A Note on Identification of Bivariate Copulas for Discrete Count Data
Abstract
:1. Introduction
2. Background on Bivariate Copulas
θ domain | Kendall’s τ | ||
Gaussian | |||
Clayton | |||
Gumbel |
3. Drawbacks of Copulas for Discrete Outcomes
4. “Ties” in Count Variables
- Step 1: Randomly draw simulated Poisson variates and with means and from the three aforementioned copulas, each with dependence set to , 0.50, or 0.75. The experiments consider sample sizes of and .
- Step 2: Estimate the copulas using the log likelihood function generated from Equation (2).
- Step 3: Replicate steps 1 and 2 1000 times, and report the mean and standard deviation of .
5. Identification Through Covariates
- Step 1: Randomly generate the explanatory variable x. In the discrete case, it assumes values and with equal probability, so that the mean is . For purposes of comparison, in the continuous case x is uniform , so that the mean is also . The values x are generated once and held fixed for each replication of the Monte Carlo experiment.
- Step 2: Randomly draw simulated Poisson variates and from the aforementioned copulas. Rather that setting the means of and directly as in the previous section, the means are and , with coefficients and specified so that and are the same as in Table 2. (Note: in this setup, it is not possible to generate a Poisson variable with mean smaller than 0.50 when x is a 0/1, which is why x is rescaled to be a variable, rather than the traditional 0/1.)
- Step 3: Estimate the copula using the log likelihood function generated from Equation (2).
- Replicate steps 2 and 3 1000 times, and report the mean and standard deviation of .
6. Discussion
Author Contributions
Conflicts of Interest
References
- H. Van Ophem. “A general method to estimate correlated discrete random variables.” Econom. Theory 15 (1999): 228–237. [Google Scholar] [CrossRef]
- A.C. Cameron, T. Li, P. Trivedi, and D. Zimmer. “Modeling the differences in counted outcomes using bivariate copula models with application to mismeasured counts.” Econom. J. 7 (2004): 566–584. [Google Scholar] [CrossRef]
- D. Zimmer, and P. Trivedi. “Using Trivariate Copulas to Model Sample Selection and Treatment Effects: Application to Family Health Care Demand.” J. Bus. Econ. Stat. 24 (2006): 63–76. [Google Scholar] [CrossRef]
- K. Bien, I. Nolte, and W. Pohlmeier. “An inflated multivariate integer count hurdle model: An application to bid and ask quote dynamics.” J. Appl. Econom. 26 (2011): 669–707. [Google Scholar] [CrossRef]
- R. Winkelmann. “Copula bivariate probit models: With an application to medical expenditures.” Health Econ. 21 (2012): 1444–1455. [Google Scholar] [CrossRef] [PubMed]
- A. Marshall. “Copulas, marginals, and joint distributions.” Lect. Notes Monogr. Ser. 28 (1996): 213–222. [Google Scholar]
- C. Genest, and J. Nešlehová. “A primer of copulas for count data.” Astin Bull. 37 (2007): 475–515. [Google Scholar] [CrossRef]
- H. Joe. Multivariate Models and Dependence Concepts. New York, NY, USA: Chapman & Hall, 1997. [Google Scholar]
- A. McNeil, R. Frey, and P. Embrechts. Quantitative Risk Management: Concepts, Techniques, and Tools. Princeton, NJ, USA: Princeton University Press, 2005. [Google Scholar]
- R.B. Nelsen. An Introduction to Copulas, 2nd ed. Berlin, Germany: Springer Verlag, 2006. [Google Scholar]
- P. Trivedi, and D. Zimmer. Copula Modeling: An Introduction for Practitioners. Delft, The Netherlands: Now Publishers Inc., 2007. [Google Scholar]
- A. Sklar. “Fonctions de répartition à n dimensions et leurs marges.” Publ. Inst. Stat. Univ. Paris 8 (1959): 229–231. [Google Scholar]
- H. Joe. “Aymptotic efficiency of the two-stage estimation method for copula-based models.” J. Multivar. Anal. 94 (2005): 401–419. [Google Scholar] [CrossRef]
- C. Genest, K. Ghoudi, and L.-P. Rivest. “A semiparametric estimation procedure of dependence parameters in multivariate families of distributions.” Biometrika 82 (1995): 543–552. [Google Scholar] [CrossRef]
- J. Shih, and T. Louis. “Inferences on the association parameter in copula models for bivariate survival data.” Biometrics 51 (1995): 1384–1399. [Google Scholar] [CrossRef] [PubMed]
- G. Kim, M. Silvapulle, and P. Silvapulle. “Comparison of semiparametric and parametric methods for estimating copulas.” Comput. Stat. Data Anal. 51 (2007): 2836–2850. [Google Scholar] [CrossRef]
- B. Schweizer, and A. Sklar. Probability Metric Spaces. New York, NY, USA: North-Holland, 1983. [Google Scholar]
- C. Genest, and A.-C. Favre. “Everything you always wanted to know about copula modeling but were afraid to ask.” J. Hydrol. Eng. 12 (2007): 347–368. [Google Scholar] [CrossRef]
- M. Smith, and M. Khaled. “Estimation of copula models with discrete margins via Bayesian data augmentation.” J. Am. Stat. Assoc. 107 (2012): 290–303. [Google Scholar] [CrossRef]
- M. Denuit, and P. Lambert. “Constraints on concordance measures in bivariate discrete data.” J. Multivar. Anal. 93 (2005): 40–57. [Google Scholar] [CrossRef]
- Y. Li, Y. Li, Y. Qin, and J. Yan. “Copula modeling for data with ties.” arXiv, 2016. [Google Scholar]
- R. Pappadà, F. Durante, and G. Salvadori. “Quantification of the environmental structural risk with spoiling ties: Is randomization worthwhile? ” Stoch. Environ. Res. Risk Assess., 2016. [Google Scholar] [CrossRef]
μ | |||||||||
---|---|---|---|---|---|---|---|---|---|
Gaussian | Clayton | Gumbel | Gaussian | Clayton | Gumbel | Gaussian | Clayton | Gumbel | |
0.5 | 0.92 | 0.92 | 0.92 | 0.91 | 0.91 | 0.90 | 0.88 | 0.89 | 0.87 |
0.6 | 0.82 | 0.82 | 0.82 | 0.81 | 0.81 | 0.80 | 0.78 | 0.79 | 0.77 |
0.7 | 0.74 | 0.74 | 0.74 | 0.73 | 0.73 | 0.72 | 0.70 | 0.70 | 0.69 |
0.8 | 0.68 | 0.68 | 0.68 | 0.66 | 0.66 | 0.66 | 0.63 | 0.64 | 0.62 |
0.9 | 0.63 | 0.62 | 0.62 | 0.61 | 0.61 | 0.61 | 0.58 | 0.58 | 0.57 |
1.0 | 0.58 | 0.58 | 0.58 | 0.57 | 0.57 | 0.56 | 0.53 | 0.53 | 0.52 |
1.1 | 0.55 | 0.54 | 0.54 | 0.53 | 0.53 | 0.53 | 0.50 | 0.49 | 0.49 |
1.2 | 0.51 | 0.51 | 0.51 | 0.50 | 0.50 | 0.50 | 0.46 | 0.46 | 0.46 |
1.3 | 0.49 | 0.49 | 0.49 | 0.47 | 0.47 | 0.47 | 0.44 | 0.43 | 0.42 |
1.4 | 0.46 | 0.46 | 0.46 | 0.45 | 0.45 | 0.45 | 0.42 | 0.41 | 0.41 |
1.5 | 0.45 | 0.44 | 0.44 | 0.43 | 0.43 | 0.43 | 0.40 | 0.39 | 0.39 |
N = 100 | N = 2500 | |||||
---|---|---|---|---|---|---|
Mean of | St. dev. of | Mean of | St. dev. of | |||
No covariate | ||||||
Experiment 1 | 0.15 | 0.20 | 0.844 | 0.048 | 0.844 | 0.009 |
Experiment 2 | 0.45 | 0.50 | 0.604 | 0.079 | 0.604 | 0.016 |
Experiment 3 | 0.75 | 0.80 | 0.436 | 0.099 | 0.434 | 0.021 |
Experiment 4 | 1.05 | 1.10 | 0.370 | 0.095 | 0.372 | 0.023 |
Discrete covariate | ||||||
Experiment 5 | 0.15 | 0.20 | 0.382 | 0.186 | 0.378 | 0.037 |
Experiment 6 | 0.45 | 0.50 | 0.378 | 0.131 | 0.379 | 0.026 |
Experiment 7 | 0.75 | 0.80 | 0.385 | 0.111 | 0.380 | 0.027 |
Experiment 8 | 1.05 | 1.10 | 0.376 | 0.097 | 0.380 | 0.020 |
Continuous covariate | ||||||
Experiment 9 | 0.15 | 0.20 | 0.390 | 0.227 | 0.380 | 0.039 |
Experiment 10 | 0.45 | 0.50 | 0.379 | 0.131 | 0.380 | 0.025 |
Experiment 11 | 0.75 | 0.80 | 0.384 | 0.110 | 0.380 | 0.025 |
Experiment 12 | 1.05 | 1.10 | 0.376 | 0.097 | 0.380 | 0.029 |
N = 100 | N = 2500 | |||||
---|---|---|---|---|---|---|
Mean of | St. dev. of | Mean of | St. dev. of | |||
No covariate | ||||||
Experiment 1 | 0.15 | 0.20 | 0.918 | 0.036 | 0.914 | 0.008 |
Experiment 2 | 0.45 | 0.50 | 0.805 | 0.048 | 0.802 | 0.010 |
Experiment 3 | 0.75 | 0.80 | 0.734 | 0.058 | 0.735 | 0.012 |
Experiment 4 | 1.05 | 1.10 | 0.704 | 0.057 | 0.705 | 0.011 |
Discrete covariate | ||||||
Experiment 5 | 0.15 | 0.20 | 0.705 | 0.123 | 0.711 | 0.023 |
Experiment 6 | 0.45 | 0.50 | 0.711 | 0.079 | 0.711 | 0.015 |
Experiment 7 | 0.75 | 0.80 | 0.713 | 0.064 | 0.711 | 0.012 |
Experiment 8 | 1.05 | 1.10 | 0.713 | 0.058 | 0.712 | 0.011 |
Continuous covariate | ||||||
Experiment 9 | 0.15 | 0.20 | 0.711 | 0.128 | 0.710 | 0.024 |
Experiment 10 | 0.45 | 0.50 | 0.715 | 0.076 | 0.711 | 0.015 |
Experiment 11 | 0.75 | 0.80 | 0.715 | 0.063 | 0.710 | 0.013 |
Experiment 12 | 1.05 | 1.10 | 0.712 | 0.057 | 0.711 | 0.011 |
N = 100 | N = 2500 | |||||
---|---|---|---|---|---|---|
Mean of | St. dev. of | Mean of | St. dev. of | |||
No covariate | ||||||
Experiment 1 | 0.15 | 0.20 | 0.975 | 0.014 | 0.977 | 0.003 |
Experiment 2 | 0.45 | 0.50 | 0.942 | 0.022 | 0.944 | 0.005 |
Experiment 3 | 0.75 | 0.80 | 0.925 | 0.023 | 0.926 | 0.005 |
Experiment 4 | 1.05 | 1.10 | 0.918 | 0.024 | 0.917 | 0.005 |
Discrete covariate | ||||||
Experiment 5 | 0.15 | 0.20 | 0.911 | 0.053 | 0.921 | 0.010 |
Experiment 6 | 0.45 | 0.50 | 0.921 | 0.032 | 0.921 | 0.006 |
Experiment 7 | 0.75 | 0.80 | 0.921 | 0.027 | 0.920 | 0.005 |
Experiment 8 | 1.05 | 1.10 | 0.924 | 0.023 | 0.920 | 0.004 |
Continuous covariate | ||||||
Experiment 9 | 0.15 | 0.20 | 0.913 | 0.057 | 0.921 | 0.010 |
Experiment 10 | 0.45 | 0.50 | 0.921 | 0.031 | 0.921 | 0.006 |
Experiment 11 | 0.75 | 0.80 | 0.922 | 0.026 | 0.920 | 0.005 |
Experiment 12 | 1.05 | 1.10 | 0.922 | 0.023 | 0.920 | 0.004 |
N = 100 | N = 2500 | |||||
---|---|---|---|---|---|---|
Mean of | St. dev. of | Mean of | St. dev. of | |||
No covariate | ||||||
Experiment 1 | 0.15 | 0.20 | 2.76 | 0.596 | 2.67 | 0.110 |
Experiment 2 | 0.45 | 0.50 | 1.05 | 0.331 | 1.00 | 0.060 |
Experiment 3 | 0.75 | 0.80 | 0.676 | 0.282 | 0.650 | 0.054 |
Experiment 4 | 1.05 | 1.10 | 0.737 | 0.299 | 0.709 | 0.054 |
Discrete covariate | ||||||
Experiment 5 | 0.15 | 0.20 | 1.04 | 0.981 | 0.675 | 0.252 |
Experiment 6 | 0.45 | 0.50 | 0.758 | 0.421 | 0.668 | 0.083 |
Experiment 7 | 0.75 | 0.80 | 0.713 | 0.322 | 0.677 | 0.063 |
Experiment 8 | 1.05 | 1.10 | 0.716 | 0.279 | 0.671 | 0.053 |
Continuous covariate | ||||||
Experiment 9 | 0.15 | 0.20 | 1.24 | 1.18 | 0.675 | 0.290 |
Experiment 10 | 0.45 | 0.50 | 0.752 | 0.435 | 0.677 | 0.089 |
Experiment 11 | 0.75 | 0.80 | 0.719 | 0.318 | 0.670 | 0.060 |
Experiment 12 | 1.05 | 1.10 | 0.714 | 0.296 | 0.672 | 0.053 |
N = 100 | N = 2500 | |||||
---|---|---|---|---|---|---|
Mean of | St. dev. of | Mean of | St. dev. of | |||
No covariate | ||||||
Experiment 1 | 0.15 | 0.20 | 3.35 | 0.834 | 3.18 | 0.136 |
Experiment 2 | 0.45 | 0.50 | 1.92 | 0.492 | 1.88 | 0.092 |
Experiment 3 | 0.75 | 0.80 | 1.86 | 0.501 | 1.78 | 0.089 |
Experiment 4 | 1.05 | 1.10 | 2.15 | 0.514 | 2.10 | 0.095 |
Discrete covariate | ||||||
Experiment 5 | 0.15 | 0.20 | 2.34 | 1.55 | 2.00 | 0.269 |
Experiment 6 | 0.45 | 0.50 | 2.11 | 0.763 | 2.00 | 0.150 |
Experiment 7 | 0.75 | 0.80 | 2.14 | 0.608 | 2.01 | 0.103 |
Experiment 8 | 1.05 | 1.10 | 2.11 | 0.516 | 2.01 | 0.093 |
Continuous covariate | ||||||
Experiment 9 | 0.15 | 0.20 | 2.48 | 1.86 | 1.97 | 0.398 |
Experiment 10 | 0.45 | 0.50 | 2.11 | 0.726 | 2.01 | 0.136 |
Experiment 11 | 0.75 | 0.80 | 2.08 | 0.593 | 2.01 | 0.114 |
Experiment 12 | 1.05 | 1.10 | 2.10 | 0.509 | 2.01 | 0.095 |
N = 100 | N = 2500 | |||||
---|---|---|---|---|---|---|
Mean of | St. dev. of | Mean of | St. dev. of | |||
No covariate | ||||||
Experiment 1 | 0.15 | 0.20 | 5.15 | 1.71 | 4.60 | 0.221 |
Experiment 2 | 0.45 | 0.50 | 4.52 | 1.11 | 4.27 | 0.197 |
Experiment 3 | 0.75 | 0.80 | 5.20 | 1.26 | 5.35 | 0.217 |
Experiment 4 | 1.05 | 1.10 | 6.63 | 1.52 | 6.35 | 0.254 |
Discrete covariate | ||||||
Experiment 5 | 0.15 | 0.20 | 7.38 | 4.96 | 6.00 | 0.689 |
Experiment 6 | 0.45 | 0.50 | 6.59 | 2.10 | 6.03 | 0.332 |
Experiment 7 | 0.75 | 0.80 | 6.58 | 1.88 | 6.05 | 0.277 |
Experiment 8 | 1.05 | 1.10 | 6.48 | 1.61 | 6.07 | 0.258 |
Continuous covariate | ||||||
Experiment 9 | 0.15 | 0.20 | 7.53 | 7.53 | 5.97 | 0.810 |
Experiment 10 | 0.45 | 0.50 | 6.58 | 1.98 | 6.03 | 0.338 |
Experiment 11 | 0.75 | 0.80 | 6.46 | 1.73 | 6.03 | 0.276 |
Experiment 12 | 1.05 | 1.10 | 6.34 | 1.56 | 6.05 | 0.279 |
N = 100 | N = 2500 | |||||
---|---|---|---|---|---|---|
Mean of | St. dev. of | Mean of | St. dev. of | |||
No covariate | ||||||
Experiment 1 | 0.15 | 0.20 | 3.58 | 0.789 | 3.39 | 0.120 |
Experiment 2 | 0.45 | 0.50 | 1.88 | 0.222 | 1.85 | 0.041 |
Experiment 3 | 0.75 | 0.80 | 1.47 | 0.150 | 1.46 | 0.028 |
Experiment 4 | 1.05 | 1.10 | 1.32 | 0.113 | 1.31 | 0.021 |
Discrete covariate | ||||||
Experiment 5 | 0.15 | 0.20 | 1.40 | 0.238 | 1.33 | 0.038 |
Experiment 6 | 0.45 | 0.50 | 1.35 | 0.146 | 1.33 | 0.028 |
Experiment 7 | 0.75 | 0.80 | 1.35 | 0.128 | 1.33 | 0.025 |
Experiment 8 | 1.05 | 1.10 | 1.36 | 0.120 | 1.33 | 0.024 |
Continuous covariate | ||||||
Experiment 9 | 0.15 | 0.20 | 1.43 | 0.230 | 1.33 | 0.040 |
Experiment 10 | 0.45 | 0.50 | 1.35 | 0.149 | 1.33 | 0.027 |
Experiment 11 | 0.75 | 0.80 | 1.36 | 0.135 | 1.33 | 0.025 |
Experiment 12 | 1.05 | 1.10 | 1.35 | 0.123 | 1.33 | 0.024 |
N = 100 | N = 2500 | |||||
---|---|---|---|---|---|---|
Mean of | St. dev. of | Mean of | St. dev. of | |||
No covariate | ||||||
Experiment 1 | 0.15 | 0.20 | 5.98 | 1.86 | 5.46 | 0.379 |
Experiment 2 | 0.45 | 0.50 | 2.92 | 0.445 | 2.85 | 0.086 |
Experiment 3 | 0.75 | 0.80 | 2.28 | 0.300 | 2.22 | 0.053 |
Experiment 4 | 1.05 | 1.10 | 1.97 | 0.204 | 1.95 | 0.040 |
Discrete covariate | ||||||
Experiment 5 | 0.15 | 0.20 | 2.21 | 0.620 | 2.01 | 0.088 |
Experiment 6 | 0.45 | 0.50 | 2.06 | 0.327 | 2.01 | 0.057 |
Experiment 7 | 0.75 | 0.80 | 2.04 | 0.267 | 2.00 | 0.048 |
Experiment 8 | 1.05 | 1.10 | 2.05 | 0.236 | 2.01 | 0.044 |
Continuous covariate | ||||||
Experiment 9 | 0.15 | 0.20 | 2.30 | 1.51 | 2.02 | 0.092 |
Experiment 10 | 0.45 | 0.50 | 2.07 | 0.310 | 2.01 | 0.059 |
Experiment 11 | 0.75 | 0.80 | 2.05 | 0.261 | 2.00 | 0.050 |
Experiment 12 | 1.05 | 1.10 | 2.05 | 0.230 | 2.01 | 0.044 |
N = 100 | N = 2500 | |||||
---|---|---|---|---|---|---|
Mean of | St. dev. of | Mean of | St. dev. of | |||
No covariate | ||||||
Experiment 1 | 0.15 | 0.20 | 11.7 | 5.30 | 10.2 | 0.772 |
Experiment 2 | 0.45 | 0.50 | 6.10 | 1.58 | 5.79 | 0.274 |
Experiment 3 | 0.75 | 0.80 | 4.66 | 0.988 | 4.45 | 0.167 |
Experiment 4 | 1.05 | 1.10 | 3.98 | 0.687 | 3.83 | 0.120 |
Discrete covariate | ||||||
Experiment 5 | 0.15 | 0.20 | 52.6 | 79.7 | 4.05 | 0.340 |
Experiment 6 | 0.45 | 0.50 | 6.34 | 17.9 | 4.03 | 0.200 |
Experiment 7 | 0.75 | 0.80 | 4.32 | 1.01 | 4.02 | 0.159 |
Experiment 8 | 1.05 | 1.10 | 4.19 | 0.794 | 4.02 | 0.133 |
Continuous covariate | ||||||
Experiment 9 | 0.15 | 0.20 | 73.3 | 90.3 | 4.05 | 0.349 |
Experiment 10 | 0.45 | 0.50 | 5.62 | 14.9 | 4.03 | 0.189 |
Experiment 11 | 0.75 | 0.80 | 4.24 | 0.923 | 4.02 | 0.154 |
Experiment 12 | 1.05 | 1.10 | 4.19 | 0.780 | 4.02 | 0.133 |
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trivedi, P.; Zimmer, D. A Note on Identification of Bivariate Copulas for Discrete Count Data. Econometrics 2017, 5, 10. https://doi.org/10.3390/econometrics5010010
Trivedi P, Zimmer D. A Note on Identification of Bivariate Copulas for Discrete Count Data. Econometrics. 2017; 5(1):10. https://doi.org/10.3390/econometrics5010010
Chicago/Turabian StyleTrivedi, Pravin, and David Zimmer. 2017. "A Note on Identification of Bivariate Copulas for Discrete Count Data" Econometrics 5, no. 1: 10. https://doi.org/10.3390/econometrics5010010
APA StyleTrivedi, P., & Zimmer, D. (2017). A Note on Identification of Bivariate Copulas for Discrete Count Data. Econometrics, 5(1), 10. https://doi.org/10.3390/econometrics5010010