.201](0.201) | −0.035[0.184](0.181) | −0.002[0.191](0.191) | −0.033[0.178](0.175) | −0.002[0.184](0.184) |
100 | −0.021[0.135](0.133) | −0.004[0.137](0.137) | −0.018[0.131](0.130) | 0.000[0.133](0.133) | −0.019[0.124](0.123) | −0.003[0.126](0.126) | |
200 | −0.010[0.097](0.096) | −0.001[0.098](0.098) | −0.008[0.093](0.093) | 0.001[0.094](0.094) | −0.010[0.089](0.088) | −0.002[0.089](0.089) | |
500 | −0.005[0.060](0.060) | −0.001[0.060](0.060) | −0.005[0.059](0.059) | −0.001[0.059](0.059) | −0.004[0.058](0.058) | 0.001[0.058](0.058) | |
−0.25 | 50 | −0.270[0.180](0.179) | −0.252[0.191](0.191) | −0.273[0.171](0.170) | −0.255[0.181](0.181) | −0.274[0.169](0.168) | −0.257[0.178](0.178) |
100 | −0.262[0.127](0.126) | −0.252[0.130](0.130) | −0.261[0.124](0.123) | −0.251[0.127](0.127) | −0.262[0.120](0.119) | −0.252[0.123](0.123) | |
200 | −0.255[0.090](0.090) | −0.250[0.091](0.091) | −0.255[0.088](0.088) | −0.250[0.089](0.089) | −0.255[0.087](0.087) | −0.250[0.088](0.088) | |
500 | −0.253[0.057](0.057) | −0.250[0.058](0.058) | −0.252[0.057](0.057) | −0.250[0.058](0.058) | −0.253[0.056](0.056) | −0.250[0.057](0.057) | |
−0.50 | 50 | −0.503[0.152](0.152) | −0.502[0.163](0.163) | −0.503[0.144](0.144) | −0.500[0.153](0.153) | −0.509[0.144](0.143) | −0.507[0.153](0.153) |
100 | −0.504[0.107](0.107) | −0.502[0.111](0.111) | −0.503[0.104](0.104) | −0.501[0.108](0.108) | −0.504[0.103](0.103) | −0.502[0.106](0.106) | |
200 | −0.502[0.076](0.076) | −0.501[0.077](0.077) | −0.502[0.074](0.074) | −0.501[0.076](0.076) | −0.503[0.074](0.074) | −0.502[0.075](0.075) | |
500 | −0.501[0.048](0.048) | −0.500[0.049](0.049) | −0.501[0.047](0.047) | −0.500[0.048](0.048) | −0.501[0.046](0.046) | −0.501[0.047](0.047) |
Normal Errors | Mixed Normal Errors | Log-Normal Errors | |||||
---|---|---|---|---|---|---|---|
ρ | n | ||||||
0.50 | 50 | 0.390[0.244](0.218) | 0.492[0.215](0.215) | 0.395[0.232](0.206) | 0.493[0.204](0.204) | 0.406[0.207](0.184) | 0.501[0.181](0.181) |
100 | 0.445[0.153](0.143) | 0.499[0.140](0.140) | 0.449[0.145](0.135) | 0.501[0.133](0.133) | 0.451[0.133](0.124) | 0.501[0.122](0.122) | |
200 | 0.474[0.099](0.095) | 0.500[0.095](0.095) | 0.474[0.098](0.095) | 0.500[0.094](0.094) | 0.476[0.091](0.087) | 0.500[0.087](0.087) | |
500 | 0.491[0.059](0.058) | 0.501[0.058](0.058) | 0.490[0.059](0.058) | 0.500[0.058](0.058) | 0.490[0.056](0.055) | 0.500[0.055](0.055) | |
0.25 | 50 | 0.144[0.270](0.248) | 0.248[0.250](0.250) | 0.153[0.255](0.236) | 0.254[0.238](0.238) | 0.153[0.239](0.218) | 0.250[0.219](0.219) |
100 | 0.196[0.179](0.171) | 0.253[0.169](0.169) | 0.194[0.177](0.168) | 0.249[0.166](0.166) | 0.197[0.165](0.156) | 0.250[0.154](0.154) | |
200 | 0.221[0.121](0.117) | 0.248[0.117](0.117) | 0.222[0.118](0.115) | 0.249[0.114](0.114) | 0.225[0.110](0.107) | 0.250[0.107](0.107) | |
500 | 0.240[0.073](0.073) | 0.250[0.073](0.073) | 0.240[0.075](0.074) | 0.250[0.074](0.074) | 0.241[0.069](0.068) | 0.251[0.068](0.068) | |
0.00 | 50 | −0.101[0.294](0.276) | −0.002[0.285](0.285) | −0.095[0.277](0.260) | 0.003[0.268](0.268) | −0.095[0.259](0.241) | −0.001[0.247](0.247) |
100 | −0.059[0.200](0.192) | −0.002[0.192](0.192) | −0.059[0.197](0.188) | −0.002[0.189](0.189) | −0.055[0.181](0.172) | 0.001[0.172](0.172) | |
200 | −0.027[0.135](0.132) | 0.001[0.133](0.133) | −0.026[0.132](0.130) | 0.002[0.130](0.130) | −0.027[0.124](0.121) | −0.002[0.121](0.121) | |
500 | −0.011[0.083](0.082) | −0.001[0.082](0.082) | −0.011[0.082](0.081) | 0.000[0.081](0.081) | −0.010[0.079](0.079) | 0.001[0.079](0.079) | |
−0.25 | 50 | −0.339[0.299](0.285) | −0.248[0.300](0.300) | −0.338[0.284](0.270) | −0.249[0.283](0.283) | −0.337[0.265](0.250) | −0.251[0.261](0.261) |
100 | −0.308[0.211](0.203) | −0.252[0.206](0.206) | −0.303[0.202](0.195) | −0.248[0.198](0.198) | −0.307[0.194](0.185) | −0.254[0.188](0.188) | |
200 | −0.277[0.142](0.140) | −0.251[0.141](0.141) | −0.274[0.140](0.138) | −0.249[0.139](0.139) | −0.275[0.132](0.129) | −0.250[0.130](0.130) | |
500 | −0.262[0.089](0.089) | −0.252[0.089](0.089) | −0.260[0.088](0.088) | −0.250[0.088](0.088) | −0.261[0.084](0.083) | −0.251[0.084](0.084) | |
−0.50 | 50 | −0.576[0.291](0.281) | −0.499[0.301](0.301) | −0.577[0.283](0.272) | −0.502[0.290](0.290) | −0.584[0.268](0.255) | −0.511[0.271](0.270) |
100 | −0.548[0.208](0.203) | −0.498[0.209](0.209) | −0.550[0.201](0.195) | −0.501[0.201](0.201) | −0.547[0.193](0.188) | −0.499[0.193](0.193) | |
200 | −0.524[0.144](0.142) | −0.501[0.144](0.144) | −0.524[0.141](0.139) | −0.501[0.141](0.141) | −0.521[0.136](0.134) | −0.498[0.136](0.136) | |
500 | −0.511[0.090](0.089) | −0.502[0.090](0.089) | −0.510[0.089](0.089) | −0.501[0.089](0.089) | −0.509[0.086](0.086) | −0.500[0.086](0.086) |
Normal Errors | Mixed Normal Errors | Log-Normal Errors | |||||
---|---|---|---|---|---|---|---|
ρ | n | ||||||
0.50 | 50 | 0.277[0.403](0.335) | 0.523[0.223](0.222) | 0.287[0.395](0.332) | 0.524[0.223](0.222) | 0.303[0.354](0.294) | 0.532[0.194](0.192) |
100 | 0.375[0.233](0.197) | 0.512[0.148](0.148) | 0.377[0.233](0.198) | 0.511[0.149](0.149) | 0.384[0.214](0.180) | 0.515[0.136](0.136) | |
200 | 0.424[0.160](0.141) | 0.502[0.116](0.116) | 0.430[0.152](0.134) | 0.506[0.111](0.111) | 0.432[0.143](0.126) | 0.507[0.104](0.104) | |
500 | 0.454[0.106](0.096) | 0.502[0.085](0.085) | 0.455[0.105](0.095) | 0.502[0.085](0.085) | 0.456[0.100](0.090) | 0.502[0.080](0.080) | |
0.25 | 50 | −0.082[0.548](0.437) | 0.291[0.325](0.322) | −0.078[0.541](0.431) | 0.288[0.318](0.315) | −0.061[0.507](0.401) | 0.296[0.296](0.293) |
100 | 0.051[0.345](0.281) | 0.268[0.220](0.219) | 0.052[0.342](0.278) | 0.265[0.218](0.218) | 0.068[0.309](0.249) | 0.275[0.196](0.194) | |
200 | 0.129[0.239](0.206) | 0.259[0.171](0.171) | 0.127[0.236](0.201) | 0.256[0.168](0.168) | 0.131[0.220](0.184) | 0.257[0.154](0.153) | |
500 | 0.176[0.160](0.141) | 0.254[0.126](0.126) | 0.175[0.161](0.142) | 0.253[0.127](0.127) | 0.179[0.153](0.135) | 0.255[0.120](0.120) | |
0.00 | 50 | −0.433[0.679](0.523) | 0.040[0.419](0.417) | −0.432[0.672](0.514) | 0.034[0.412](0.411) | −0.400[0.620](0.474) | 0.055[0.378](0.375) |
100 | −0.270[0.448](0.357) | 0.018[0.288](0.288) | −0.260[0.435](0.347) | 0.020[0.280](0.280) | −0.251[0.409](0.324) | 0.025[0.263](0.261) | |
200 | −0.172[0.315](0.264) | 0.009[0.223](0.223) | −0.171[0.312](0.261) | 0.008[0.221](0.221) | −0.162[0.295](0.246) | 0.012[0.209](0.209) | |
500 | −0.107[0.215](0.186) | 0.002[0.167](0.167) | −0.106[0.213](0.185) | 0.002[0.166](0.166) | −0.100[0.199](0.173) | 0.006[0.156](0.155) | |
−0.25 | 50 | −0.758[0.767](0.575) | −0.210[0.487](0.485) | −0.746[0.753](0.567) | −0.209[0.483](0.481) | −0.723[0.708](0.527) | −0.195[0.448](0.445) |
100 | −0.573[0.534](0.425) | −0.227[0.354](0.353) | −0.574[0.530](0.420) | −0.233[0.350](0.350) | −0.563[0.490](0.377) | −0.228[0.314](0.313) | |
200 | −0.467[0.394](0.329) | −0.242[0.282](0.282) | −0.466[0.382](0.315) | −0.242[0.271](0.271) | −0.455[0.356](0.291) | −0.236[0.250](0.250) | |
500 | −0.383[0.263](0.227) | −0.240[0.205](0.204) | −0.381[0.263](0.228) | −0.246[0.206](0.206) | −0.379[0.250](0.215) | −0.245[0.194](0.194) | |
−0.50 | 50 | -1.057[0.828](0.614) | −0.456[0.553](0.551) | -1.059[0.828](0.611) | −0.467[0.550](0.549) | -1.040[0.782](0.566) | −0.454[0.505](0.503) |
100 | −0.880[0.612](0.480) | −0.481[0.409](0.409) | −0.875[0.598](0.465) | −0.482[0.397](0.396) | −0.857[0.562](0.434) | −0.472[0.369](0.368) | |
200 | −0.753[0.451](0.374) | −0.487[0.325](0.325) | −0.751[0.445](0.369) | −0.487[0.320](0.320) | −0.746[0.422](0.344) | −0.487[0.299](0.299) | |
500 | −0.655[0.308](0.267) | −0.493[0.242](0.242) | −0.659[0.311](0.267) | −0.497[0.243](0.243) | −0.652[0.294](0.251) | −0.492[0.228](0.228) |
Normal Errors | Mixed Normal Errors | Log-Normal Errors | |||||
---|---|---|---|---|---|---|---|
ρ | n | ||||||
0.50 | 50 | 0.435[0.155](0.140) | 0.504[0.119](0.119) | 0.440[0.147](0.134) | 0.507[0.114](0.114) | 0.441[0.133](0.119) | 0.506[0.101](0.101) |
100 | 0.458[0.110](0.101) | 0.502[0.091](0.091) | 0.460[0.105](0.097) | 0.502[0.087](0.087) | 0.462[0.094](0.086) | 0.503[0.077](0.077) | |
200 | 0.477[0.077](0.073) | 0.503[0.069](0.068) | 0.475[0.077](0.073) | 0.501[0.068](0.068) | 0.478[0.069](0.065) | 0.503[0.061](0.061) | |
500 | 0.486[0.053](0.051) | 0.501[0.050](0.050) | 0.485[0.053](0.051) | 0.500[0.049](0.049) | 0.487[0.050](0.048) | 0.502[0.046](0.046) | |
0.25 | 50 | 0.148[0.213](0.186) | 0.257[0.166](0.166) | 0.151[0.205](0.179) | 0.257[0.160](0.160) | 0.154[0.189](0.162) | 0.257[0.144](0.144) |
100 | 0.182[0.156](0.140) | 0.252[0.129](0.129) | 0.183[0.151](0.135) | 0.252[0.124](0.124) | 0.185[0.139](0.123) | 0.252[0.112](0.112) | |
200 | 0.209[0.113](0.105) | 0.252[0.099](0.099) | 0.211[0.109](0.102) | 0.253[0.096](0.096) | 0.209[0.104](0.095) | 0.250[0.090](0.090) | |
500 | 0.228[0.076](0.073) | 0.252[0.070](0.070) | 0.227[0.077](0.073) | 0.251[0.070](0.070) | 0.227[0.072](0.068) | 0.251[0.066](0.066) | |
0.00 | 50 | −0.129[0.253](0.218) | 0.006[0.205](0.205) | −0.127[0.244](0.208) | 0.006[0.195](0.195) | −0.119[0.222](0.187) | 0.011[0.175](0.174) |
100 | −0.087[0.191](0.170) | 0.005[0.159](0.159) | −0.088[0.187](0.165) | 0.003[0.155](0.154) | −0.081[0.169](0.148) | 0.007[0.138](0.138) | |
200 | −0.056[0.144](0.133) | 0.003[0.126](0.126) | −0.056[0.140](0.128) | 0.002[0.122](0.122) | −0.052[0.131](0.120) | 0.005[0.114](0.114) | |
500 | −0.033[0.101](0.096) | −0.001[0.093](0.093) | −0.034[0.100](0.094) | −0.001[0.091](0.091) | −0.030[0.093](0.088) | 0.002[0.086](0.086) | |
−0.25 | 50 | −0.395[0.273](0.231) | −0.248[0.227](0.227) | −0.389[0.260](0.220) | −0.244[0.216](0.216) | −0.384[0.241](0.201) | −0.242[0.196](0.196) |
100 | −0.351[0.218](0.193) | −0.244[0.184](0.184) | −0.353[0.215](0.189) | −0.247[0.180](0.180) | −0.349[0.197](0.170) | −0.246[0.162](0.162) | |
200 | −0.319[0.170](0.156) | −0.248[0.149](0.149) | −0.321[0.169](0.154) | −0.251[0.147](0.147) | −0.317[0.155](0.140) | −0.249[0.134](0.134) | |
500 | −0.290[0.122](0.115) | −0.249[0.112](0.112) | −0.291[0.122](0.115) | −0.251[0.112](0.112) | −0.289[0.114](0.107) | −0.250[0.104](0.104) | |
−0.50 | 50 | −0.647[0.276](0.234) | −0.499[0.241](0.241) | −0.644[0.269](0.228) | −0.499[0.236](0.236) | −0.639[0.252](0.210) | −0.497[0.215](0.215) |
100 | −0.616[0.241](0.212) | −0.497[0.205](0.205) | −0.609[0.234](0.207) | −0.492[0.200](0.200) | −0.610[0.219](0.189) | −0.495[0.183](0.183) | |
200 | −0.580[0.193](0.176) | −0.499[0.170](0.170) | −0.579[0.191](0.174) | −0.499[0.168](0.168) | −0.579[0.179](0.161) | −0.500[0.156](0.156) | |
500 | −0.547[0.141](0.133) | −0.500[0.129](0.129) | −0.545[0.139](0.131) | −0.498[0.128](0.128) | −0.544[0.131](0.124) | −0.497[0.121](0.121) |
Normal Errors | Mixed Normal Errors | Log-Normal Errors | |||||
---|---|---|---|---|---|---|---|
ρ | n | ||||||
0.50 | 50 | 0.395[0.242](0.218) | 0.499[0.213](0.213) | 0.396[0.230](0.205) | 0.497[0.200](0.200) | 0.404[0.210](0.187) | 0.501[0.182](0.182) |
100 | 0.446[0.150](0.140) | 0.500[0.138](0.138) | 0.447[0.149](0.139) | 0.499[0.137](0.137) | 0.451[0.135](0.125) | 0.501[0.123](0.123) | |
200 | 0.474[0.100](0.096) | 0.500[0.096](0.096) | 0.475[0.096](0.093) | 0.500[0.092](0.092) | 0.476[0.091](0.087) | 0.500[0.087](0.087) | |
500 | 0.490[0.059](0.058) | 0.500[0.058](0.058) | 0.490[0.059](0.058) | 0.500[0.058](0.058) | 0.491[0.056](0.055) | 0.501[0.055](0.055) | |
0.25 | 50 | 0.137[0.282](0.258) | 0.246[0.258](0.258) | 0.145[0.263](0.241) | 0.251[0.240](0.240) | 0.152[0.246](0.225) | 0.253[0.224](0.224) |
100 | 0.195[0.182](0.173) | 0.252[0.172](0.172) | 0.196[0.173](0.165) | 0.252[0.163](0.163) | 0.195[0.162](0.152) | 0.249[0.151](0.151) | |
200 | 0.224[0.121](0.118) | 0.250[0.118](0.118) | 0.224[0.118](0.115) | 0.251[0.115](0.115) | 0.226[0.111](0.108) | 0.251[0.108](0.108) | |
500 | 0.241[0.072](0.071) | 0.251[0.071](0.071) | 0.240[0.072](0.071) | 0.251[0.071](0.071) | 0.241[0.070](0.070) | 0.251[0.070](0.070) | |
0.00 | 50 | −0.104[0.297](0.279) | 0.004[0.286](0.286) | −0.106[0.285](0.264) | −0.002[0.270](0.270) | −0.098[0.269](0.250) | 0.004[0.255](0.255) |
100 | −0.059[0.201](0.192) | −0.002[0.193](0.193) | −0.058[0.196](0.187) | −0.001[0.188](0.188) | −0.054[0.181](0.173) | 0.002[0.173](0.173) | |
200 | −0.027[0.134](0.131) | 0.001[0.132](0.132) | −0.028[0.133](0.131) | −0.002[0.131](0.131) | −0.027[0.124](0.121) | −0.001[0.121](0.121) | |
500 | −0.010[0.082](0.081) | 0.002[0.082](0.082) | −0.012[0.083](0.082) | −0.001[0.082](0.082) | −0.011[0.079](0.078) | −0.001[0.078](0.078) | |
−0.25 | 50 | −0.352[0.305](0.288) | −0.253[0.302](0.302) | −0.351[0.294](0.276) | −0.254[0.289](0.289) | −0.346[0.279](0.262) | −0.252[0.273](0.273) |
100 | −0.302[0.208](0.202) | −0.247[0.205](0.205) | −0.304[0.203](0.196) | −0.249[0.199](0.199) | −0.304[0.192](0.185) | −0.251[0.187](0.187) | |
200 | −0.275[0.142](0.140) | −0.250[0.141](0.141) | −0.280[0.139](0.136) | −0.255[0.137](0.137) | −0.277[0.134](0.131) | −0.252[0.132](0.132) | |
500 | −0.261[0.090](0.089) | −0.251[0.089](0.089) | −0.261[0.088](0.087) | −0.251[0.088](0.088) | −0.259[0.085](0.085) | −0.249[0.085](0.085) | |
−0.50 | 50 | −0.591[0.300](0.286) | −0.506[0.307](0.307) | −0.592[0.290](0.276) | −0.508[0.294](0.294) | −0.588[0.280](0.265) | −0.506[0.282](0.282) |
100 | −0.549[0.207](0.201) | −0.500[0.208](0.208) | −0.554[0.203](0.195) | −0.506[0.201](0.201) | −0.548[0.193](0.187) | −0.500[0.192](0.192) | |
200 | −0.524[0.144](0.142) | −0.501[0.144](0.144) | −0.522[0.141](0.140) | −0.499[0.142](0.142) | −.−0.523[0.136](0.134) | −0.501[0.136](0.136) | |
500 | −0.509[0.091](0.090) | −0.500[0.091](0.091) | −0.508[0.090](0.089) | −0.499[0.090](0.090) | −0.510[0.087](0.086) | −0.500[0.087](0.087) |
Normal Errors | Mixed Normal Errors | Log-Normal Errors | |||||
---|---|---|---|---|---|---|---|
ρ | n | ||||||
0.50 | 50 | 0.392[0.243](0.217) | 0.499[0.210](0.210) | 0.396[0.234](0.209) | 0.499[0.202](0.202) | 0.404[0.212](0.189) | 0.505[0.182](0.182) |
100 | 0.449[0.150](0.141) | 0.501[0.139](0.139) | 0.449[0.147](0.137) | 0.499[0.135](0.135) | 0.452[0.134](0.125) | 0.501[0.123](0.123) | |
200 | 0.474[0.098](0.095) | 0.500[0.094](0.094) | 0.475[0.097](0.094) | 0.500[0.093](0.093) | 0.474[0.091](0.087) | 0.499[0.087](0.087) | |
500 | 0.489[0.060](0.059) | 0.499[0.059](0.059) | 0.490[0.060](0.059) | 0.500[0.058](0.058) | 0.490[0.056](0.055) | 0.500[0.055](0.055) | |
0.25 | 50 | 0.139[0.282](0.259) | 0.253[0.257](0.257) | 0.136[0.271](0.246) | 0.247[0.243](0.243) | 0.147[0.249](0.227) | 0.255[0.224](0.223) |
100 | 0.196[0.180](0.172) | 0.250[0.171](0.171) | 0.195[0.174](0.165) | 0.249[0.165](0.165) | 0.202[0.159](0.152) | 0.253[0.151](0.151) | |
200 | 0.220[0.120](0.116) | 0.247[0.116](0.116) | 0.225[0.119](0.116) | 0.251[0.116](0.116) | 0.226[0.110](0.107) | 0.251[0.107](0.107) | |
500 | 0.240[0.074](0.073) | 0.250[0.073](0.073) | 0.240[0.072](0.071) | 0.251[0.071](0.071) | 0.240[0.070](0.070) | 0.250[0.070](0.070) | |
0.00 | 50 | −0.114[0.307](0.285) | 0.001[0.291](0.291) | −0.111[0.297](0.275) | 0.001[0.280](0.280) | −0.109[0.279](0.256) | −0.001[0.259](0.259) |
100 | −0.053[0.195](0.188) | 0.003[0.189](0.189) | −0.053[0.192](0.184) | 0.001[0.185](0.185) | −0.051[0.177](0.170) | 0.002[0.171](0.171) | |
200 | −0.027[0.134](0.131) | −0.001[0.132](0.132) | −0.028[0.132](0.129) | −0.002[0.129](0.129) | −0.027[0.123](0.120) | −0.002[0.121](0.121) | |
500 | −0.010[0.083](0.083) | 0.001[0.083](0.083) | −0.011[0.082](0.082) | −0.001[0.082](0.082) | −0.011[0.079](0.078) | −0.001[0.078](0.078) | |
−0.25 | 50 | −0.364[0.312](0.291) | −0.258[0.306](0.305) | −0.356[0.298](0.278) | −0.250[0.291](0.291) | −0.355[0.286](0.266) | −0.252[0.276](0.276) |
100 | −0.300[0.209](0.203) | −0.248[0.207](0.207) | −0.302[0.202](0.195) | -0.252[0.199](0.199) | −0.297[0.187](0.181) | −0.248[0.183](0.183) | |
200 | −0.277[0.143](0.141) | −0.252[0.142](0.142) | −0.275[0.139](0.137) | −0.249[0.138](0.138) | −0.274[0.134](0.132) | −0.249[0.132](0.132) | |
500 | −0.259[0.088](0.087) | −0.249[0.087](0.087) | −0.262[0.088](0.087) | −0.252[0.087](0.087) | −0.260[0.085](0.085) | −0.250[0.085](0.085) | |
−0.50 | 50 | −0.593[0.305](0.290) | −0.501[0.312](0.312) | −0.596[0.292](0.276) | −0.504[0.296](0.296) | −0.599[0.281](0.263) | −0.509[0.280](0.280) |
100 | −0.548[0.207](0.201) | −0.503[0.208](0.208) | −0.547[0.198](0.193) | −0.502[0.199](0.199) | −0.543[0.192](0.187) | −0.499[0.192](0.192) | |
200 | −0.522[0.145](0.143) | −0.499[0.145](0.145) | −0.525[0.142](0.140) | −0.503[0.142](0.142) | −0.522[0.136](0.134) | −0.500[0.136](0.136) | |
500 | −0.509[0.091](0.091) | −0.500[0.091](0.091) | −0.511[0.089](0.088) | −0.502[0.089](0.089) | −0.510[0.086](0.086) | −0.501[0.086](0.086) |
Normal Errors | Mixed Normal Errors | Log-Normal Errors | |||||
---|---|---|---|---|---|---|---|
ρ | n | ||||||
0.50 | 100 | 0.554[0.154](0.145) | 0.509[0.418](0.418) | 0.552[0.151](0.142) | 0.509[0.318](0.318) | 0.553[0.149](0.139) | 0.506[0.140](0.140) |
200 | 0.527[0.101](0.097) | 0.501[0.096](0.096) | 0.528[0.099](0.095) | 0.502[0.095](0.095) | 0.527[0.096](0.093) | 0.501[0.092](0.092) | |
500 | 0.510[0.059](0.058) | 0.500[0.058](0.058) | 0.510[0.059](0.058) | 0.500[0.058](0.058) | 0.510[0.059](0.058) | 0.500[0.058](0.058) | |
0.25 | 100 | 0.302[0.184](0.176) | 0.256[0.178](0.178) | 0.301[0.180](0.173) | 0.255[0.171](0.171) | 0.292[0.171](0.166) | 0.247[0.163](0.163) |
200 | 0.275[0.121](0.119) | 0.251[0.117](0.117) | 0.273[0.120](0.118) | 0.250[0.116](0.116) | 0.274[0.115](0.112) | 0.251[0.111](0.111) | |
500 | 0.259[0.074](0.073) | 0.250[0.073](0.073) | 0.261[0.073](0.072) | 0.252[0.072](0.072) | 0.260[0.071](0.071) | 0.251[0.070](0.070) | |
0.00 | 100 | 0.041[0.204](0.200) | −0.001[0.196](0.196) | 0.040[0.197](0.193) | −0.002[0.188](0.188) | 0.039[0.187](0.183) | −0.001[0.179](0.179) |
200 | 0.019[0.136](0.134) | −0.002[0.132](0.132) | 0.022[0.133](0.131) | 0.002[0.129](0.129) | 0.021[0.129](0.127) | 0.001[0.125](0.125) | |
500 | 0.009[0.083](0.083) | 0.001[0.083](0.083) | 0.009[0.082](0.082) | 0.001[0.081](0.081) | 0.008[0.081](0.080) | 0.000[0.080](0.080) | |
−0.25 | 100 | −0.214[0.217](0.214) | −0.249[0.208](0.208) | −0.217[0.210](0.208) | −0.251[0.202](0.202) | −0.222[0.197](0.195) | −0.254[0.189](0.189) |
200 | −0.234[0.145](0.144) | −0.250[0.142](0.142) | −0.233[0.143](0.142) | −0.249[0.140](0.140) | −0.235[0.138](0.137) | −0.251[0.134](0.134) | |
500 | −0.245[0.089](0.089) | −0.251[0.089](0.089) | −0.245[0.089](0.089) | −0.251[0.089](0.089) | −0.245[0.086](0.086) | −0.251[0.086](0.086) | |
−0.50 | 100 | −0.472[0.218](0.216) | −0.498[0.209](0.209) | −0.475[0.214](0.212) | −0.500[0.205](0.205) | −0.479[0.201](0.200) | −0.502[0.193](0.193) |
200 | −0.489[0.149](0.149) | −0.501[0.146](0.146) | −0.492[0.146](0.146) | −0.503[0.143](0.143) | −0.490[0.139](0.138) | −0.500[0.136](0.136) | |
500 | −0.495[0.092](0.092) | −0.500[0.091](0.091) | −0.495[0.089](0.089) | −0.500[0.089](0.089) | −0.496[0.087](0.087) | −0.500[0.086](0.086) |
Normal Errors | Mixed Normal Errors | Log-Normal Errors | |||||
---|---|---|---|---|---|---|---|
ρ | n | ||||||
0.50 | 100 | 0.549[0.129](0.120) | 0.508[0.128](0.127) | 0.548[0.126](0.117) | 0.507[0.124](0.124) | 0.548[0.121](0.111) | 0.507[0.118](0.118) |
200 | 0.534[0.106](0.100) | 0.503[0.104](0.104) | 0.534[0.104](0.098) | 0.502[0.102](0.102) | 0.533[0.099](0.094) | 0.502[0.097](0.097) | |
500 | 0.519[0.078](0.076) | 0.501[0.078](0.078) | 0.520[0.079](0.077) | 0.502[0.079](0.079) | 0.519[0.077](0.074) | 0.502[0.076](0.076) | |
0.25 | 100 | 0.309[0.184](0.174) | 0.254[0.183](0.183) | 0.310[0.179](0.169) | 0.256[0.177](0.177) | 0.306[0.167](0.158) | 0.253[0.165](0.165) |
200 | 0.292[0.148](0.142) | 0.252[0.147](0.147) | 0.292[0.147](0.141) | 0.252[0.146](0.146) | 0.294[0.140](0.133) | 0.254[0.138](0.138) | |
500 | 0.277[0.116](0.113) | 0.252[0.116](0.116) | 0.276[0.116](0.113) | 0.252[0.116](0.116) | 0.275[0.111](0.108) | 0.251[0.111](0.111) | |
0.00 | 100 | 0.071[0.234](0.223) | 0.005[0.234](0.234) | 0.069[0.228](0.217) | 0.004[0.227](0.227) | 0.065[0.211](0.200) | 0.002[0.209](0.209) |
200 | 0.051[0.197](0.190) | 0.001[0.198](0.198) | 0.053[0.192](0.185) | 0.004[0.192](0.192) | 0.052[0.180](0.172) | 0.004[0.178](0.178) | |
500 | 0.032[0.152](0.149) | −0.001[0.154](0.154) | 0.032[0.150](0.146) | 0.001[0.150](0.150) | 0.034[0.145](0.141) | 0.003[0.145](0.145) | |
−0.25 | 100 | −0.168[0.281](0.269) | −0.246[0.282](0.282) | −0.174[0.269](0.258) | −0.251[0.270](0.270) | −0.172[0.254](0.242) | −0.246[0.253](0.253) |
200 | −0.194[0.234](0.227) | −0.253[0.236](0.236) | −0.187[0.233](0.225) | −0.245[0.233](0.233) | −0.192[0.221](0.214) | −0.249[0.222](0.222) | |
500 | −0.210[0.188](0.184) | −0.248[0.189](0.189) | −0.211[0.188](0.184) | −0.249[0.189](0.189) | −0.213[0.178](0.174) | −0.251[0.179](0.179) | |
−0.50 | 100 | −0.411[0.321](0.308) | −0.500[0.324](0.324) | −0.408[0.315](0.302) | −0.495[0.316](0.316) | −0.417[0.294](0.282) | −0.503[0.296](0.296) |
200 | −0.427[0.276](0.266) | −0.496[0.276](0.276) | −0.427[0.272](0.262) | −0.495[0.273](0.273) | −0.436[0.256](0.247) | −0.502[0.257](0.257) | |
500 | −0.456[0.219](0.215) | −0.501[0.221](0.221) | −0.453[0.223](0.218) | −0.498[0.224](0.224) | −0.456[0.213](0.208) | −0.501[0.214](0.214) |
6. Conclusions
Acknowledgments
Author Contributions
Appendix
A. Proofs of Asymptotic Results in Section 2
B. Proofs of Higher-Order Results in Section 3
References
- A. Cliff, and J.K. Ord. “Testing for spatial autocorrelation among regression residuals.” Geogr. Anal. 4 (1972): 267–284. [Google Scholar] [CrossRef]
- A.D. Cliff, and J.K. Ord. Spatial Autocorrelation. London, UK: Pion, 1973. [Google Scholar]
- J. Ord. “Estimation methods for models of spatial interaction.” J. Am. Stat. Assoc. 70 (1975): 120–126. [Google Scholar] [CrossRef]
- P. Burridge. “On the Cliff-Ord test for spatial autocorrelation.” J. R. Stat. Soc. B42 (1980): 107–108. [Google Scholar]
- A.D. Cliff, and J.K. Ord. Spatial Process, Models and Applications. London, UK: Pion, 1981. [Google Scholar]
- L. Anselin. “Estimation Methods for Spatial Autoregressive Structures: A Study in Spatial Econometrics.” PhD Thesis, Cornell University, Ithaca, NY, USA, 1980. [Google Scholar]
- L. Anselin. Spatial Econometrics: Methods and Models. Dordrecht, The Netherlands: Kluwer Academic Publishers, 1988. [Google Scholar]
- L. Anselin, and A.K. Bera. “Spatial dependence in linear regression models with an introduction to spatial econometrics.” In Handbook of Applied Economic Statistics. Edited by A. Ullah and E.A. David. Giles, NY, USA: Marcel Dekker, 1998. [Google Scholar]
- L. Anselin. “Spatial econometrics.” In A Companion to Theoretical Econometrics. Edited by B.H. Baltagi. Hoboken, NJ, USA: Blackwell Publishing, 2001. [Google Scholar]
- L. Anselin. “Spatial externalities, spatial multipliers, and spatial econometrics.” Int. Reg. Sci. Rev. 26 (2003): 153–166. [Google Scholar] [CrossRef]
- D. Das, H.H. Kelejian, and I.R. Prucha. “Finite sample properties of spatial autoregressive models with autoregressive disturbances.” Pap. Reg. Sci. 82 (2003): 1–26. [Google Scholar] [CrossRef]
- H.H. Kelejian, and I.R. Prucha. “A generalized spatial two-stage least squares procedure for estimating a spatial autoregressive model with autoregressive disturbance.” J. Real Estate Financ. Econ. 17 (1998): 99–121. [Google Scholar] [CrossRef]
- L.F. Lee, and X. Liu. “Efficient GMM estimation of high order spatial autoregressive models with autoregressive disturbances.” Econom. Theory 26 (2010): 187–230. [Google Scholar] [CrossRef]
- J. Pinkse. Asymptotic Properties of the Moran and Related Tests and a Test for Spatial Correlation in Probit Models. Vancouver, BC, Canada: Department of Economics, University of British Columbia, 1998. [Google Scholar]
- M.M. Fleming. “Techniques for estimating spatially dependent discrete choice models.” In Advances in Spatial Econometrics. Edited by L. Anselin, R.J.G.M. Florax and S.J. Rey. Berlin/Heidelberg, Germany: Springer, 2004. [Google Scholar]
- L.F. Lee, and J. Yu. “Some recent developments in spatial panel data models.” Reg. Sci. Urban Econ. 40 (2010): 255–271. [Google Scholar] [CrossRef]
- H.H. Kelejian, and D.P. Robinson. “A suggested method of estimation for spatial interdependent models with autocorrelated errors and an application to a county expenditure model.” Pap. Reg. Sci. 72 (1993): 297–312. [Google Scholar] [CrossRef]
- H.H. Kelejian, and I.R. Prucha. “A generalized moments estimator for the autoregressive parameter in a spatial model.” Int. Econ. Rev. 40 (1999): 509–533. [Google Scholar] [CrossRef]
- L.F. Lee. “The Ohio State University, Columbus, OH, USA. Generalised method of moments estimation of spatial autoregressive processes.” Unpublished manuscript. 2001. [Google Scholar]
- L.F. Lee. “GMM and 2SLS estimation of mixed regressive, spatial autoregressive models.” J. Econom. 137 (2007): 489–514. [Google Scholar] [CrossRef]
- B. Fingleton. “A generalized method of moments estimator for a spatial model with moving average errors, with application to real estate prices.” Empir. Econ. 33 (2008): 35–57. [Google Scholar] [CrossRef]
- L.F. Lee. “Best spatial two-stage least squares estimators for a spatial autoregressive models with autoregressive disturbances.” Econom. Rev. 22 (2003): 307–335. [Google Scholar] [CrossRef]
- H.H. Kelejian, and I.R. Prucha. “Instrumental variable estimation of a spatial autoregressive models with autoregressive disturbances: Large and small sample results.” In Spatial and Spatiotemporal Econometrics, Advances in Econometrics. Edited by J. LeSage and R.K. Pace. New York, NY, USA: Elsevier, 2004, Volume 18, pp. 163–198. [Google Scholar]
- L.F. Lee. “Consistency and efficiency of least squares estimation for mixed regressive spatial autoregressive models.” Econom. Theory 18 (2002): 252–277. [Google Scholar] [CrossRef]
- L.F. Lee. “Asymptotic distributions of quasi-maximum likelihood estimators for spatial autoregressive models.” Econometrica 72 (2004): 1899–1925. [Google Scholar] [CrossRef]
- Y. Bao, and A. Ullah. “Finite sample properties of maximum likelihood estimator in spatial models.” J. Econom. 137 (2007): 396–413. [Google Scholar] [CrossRef]
- Y. Bao. “Finite sample bias of QMLE in spatial autoregressive models.” Econom. Theory 29 (2013): 68–88. [Google Scholar] [CrossRef]
- Z.L. Yang. “A general method for third order bias and variance corrections on a non-linear estimator.” J. Econom. 186 (2015): 178–200. [Google Scholar] [CrossRef]
- B. Baltagi, and Z.L. Yang. “Standardized LM tests for spatial error dependence in linear or panel regressions.” Econom. J. 16 (2013): 103–134. [Google Scholar] [CrossRef]
- B. Baltagi, and Z.L. Yang. “Heteroskedasticity and non-normality robust LM tests of spatial dependence.” Reg. Sci. Urban Econ. 43 (2013): 725–739. [Google Scholar] [CrossRef]
- S.F. Liu, and Z.L. Yang. “Modified QML estimation of spatial autoregressive models with unknown heteroskedasticity and nonnormality.” Reg. Sci. Urban Econ. 52 (2015): 50–70. [Google Scholar] [CrossRef]
- F. Jin, and L.F. Lee. “Cox-type tests for competing spatial autoregressive models with spatial autoregressive disturbances.” Reg. Sci. Urban Econ. 43 (2013): 590–616. [Google Scholar] [CrossRef]
- F. Martellosio. “Power properties of invariant tests for spatial autocorrelation in linear regression.” Econom. Theory 26 (2010): 152–186. [Google Scholar] [CrossRef]
- J.R. Magnus. “Maximum likelihood estimation of the GLS model with unknown parameters in the disturbance covariance matrix.” J. Econom. 7 (1978): 281–312. [Google Scholar] [CrossRef]
- H.H. Kelejian, and I.R. Prucha. “Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances.” J. Econom. 157 (2010): 53–67. [Google Scholar] [CrossRef] [PubMed]
- J. LeSage, and R.K. Pace. Introduction to Spatial Econometrics. London, UK: CRC Press, Taylor & Francis Group, 2009. [Google Scholar]
- H. White. Estimation, Inference and Specification Analysis. New York, NY, USA: Cambridge University Press, 1994. [Google Scholar]
- H.H. Kelejian, and I.R. Prucha. “On the asymptotic distribution of the Moran I test statistic with applications.” J. Econom. 104 (2001): 219–257. [Google Scholar] [CrossRef]
- J.F. Kiviet. “On bias, inconsistency, and efficiency of various estimators in dynamic panel data models.” J. Econom. 68 (1995): 53–78. [Google Scholar] [CrossRef]
- J. Hahn, and G. Kuersteiner. “Asymptotically unbiased inference for a dynamic panel model with fixed effects when both n and T are large.” Econometrica 70 (2002): 1639–1657. [Google Scholar] [CrossRef]
- J. Hahn, and W. Newey. “Jackknife and analytical bias reduction for nonlinear panel models.” Econometrica 72 (2004): 1295–1319. [Google Scholar] [CrossRef]
- M.J.G. Bun, and M.A. Carree. “Bias-corrected estimation in dynamic panel data models.” J. Bus. Econ. Stat. 23 (2005): 200–210. [Google Scholar] [CrossRef]
- P. Rilstone, V.K. Srivastava, and A. Ullah. “The second-order bias and mean squared error of nonlinear estimators.” J. Econom. 75 (1996): 369–395. [Google Scholar] [CrossRef]
- B. Efron. “Bootstrap method: Another look at the jackknife.” Ann. Stat. 7 (1979): 1–26. [Google Scholar] [CrossRef]
- C.R. Rao. Linear Statistical Inference and Its Applications. New York, NY, USA: John Wiley and Sons, 1973. [Google Scholar]
- 2Here, the degree of spatial dependence refers to, e.g., the number of neighbors each spatial unit has or the connectivity in general. Jin and Lee [32] studied asymptotic properties of models with both SLD and SED for the purpose of constructing Cox-type tests, but did not study these issues. Further, it is important to know the differences between the SLD model and the SED model in terms of asymptotic and finite sample behaviors, as they may provide valuable guidance in the specification choice. See also Martellosio [33] for a related work.
- 3For this, it is necessary that , where are the eigenvalues of . If the eigenvalues of are all real, the parameter space can be a closed interval contained in , where and are, respectively, the minimum and maximum eigenvalues. If is row-normalized, then and and can be a closed interval contained in , where the lower bound can be below (Anselin [7]). In general, the eigenvalues of may not be all real, and in this case, Kelejian and Prucha [35] suggested the interval , where is the spectral radius of the weights matrix; LeSage and Pace [36] (p. 88–89) suggested interval , where is the most negative real eigenvalue of , as only the real eigenvalues can affect the singularity of .
- 4Whether to bootstrap the standardized QML residuals or the original QML residuals does not make a difference, as are invariant of . However, use of makes the theoretical discussion easier.
- 5A more natural parameterization for the SMA error model may be , under which P becomes a closed interval contained in , but the QMLE is now downward biased, and hence, when is negative and n is small, may hit the lower bound of , causing the numerical instability of .
- 6If s.t. P, then
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.F.; Yang, Z. Asymptotic Distribution and Finite Sample Bias Correction of QML Estimators for Spatial Error Dependence Model. Econometrics 2015, 3, 376-411. https://doi.org/10.3390/econometrics3020376
Liu SF, Yang Z. Asymptotic Distribution and Finite Sample Bias Correction of QML Estimators for Spatial Error Dependence Model. Econometrics. 2015; 3(2):376-411. https://doi.org/10.3390/econometrics3020376
Chicago/Turabian StyleLiu, Shew Fan, and Zhenlin Yang. 2015. "Asymptotic Distribution and Finite Sample Bias Correction of QML Estimators for Spatial Error Dependence Model" Econometrics 3, no. 2: 376-411. https://doi.org/10.3390/econometrics3020376
APA StyleLiu, S. F., & Yang, Z. (2015). Asymptotic Distribution and Finite Sample Bias Correction of QML Estimators for Spatial Error Dependence Model. Econometrics, 3(2), 376-411. https://doi.org/10.3390/econometrics3020376