Covariance Prediction in Large Portfolio Allocation
Abstract
:1. Introduction
2. The Forecast Methods
2.1. The RiskMetrics Methods
2.2. The CCC Model
2.3. The DCC Model
2.4. The DECO Model
2.5. The OGARCH Model
2.6. The Generalised Principal Volatility Components Model
2.7. The Robust GPVC Model
2.8. Linear and Non-Linear Shrinkage
3. Empirical Application
3.1. Data and Methods
- AV: equal to , where is the average of the elements of .
- SD: equal to , where is the standard deviation of the elements of .
- IR: AV/SD.
- SR: AV/, where is the mean of , with if less than the minimal acceptable return, which is taken to zero, and zero otherwise.
- TO: where is the portfolio weight at time t for the j-th asset, and k is the number of the out-of-sample portfolio returns.
3.2. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Estimation Methods
- CCC: Estimated by quasi-maximum likelihood.
- LS-CCC: Estimated as in CCC, but with the unconditional covariance matrix (Equation (4)) estimated using linear shrinkage.
- NLS-CCC: Estimated as in LS-CCC, but replacing linear by the non-linear shrinkage.
- CCC-LS: Estimated as in CCC, with the application of the linear shrinkage to the one-step-ahead conditional covariance matrix .
- CCC-NLS: Estimated as in CCC-LS, but replacing linear by non-linear shrinkage.
- LS-CCC-LS: Estimated as in LS-CCC, with the application of non-linear shrinkage to the one-step-ahead conditional covariance matrix .
- NLS-CCC-NLS: Estimated as in NLS-CCC, with the application of non-linear shrinkage to the one-step-ahead conditional covariance matrix .
- DCC: Estimated by composite likelihood (Pakel et al. 2014) using consecutive pairs.
- LS-DCC: Estimated as in DCC, but with the unconditional covariance matrix of the devolatilised returns ( in Equation (7)) estimated using linear shrinkage.
- NLS-DCC: Estimated as in LS-DCC, but replacing linear by non-linear shrinkage.
- DCC-LS: Estimated as in DCC, with the application of linear shrinkage to the one-step-ahead conditional covariance matrix .
- DCC-NLS: Estimated as in DCC-LS, but replacing linear by non-linear shrinkage.
- LS-DCC-LS: Estimated as in LS-DCC, with the application of linear shrinkage to the one-step-ahead conditional covariance matrix .
- NLS-DCC-NLS: Estimated as in NLS-DCC, with the application of non-linear shrinkage to the one-step-ahead conditional covariance matrix .
- DECO: Estimated using a single block.
- LS-DECO: Estimated as in DECO, but the unconditional covariance matrix of the devolatilised returns is estimated using linear shrinkage.
- NLS-DECO: Estimated as in LS-DECO, but replacing linear by non-linear shrinkage.
- DECO-NLS: Estimated as in DECO-LS, but non-linear shrinkage is applied to the one-step-ahead conditional covariance matrix .
- NLS-DECO-NLS: Estimated as in NLS-DECO model, but with non-linear shrinkage applied to the and linear shrinkage towards the equicorrelation matrix
- RM1994: RM1994 method.
- RM1994-LS: Estimated as in RM1994 with linear shrinkage applied to the one-step-ahead conditional covariance matrix .
- RM1994-NLS: Estimated as in RM1994-LS but replacing linear by non-linear shrinkage.
- RM20066: RM2006 method (Zumbach 2007).
- RM2006-LS: Estimated as in RM2006 with linear shrinkage applied to the one-step-ahead conditional covariance matrix .
- RM2006-NLS: Estimated as in RM2006-LS but replacing linear by non-linear shrinkage.
- OGARCH: The OGARCH model considers components.
- LS-OGARCH: Estimated as in OGARCH, but the unconditional covariance matrix used in the spectral decomposition is estimated using linear shrinkage.
- NLS-OGARCH: Estimated as in LS-OGARCH, but replacing linear by non-linear shrinkage.
- OGARCH-LS: Estimated as in OGARCH with the linear shrinkage applied to the one-step-ahead conditional covariance matrix
- OGARCH-NLS: Estimated as in OGARCH-LS, but replacing linear by non-linear shrinkage.
- LS-OGARCH-LS: Estimated as in LS-OGARCH, but linear shrinkage is applied to the predicted one-step-ahead conditional covariance matrix
- NLS-OGARCH-NLS: Estimated as in NLS-OGARCH, but non-linear shrinkage is applied to the predicted one-step-ahead conditional covariance matrix
- LS-GPVC: Estimated as in the GPVC model with the unconditional covariance matrix in Equation (17) estimated using linear shrinkage.
- NLS-GPVC: Estimated as in LS-GPVC, but replacing linear by non-linear shrinkage.
- GPVC-LS: Estimated as in GPVC with linear shrinkage applied to the one-step-ahead conditional covariance matrix .
- GPVC-NLS: Estimated as in GPVC-LS, but replacing linear by non-linear shrinkage.
- LS-GPVC-LS: Estimated as in LS-GPVC with linear shrinkage applied to the predicted one-step-ahead conditional covariance matrix
- NLS-GPVC-NLS: Estimated as in NLS-GPVC with non-linear shrinkage applied to the predicted one-step-ahead conditional covariance matrix
- RPVC: The RPVC procedure considers volatility components, as explained later. We use as in Li et al. (2016) and c as in Trucíos et al. (2019).
- LS-RPVC: Estimated as in RPVC, but linear shrinkage is applied to the robust unconditional covariance matrix used in Equation (18).
- NLS-RPVC: Estimated as in LS-RPVC, but replacing linear by non-linear shrinkage.
- RPVC-LS: Estimated as in RPVC with linear shrinkage applied to the one-step-ahead conditional covariance matrix .
- RPVC-NLS: Estimated as in RPVC-LS, but replacing linear by non-linear shrinkage.
- LS-RPVC-LS: Estimated as in LS-RPVC with the linear shrinkage applied to the predicted one-step-ahead conditional covariance matrix
- NLS-RPVC-NLS: Estimated as in NLS-RPVC with non-linear shrinkage applied to the predicted one-step-ahead conditional covariance matrix
References
- Ahn, Seung C, and Alex R. Horenstein. 2013. Eigenvalue ratio test for the number of factors. Econometrica 81: 1203–27. [Google Scholar]
- Alexander, Carol. 2002. Principal component models for generating large GARCH covariance matrices. Economic Notes: Review of Banking, Finance and Monetary Economics 31: 337–59. [Google Scholar] [CrossRef]
- Alexander, Carol O., and Aubrey Muyeke Chibumba. 1996. Multivariate Orthogonal Factor GARCH. Sussex: University of Sussex Discussion Papers in Mathematics. [Google Scholar]
- Ardia, David, Kris Boudt, and Jean-Philippe Gagnon-Fleury. 2018. RiskPortfolios: Computation of Risk-Based Portfolios, R package version 2.1.2; Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2911021 (accessed on 28 June 2018).
- Bai, Jushan, and Serena Ng. 2002. Determining the number of factors in approximate factor models. Econometrica 70: 191–221. [Google Scholar] [CrossRef]
- Bauwens, Luc, Sébastien Laurent, and Jeroen V.K. Rombouts. 2006. Multivariate GARCH models: A survey. Journal of Applied Econometrics 21: 79–109. [Google Scholar] [CrossRef]
- Becker, Ralf, Adam E. Clements, Mark B. Doolan, and A. Stan Hurn. 2015. Selecting volatility forecasting models for portfolio allocation purposes. International Journal of Forecasting 31: 849–61. [Google Scholar] [CrossRef]
- Bollerslev, Tim. 1990. Modelling the coherence in short-run nominal exchange rates: A multivariate generalized ARCH model. Review of Economics and Statistics 72: 498–505. [Google Scholar] [CrossRef]
- Boudt, Kris, Jon Danielsson, and Sébastien Laurent. 2013. Robust forecasting of dynamic conditional correlation GARCH models. International Journal of Forecasting 29: 244–57. [Google Scholar] [CrossRef]
- Caporin, Massimiliano, and Michael McAleer. 2014. Robust ranking of multivariate GARCH models by problem dimension. Computational Statistics & Data Analysis 76: 172–85. [Google Scholar]
- Caporin, Massimiliano, and Paolo Paruolo. 2015. Proximity-structured multivariate volatility models. Econometric Reviews 34: 559–93. [Google Scholar] [CrossRef]
- Clarke, Roger, Harindra De Silva, and Steven Thorley. 2011. Minimum-variance portfolio composition. Journal of Portfolio Management 37: 31. [Google Scholar] [CrossRef]
- Clarke, Roger G., Harindra De Silva, and Steven Thorley. 2006. Minimum-variance portfolios in the US equity market. The Journal of Portfolio Management 33: 10–24. [Google Scholar] [CrossRef]
- Creal, Drew, Siem Jan Koopman, and André Lucas. 2011. A dynamic multivariate heavy-tailed model for time-varying volatilities and correlations. Journal of Business & Economic Statistics 29: 552–563. [Google Scholar]
- de Almeida, Daniel, Luiz K. Hotta, and Esther Ruiz. 2018. MGARCH models: Trade-off between feasibility and flexibility. International Journal of Forecasting 34, 1: 45–63. [Google Scholar] [CrossRef]
- DeMiguel, Victor, Lorenzo Garlappi, and Raman Uppal. 2009. Optimal versus naive diversification: How inefficient is the 1/n portfolio strategy? Review of Financial Studies 22: 1915–53. [Google Scholar] [CrossRef]
- Eddelbuettel, Dirk, and Romain François. 2011. Rcpp: Seamless R and C++ integration. Journal of Statistical Software 40: 1–18. [Google Scholar] [CrossRef]
- Engle, Robert. 2002. Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional heteroskedasticity models. Journal of Business & Economic Statistics 20: 339–50. [Google Scholar]
- Engle, Robert. 2009. Anticipating Correlations: A New Paradigm for Risk Management. Princeton: Princeton University Press. [Google Scholar]
- Engle, Robert, and Bryan Kelly. 2012. Dynamic equicorrelation. Journal of Business & Economic Statistics 30: 212–28. [Google Scholar]
- Engle, Robert F., Olivier Ledoit, and Michael Wolf. 2017. Large dynamic covariance matrices. Jounal of Business and Economic Statistics. [Google Scholar] [CrossRef]
- Frahm, Gabriel. 2010. Linear statistical inference for global and local minimum variance portfolios. Statistical Papers 51: 789–812. [Google Scholar] [CrossRef]
- Gambacciani, Marco, and Marc S. Paolella. 2017. Robust normal mixtures for financial portfolio allocation. Econometrics and Statistics 3: 91–111. [Google Scholar] [CrossRef]
- Ghalanos, Alexios. 2017. Rugarch: Univariate GARCH Models, R package version 1.3-8; Available online: https://cran.r-project.org/web/packages/rugarch/ (accessed on 15 October 2017).
- Glosten, Lawrence R., Ravi Jagannathan, and David E. Runkle. 1993. On the relation between the expected value and the volatility of the nominal excess return on stocks. The Journal of Finance 48: 1779–801. [Google Scholar] [CrossRef]
- Guttman, Louis. 1954. Some necessary conditions for common factor analysis. Psychometrika 19: 149–61. [Google Scholar] [CrossRef]
- Hafner, Christian M, and Olga Reznikova. 2012. On the estimation of dynamic conditional correlation models. Computational Statistics & Data Analysis 56: 3533–3545. [Google Scholar]
- Hlouskova, Jaroslava, Kurt Schmidheiny, and Martin Wagner. 2009. Multistage predictions for multivariate GARCH models: Closed form solution and the value for portfolio management. Journal of Empirical Finance 16: 330–6. [Google Scholar] [CrossRef]
- Hu, Yu-Pin, and Ruey S. Tsay. 2014. Principal volatility component analysis. Journal of Business & Economic Statistics 32: 153–164. [Google Scholar]
- Hubert, Mia, Peter J. Rousseeuw, and Tim Verdonck. 2012. A deterministic algorithm for robust location and scatter. Journal of Computational and Graphical Statistics 21: 618–37. [Google Scholar] [CrossRef]
- Jagannathan, Ravi, and Tongshu Ma. 2003. Risk reduction in large portfolios: Why imposing the wrong constraints helps. The Journal of Finance 58: 1651–84. [Google Scholar] [CrossRef]
- Kirby, Chris, and Barbara Ostdiek. 2012. It’s all in the timing: simple active portfolio strategies that outperform naive diversification. Journal of Financial and Quantitative Analysis 47: 437–67. [Google Scholar] [CrossRef]
- Lam, Clifford, and Qiwei Yao. 2012. Factor modeling for high-dimensional time series: Inference for the number of factors. The Annals of Statistics 40: 694–726. [Google Scholar] [CrossRef]
- Laurent, Sébastien, Christelle Lecourt, and Franz C. Palm. 2016. Testing for jumps in conditionally Gaussian ARMA–GARCH models, a robust approach. Computational Statistics & Data Analysis 100: 383–400. [Google Scholar]
- Laurent, Sébastien, Jeroen V. K. Rombouts, and Francesco Violante. 2012. On the forecasting accuracy of multivariate garch models. Journal of Applied Econometrics 27: 934–55. [Google Scholar] [CrossRef]
- Ledoit, Olivier, and Michael Wolf. 2004a. Honey, I shrunk the sample covariance matrix. The Journal of Portfolio Management 30: 110–9. [Google Scholar] [CrossRef]
- Ledoit, Olivier, and Michael Wolf. 2004b. A well-conditioned estimator for large-dimensional covariance matrices. Journal of Multivariate Analysis 88: 365–411. [Google Scholar] [CrossRef]
- Ledoit, Olivier, and Michael Wolf. 2012. Nonlinear shrinkage estimation of large-dimensional covariance matrices. The Annals of Statistics 40: 1024–60. [Google Scholar] [CrossRef]
- Ledoit, Olivier, and Michael Wolf. 2017. Numerical implementation of the quest function. Computational Statistics & Data Analysis 115: 199–223. [Google Scholar]
- Li, Weiming, Jing Gao, Kunpeng Li, and Qiwei Yao. 2016. Modeling multivariate volatilities via latent common factors. Journal of Business & Economic Statistics 34: 564–73. [Google Scholar]
- Moura, Guilherme Valle, and Andre A. P Santos. 2018. Forecasting Large Stochastic Covariance Matrices. Working Paper. Available online: https://ssrn.com/abstract=3222808 (accessed on 15 September 2018).
- Nakagawa, Kei, Mitsuyoshi Imamura, and Kenichi Yoshida. 2018. Risk-based portfolios with large dynamic covariance matrices. International Journal of Financial Studies 6: 52. [Google Scholar] [CrossRef]
- Olivares-Nadal, Alba V., and Victor DeMiguel. 2018. A robust perspective on transaction costs in portfolio optimization. Operations Research 66: 733–9. [Google Scholar] [CrossRef]
- Pakel, Cavit, Neil Shephard, Kevin Sheppard, and Robert Engle. 2017. Fitting Vast Dimensional Time-Varying Covariance Models. NYU Working Paper No. FIN-08-009. Available online: https://ssrn.com/abstract=1354497 (accessed on 3 March 2018).
- R Core Team. 2017. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. [Google Scholar]
- Ramprasad, Pratik. 2016. nlshrink: Non-Linear Shrinkage Estimation of Population Eigenvalues and Covariance Matrices, R package version 1.0.1; Available online: https://cran.r-project.org/web/packages/nlshrink/ (accessed on 27 March 2018).
- Rousseeuw, Peter J. 1984. Least median of squares regression. Journal of the American Statistical Association 79: 871–880. [Google Scholar] [CrossRef]
- Santos, André Alves Portela, and Alexandre R. Ferreira. 2017. On the choice of covariance specifications for portfolio selection problems. Brazilian Review of Econometrics 37: 89–122. [Google Scholar] [CrossRef]
- Sortino, Frank A., and Robert van der Meer. 1991. Downside risk. Journal of Portfolio Management 17: 27–31. [Google Scholar] [CrossRef]
- Trucios, Carlos. 2017. RM2006: RiskMetricsss 2006 Methodology, R package version 0.1.0; Available online: https://cran.r-project.org/web/packages/RM2006/ (accessed on 9 May 2018).
- Trucíos, Carlos, Luiz K. Hotta, and Pedro L. Valls Pereira. 2019. On the robustness of the principal volatility components. Journal of Empirical Finance 52: 201–219. [Google Scholar] [CrossRef]
- Trucíos, Carlos, Luiz K. Hotta, and Esther Ruiz. 2018. Robust bootstrap densities for dynamic conditional correlations: Implications for portfolio selection and value-at-risk. Journal of Statistical Computation and Simulation 88: 1976–2000. [Google Scholar] [CrossRef]
- Van der Weide, Roy. 2002. GO-GARCH: A multivariate generalized orthogonal GARCH model. Journal of Applied Econometrics 17: 549–64. [Google Scholar] [CrossRef]
- Wang, Naisyin, Adrian Raftery, and Chris Fraley. 2017. covRobust: Robust Covariance Estimation via Nearest Neighbor Cleaning, R package version 1.1-3; Available online: https://cran.r-project.org/web/packages/covRobust/ (accessed on 27 March 2018).
- Wied, Dominik, Daniel Ziggel, and Tobias Berens. 2013. On the application of new tests for structural changes on global minimum-variance portfolios. Statistical Papers 54: 955–75. [Google Scholar] [CrossRef]
- Zumbach, Gilles O. 2007. A Gentle Introduction to the RM2006 Methodology. Available online: https://ssrn.com/abstract=1420183 (accessed on 12 March 2018).
1 | See Wied et al. (2013) for a test for the presence of structural breaks in minimum variance portfolios |
2 | From now on we just call the log-likelihood likelihood. |
3 | |
4 | The acronyms are described in the Appendix A. |
5 | Available at www.econ.uzh.ch/en/people/faculty/wolf/publications. |
6 |
AV | SD | IR | SR | TO | AV | AV | |
---|---|---|---|---|---|---|---|
1/N | 8.302 | 20.058 (47) | 0.414 | 0.570 | - | - | - |
CCC | 7.706 | 11.839 (12) | 0.651 | 0.890 | 0.297 | 7.509 | 7.279 |
CCC LS | 7.004 | 11.881 (14) | 0.590 | 0.807 | 0.307 | 6.815 | 6.578 |
CCC NLS | 7.876 | 11.932 (17) | 0.660 | 0.905 | 0.277 | 7.685 | 7.470 |
LS CCC | 7.506 | 11.816 (11) | 0.635 | 0.868 | 0.302 | 7.311 | 7.078 |
NLS CCC | 7.345 | 11.809 (10) | 0.622 | 0.848 | 0.298 | 7.153 | 6.923 |
LS CCC LS | 6.628 | 11.918 (16) | 0.556 | 0.759 | 0.305 | 6.439 | 6.205 |
NLS CCC NLS | 7.522 | 11.910 (15) | 0.632 | 0.865 | 0.303 | 7.327 | 7.091 |
DCC | 7.737 | 11.613 (2) | 0.666 | 0.908 | 0.308 | 7.532 | 7.296 |
DCC LS | 6.941 | 11.689 (5) | 0.594 | 0.810 | 0.314 | 6.749 | 6.508 |
DCC NLS | 7.711 | 11.695 (6) | 0.659 | 0.905 | 0.285 | 7.513 | 7.292 |
LS DCC | 7.707 | 11.613 (1) | 0.664 | 0.904 | 0.308 | 7.502 | 7.266 |
NLS DCC | 7.629 | 11.616 (3) | 0.657 | 0.894 | 0.307 | 7.424 | 7.188 |
LS DCC LS | 6.907 | 11.688 (4) | 0.591 | 0.806 | 0.314 | 6.715 | 6.474 |
NLS DCC NLS | 7.645 | 11.699 (7) | 0.653 | 0.896 | 0.283 | 7.447 | 7.227 |
RM2006 | 8.649 | 11.809 (9) | 0.732 | 0.995 | 0.271 | 8.446 | 8.234 |
RM2006 LS | 8.746 | 11.724 (8) | 0.746 | 1.017 | 0.282 | 8.564 | 8.343 |
RM2006 NLS | 8.734 | 11.865 (13) | 0.736 | 1.011 | 0.268 | 8.537 | 8.327 |
RM1994 | 8.502 | 12.220 (22) | 0.696 | 0.947 | 0.283 | 8.289 | 8.069 |
RM1994 LS | 8.391 | 12.012 (18) | 0.699 | 0.953 | 0.277 | 8.196 | 7.979 |
RM1994 NLS | 8.763 | 12.151 (19) | 0.721 | 0.990 | 0.225 | 8.581 | 8.405 |
DECO | 5.980 | 12.258 (25) | 0.488 | 0.660 | 0.297 | 5.797 | 5.568 |
DECO NLS | 6.103 | 12.485 (41) | 0.489 | 0.669 | 0.360 | 5.884 | 5.604 |
LS DECO | 5.980 | 12.257 (24) | 0.488 | 0.660 | 0.297 | 5.797 | 5.568 |
NLS DECO | 5.981 | 12.257 (23) | 0.488 | 0.660 | 0.297 | 5.798 | 5.569 |
NLS DECO NLS | 6.103 | 12.485 (42) | 0.489 | 0.669 | 0.360 | 5.884 | 5.604 |
OGARCH | 8.363 | 12.341 (27) | 0.678 | 0.936 | 0.095 | 8.271 | 8.196 |
OGARCH LS | 7.052 | 12.544 (43) | 0.562 | 0.773 | 0.103 | 6.974 | 6.893 |
OGARCH NLS | 8.126 | 12.154 (20) | 0.669 | 0.928 | 0.072 | 8.052 | 7.996 |
LS OGARCH | 7.951 | 12.477 (39) | 0.637 | 0.877 | 0.095 | 7.860 | 7.786 |
NLS OGARCH | 8.365 | 12.341 (27) | 0.678 | 0.936 | 0.095 | 8.273 | 8.198 |
LS OGARCH LS | 6.880 | 12.710 (44) | 0.541 | 0.743 | 0.101 | 6.802 | 6.723 |
NLS OGARCH NLS | 8.126 | 12.154 (20) | 0.669 | 0.928 | 0.072 | 8.051 | 7.996 |
GPVC | 7.825 | 12.467 (38) | 0.628 | 0.861 | 0.132 | 7.700 | 7.598 |
GPVC LS | 7.438 | 12.274 (26) | 0.606 | 0.834 | 0.106 | 7.341 | 7.259 |
GPVC NLS | 6.727 | 12.369 (31) | 0.544 | 0.749 | 0.113 | 6.621 | 6.533 |
LS GPVC | 7.994 | 12.452 (36) | 0.642 | 0.891 | 0.117 | 7.872 | 7.781 |
NLS GPVC | 7.672 | 12.433 (33) | 0.617 | 0.845 | 0.130 | 7.547 | 7.447 |
LS GPVC LS | 7.470 | 12.429 (32) | 0.601 | 0.826 | 0.161 | 7.359 | 7.238 |
NLS GPVC NLS | 6.725 | 12.365 (30) | 0.544 | 0.749 | 0.113 | 6.619 | 6.533 |
RPVC | 9.657 | 12.785 (45) | 0.755 | 1.047 | 0.222 | 9.479 | 9.310 |
RPCV LS | 7.989 | 12.439 (34) | 0.642 | 0.889 | 0.180 | 7.861 | 7.724 |
RPVC NLS | 9.186 | 12.485 (40) | 0.736 | 1.026 | 0.184 | 9.035 | 8.893 |
LS RPVC | 8.543 | 12.347 (29) | 0.692 | 0.953 | 0.201 | 8.387 | 8.235 |
NLS RPVC | 8.064 | 13.142 (46) | 0.614 | 0.850 | 0.191 | 7.904 | 7.755 |
LS RPCV LS | 7.493 | 12.439 (35) | 0.602 | 0.828 | 0.167 | 7.378 | 7.252 |
NLS RPVC NLS | 7.658 | 12.460 (37) | 0.615 | 0.850 | 0.172 | 7.509 | 7.376 |
AV | SD | IR | SR | TO | AV | AV | |
---|---|---|---|---|---|---|---|
1/N | 12.732 | 12.755 (47) | 0.998 | 1.418 | - | - | - |
CCC | 11.425 | 8.381 (6) | 1.363 | 1.963 | 0.256 | 11.137 | 10.934 |
CCC LS | 9.818 | 8.495 (14) | 1.156 | 1.655 | 0.264 | 9.569 | 9.362 |
CCC NLS | 11.157 | 8.404 (11) | 1.328 | 1.907 | 0.247 | 10.863 | 10.668 |
LS CCC | 11.305 | 8.394 (9) | 1.347 | 1.940 | 0.258 | 11.030 | 10.826 |
NLS CCC | 11.461 | 8.399 (10) | 1.365 | 1.966 | 0.251 | 11.195 | 10.997 |
LS CCC LS | 9.632 | 8.628 (17) | 1.116 | 1.596 | 0.258 | 9.386 | 9.183 |
NLS CCC NLS | 11.172 | 8.426 (12) | 1.326 | 1.910 | 0.263 | 10.901 | 10.692 |
DCC | 11.144 | 8.203 (3) | 1.359 | 1.947 | 0.263 | 10.843 | 10.636 |
DCC LS | 9.450 | 8.394 (8) | 1.126 | 1.605 | 0.268 | 9.201 | 8.992 |
DCC NLS | 10.919 | 8.234 (5) | 1.326 | 1.898 | 0.253 | 10.609 | 10.410 |
LS DCC | 11.103 | 8.199 (2) | 1.354 | 1.941 | 0.263 | 10.802 | 10.596 |
NLS DCC | 11.035 | 8.196 (1) | 1.346 | 1.929 | 0.262 | 10.733 | 10.527 |
LS DCC LS | 9.423 | 8.391 (7) | 1.123 | 1.601 | 0.268 | 9.174 | 8.965 |
NLS DCC NLS | 10.829 | 8.226 (4) | 1.316 | 1.884 | 0.252 | 10.519 | 10.321 |
RM2006 | 11.983 | 8.553 (15) | 1.401 | 2.045 | 0.258 | 11.630 | 11.426 |
RM2006 LS | 10.988 | 8.435 (13) | 1.303 | 1.887 | 0.268 | 10.728 | 10.516 |
RM2006 NLS | 9.852 | 8.686 (19) | 1.134 | 1.619 | 0.259 | 9.520 | 9.318 |
RM1994 | 9.496 | 9.148 (29) | 1.038 | 1.503 | 0.282 | 9.121 | 8.902 |
RM1994 LS | 8.498 | 8.866 (23) | 0.959 | 1.374 | 0.275 | 8.182 | 7.967 |
RM1994 NLS | 10.080 | 9.112 (28) | 1.106 | 1.584 | 0.220 | 9.742 | 9.571 |
DECO | 9.282 | 9.062 (25) | 1.024 | 1.457 | 0.253 | 9.040 | 8.840 |
DECO NLS | 8.998 | 9.197 (32) | 0.978 | 1.388 | 0.302 | 8.725 | 8.487 |
LS DECO | 9.280 | 9.063 (26) | 1.024 | 1.456 | 0.253 | 9.039 | 8.838 |
NLS DECO | 9.271 | 9.064 (27) | 1.023 | 1.455 | 0.254 | 9.030 | 8.829 |
NLS DECO NLS | 8.998 | 9.197 (33) | 0.978 | 1.388 | 0.302 | 8.725 | 8.487 |
OGARCH | 13.356 | 9.188 (31) | 1.454 | 2.097 | 0.083 | 13.165 | 13.100 |
OGARCH LS | 11.565 | 10.105 (45) | 1.144 | 1.602 | 0.088 | 11.435 | 11.367 |
OGARCH NLS | 12.805 | 9.203 (34) | 1.391 | 1.998 | 0.071 | 12.638 | 12.582 |
LS OGARCH | 13.068 | 9.257 (36) | 1.412 | 2.030 | 0.081 | 12.885 | 12.821 |
NLS OGARCH | 13.362 | 9.188 (30) | 1.454 | 2.098 | 0.083 | 13.172 | 13.106 |
LS OGARCH LS | 11.305 | 10.326 (46) | 1.095 | 1.528 | 0.082 | 11.175 | 11.110 |
NLS OGARCH NLS | 12.804 | 9.203 (34) | 1.391 | 1.997 | 0.071 | 12.637 | 12.582 |
GPVC | 11.497 | 9.268 (37) | 1.241 | 1.757 | 0.109 | 11.246 | 11.163 |
GPVC LS | 11.024 | 9.282 (39) | 1.188 | 1.680 | 0.082 | 10.835 | 10.772 |
GPVC NLS | 11.210 | 9.320 (43) | 1.203 | 1.690 | 0.099 | 10.993 | 10.918 |
LS GPVC | 12.213 | 9.294 (41) | 1.314 | 1.868 | 0.094 | 11.953 | 11.881 |
NLS GPVC | 11.274 | 9.348 (44) | 1.206 | 1.703 | 0.108 | 11.020 | 10.938 |
LS GPVC LS | 10.325 | 9.288 (40) | 1.112 | 1.559 | 0.129 | 10.153 | 10.052 |
NLS GPVC NLS | 11.165 | 9.318 (42) | 1.198 | 1.683 | 0.097 | 10.949 | 10.876 |
RPVC | 12.966 | 8.680 (18) | 1.494 | 2.169 | 0.193 | 12.642 | 12.492 |
RPCV LS | 10.423 | 9.000 (24) | 1.158 | 1.646 | 0.152 | 10.218 | 10.100 |
RPVC NLS | 12.233 | 8.697 (20) | 1.407 | 2.018 | 0.171 | 11.951 | 11.818 |
LS RPVC | 11.635 | 8.577 (16) | 1.357 | 1.944 | 0.175 | 11.354 | 11.218 |
NLS RPVC | 10.878 | 8.829 (22) | 1.232 | 1.760 | 0.171 | 10.579 | 10.447 |
LS RPCV LS | 10.304 | 9.271 (38) | 1.111 | 1.558 | 0.139 | 10.125 | 10.016 |
NLS RPVC NLS | 10.628 | 8.760 (21) | 1.213 | 1.723 | 0.158 | 10.336 | 10.215 |
AV | SD | IR | SR | TO | AV | AV | |
---|---|---|---|---|---|---|---|
1/N | −30.668 | 43.046 (47) | −0.713 | −0.960 | - | - | - |
CCC | −25.407 | 22.009 (20) | −1.154 | −1.464 | 0.362 | −25.564 | −25.799 |
CCC LS | −25.522 | 22.003 (19) | −1.160 | −1.471 | 0.365 | −25.680 | −25.917 |
CCC NLS | −23.682 | 22.613 (27) | −1.047 | −1.344 | 0.300 | −23.820 | −24.026 |
LS CCC | −26.288 | 21.934 (13) | −1.199 | −1.516 | 0.369 | −26.448 | −26.686 |
NLS CCC | −27.144 | 21.965 (16) | −1.236 | −1.558 | 0.365 | −27.301 | −27.537 |
LS CCC LS | −27.052 | 21.967 (17) | −1.232 | −1.553 | 0.368 | −27.211 | −27.449 |
NLS CCC NLS | −25.372 | 22.346 (25) | −1.135 | −1.446 | 0.326 | −25.521 | −25.743 |
DCC | −26.520 | 21.580 (5) | −1.229 | −1.554 | 0.389 | −26.683 | −26.928 |
DCC LS | −26.702 | 21.596 (7) | −1.236 | −1.563 | 0.391 | −26.866 | −27.112 |
DCC NLS | −24.636 | 21.926 (12) | −1.124 | −1.446 | 0.312 | −24.777 | −24.989 |
LS DCC | −26.639 | 21.582 (6) | −1.234 | −1.561 | 0.390 | −26.802 | −27.047 |
NLS DCC | −27.020 | 21.596 (7) | −1.251 | −1.581 | 0.392 | −27.184 | −27.429 |
LS DCC LS | −26.833 | 21.599 (9) | −1.242 | −1.570 | 0.392 | −26.997 | −27.243 |
NLS DCC NLS | −24.899 | 21.952 (14) | −1.134 | −1.460 | 0.311 | −25.039 | −25.249 |
RM2006 | −22.728 | 21.862 (11) | −1.040 | −1.326 | 0.281 | −22.858 | −23.054 |
RM2006 LS | −22.912 | 21.815 (10) | −1.050 | −1.338 | 0.279 | −23.041 | −23.235 |
RM2006 NLS | −21.267 | 21.958 (15) | −0.969 | −1.264 | 0.216 | −21.372 | −21.529 |
RM1994 | −20.793 | 22.108 (22) | −0.941 | −1.205 | 0.260 | −20.914 | −21.096 |
RM1994 LS | −21.234 | 22.053 (21) | −0.963 | −1.232 | 0.259 | −21.355 | −21.537 |
RM1994 NLS | −20.974 | 22.161 (23) | −0.946 | −1.236 | 0.178 | −21.060 | −21.188 |
DECO | −31.859 | 22.706 (33) | −1.403 | −1.742 | 0.408 | −32.030 | −32.288 |
DECO NLS | −29.187 | 22.618 (28) | −1.291 | −1.633 | 0.386 | −29.358 | −29.615 |
LS DECO | −31.854 | 22.706 (32) | −1.403 | −1.742 | 0.408 | −32.026 | −32.284 |
NLS DECO | −31.829 | 22.702 (31) | −1.402 | −1.741 | 0.408 | −32.001 | −32.258 |
NLS DECO NLS | −29.188 | 22.618 (29) | −1.291 | −1.633 | 0.386 | −29.359 | −29.615 |
OGARCH | −21.671 | 23.390 (36) | −0.927 | −1.218 | 0.107 | −21.722 | −21.799 |
OGARCH LS | −21.745 | 23.360 (35) | −0.931 | −1.223 | 0.108 | −21.796 | −21.873 |
OGARCH NLS | −20.118 | 21.541 (3) | −0.934 | −1.223 | 0.071 | −20.153 | −20.205 |
LS OGARCH | −23.677 | 24.009 (45) | −0.986 | −1.291 | 0.109 | −23.728 | −23.804 |
NLS OGARCH | −21.671 | 23.390 (36) | −0.927 | −1.218 | 0.107 | −21.722 | −21.799 |
LS OGARCH LS | −23.571 | 23.957 (41) | −0.984 | −1.288 | 0.109 | −23.622 | −23.699 |
NLS OGARCH NLS | −20.118 | 21.541 (3) | −0.934 | −1.223 | 0.071 | −20.153 | −20.205 |
GPVC | −19.789 | 22.287 (24) | −0.888 | −1.151 | 0.105 | −19.831 | −19.894 |
GPVC LS | −16.841 | 22.700 (30) | −0.742 | −0.973 | 0.113 | −16.890 | −16.964 |
GPVC NLS | −23.692 | 21.444 (1) | −1.105 | −1.434 | 0.050 | −23.711 | −23.740 |
LS GPVC | −18.380 | 22.823 (34) | −0.805 | −1.079 | 0.112 | −18.429 | −18.503 |
NLS GPVC | −20.574 | 21.983 (18) | −0.936 | −1.207 | 0.102 | −20.614 | −20.674 |
LS GPVC LS | −21.137 | 23.982 (43) | −0.881 | −1.144 | 0.193 | −21.208 | −21.315 |
NLS GPVC NLS | −23.716 | 21.451 (2) | −1.106 | −1.435 | 0.050 | −23.735 | −23.764 |
RPVC | −17.369 | 23.870 (40) | −0.728 | −0.962 | 0.188 | −17.446 | −17.561 |
RPCV LS | −15.911 | 23.839 (39) | −0.667 | −0.888 | 0.189 | −15.990 | −16.109 |
RPVC NLS | −22.229 | 22.432 (26) | −0.991 | −1.296 | 0.114 | −22.277 | −22.350 |
LS RPVC | −21.004 | 23.672 (38) | −0.887 | −1.153 | 0.195 | −21.076 | −21.183 |
NLS RPVC | −25.119 | 27.169 (46) | −0.925 | −1.231 | 0.156 | −25.192 | −25.302 |
LS RPCV LS | −21.164 | 23.982 (44) | −0.883 | −1.145 | 0.193 | −21.235 | −21.342 |
NLS RPVC NLS | −25.492 | 23.964 (42) | −1.064 | −1.389 | 0.115 | −25.543 | −25.620 |
AV | SD | IR | SR | TO | AV | AV | |
---|---|---|---|---|---|---|---|
1/N | 13.130 | 16.057 (47) | 0.818 | 1.148 | - | - | - |
CCC | 11.830 | 10.561 (15) | 1.120 | 1.606 | 0.306 | 11.669 | 11.427 |
CCC LS | 11.455 | 10.599 (18) | 1.081 | 1.554 | 0.318 | 11.288 | 11.037 |
CCC NLS | 11.932 | 10.502 (10) | 1.136 | 1.628 | 0.288 | 11.781 | 11.554 |
LS CCC | 11.713 | 10.540 (13) | 1.111 | 1.595 | 0.310 | 11.550 | 11.304 |
NLS CCC | 11.525 | 10.512 (11) | 1.096 | 1.571 | 0.308 | 11.362 | 11.119 |
LS CCC LS | 11.193 | 10.629 (19) | 1.053 | 1.514 | 0.315 | 11.027 | 10.778 |
NLS CCC NLS | 11.640 | 10.552 (14) | 1.103 | 1.583 | 0.317 | 11.473 | 11.222 |
DCC | 12.213 | 10.366 (1) | 1.178 | 1.681 | 0.315 | 12.047 | 11.797 |
DCC LS | 11.736 | 10.429 (8) | 1.125 | 1.612 | 0.322 | 11.566 | 11.311 |
DCC NLS | 11.942 | 10.383 (5) | 1.150 | 1.644 | 0.295 | 11.786 | 11.553 |
LS DCC | 12.204 | 10.366 (1) | 1.177 | 1.679 | 0.314 | 12.038 | 11.788 |
NLS DCC | 12.175 | 10.367 (3) | 1.174 | 1.674 | 0.314 | 12.009 | 11.761 |
LS DCC LS | 11.715 | 10.427 (7) | 1.124 | 1.609 | 0.322 | 11.545 | 11.290 |
NLS DCC NLS | 11.922 | 10.383 (4) | 1.148 | 1.641 | 0.293 | 11.768 | 11.536 |
RM2006 | 12.648 | 10.498 (9) | 1.205 | 1.686 | 0.275 | 12.502 | 12.283 |
RM2006 LS | 13.314 | 10.403 (6) | 1.280 | 1.812 | 0.289 | 13.160 | 12.930 |
RM2006 NLS | 13.542 | 10.518 (12) | 1.288 | 1.820 | 0.281 | 13.393 | 13.169 |
RM1994 | 13.243 | 10.941 (35) | 1.210 | 1.691 | 0.287 | 13.091 | 12.863 |
RM1994 LS | 13.613 | 10.686 (25) | 1.274 | 1.799 | 0.281 | 13.463 | 13.239 |
RM1994 NLS | 13.430 | 10.808 (32) | 1.243 | 1.747 | 0.235 | 13.305 | 13.117 |
DECO | 11.144 | 10.806 (29) | 1.031 | 1.478 | 0.298 | 10.986 | 10.749 |
DECO NLS | 11.007 | 11.214 (39) | 0.982 | 1.410 | 0.383 | 10.805 | 10.501 |
LS DECO | 11.145 | 10.806 (31) | 1.031 | 1.478 | 0.298 | 10.987 | 10.750 |
NLS DECO | 11.145 | 10.806 (29) | 1.031 | 1.478 | 0.298 | 10.987 | 10.750 |
NLS DECO NLS | 11.007 | 11.214 (39) | 0.982 | 1.410 | 0.383 | 10.805 | 10.501 |
OGARCH | 11.333 | 10.671 (22) | 1.062 | 1.508 | 0.098 | 11.280 | 11.201 |
OGARCH LS | 10.030 | 10.684 (24) | 0.939 | 1.334 | 0.109 | 9.972 | 9.885 |
OGARCH NLS | 10.927 | 11.000 (36) | 0.993 | 1.422 | 0.072 | 10.889 | 10.833 |
LS OGARCH | 11.145 | 10.658 (20) | 1.046 | 1.485 | 0.099 | 11.092 | 11.012 |
NLS OGARCH | 11.333 | 10.671 (22) | 1.062 | 1.508 | 0.098 | 11.280 | 11.201 |
LS OGARCH LS | 10.194 | 10.669 (21) | 0.956 | 1.360 | 0.108 | 10.136 | 10.050 |
NLS OGARCH NLS | 10.926 | 11.000 (37) | 0.993 | 1.421 | 0.072 | 10.889 | 10.833 |
GPVC | 10.992 | 11.289 (41) | 0.974 | 1.377 | 0.148 | 10.913 | 10.795 |
GPVC LS | 10.052 | 10.781 (27) | 0.932 | 1.324 | 0.116 | 9.991 | 9.898 |
GPVC NLS | 10.008 | 11.374 (44) | 0.880 | 1.251 | 0.132 | 9.939 | 9.835 |
LS GPVC | 10.681 | 11.061 (38) | 0.966 | 1.366 | 0.128 | 10.612 | 10.508 |
NLS GPVC | 10.985 | 11.300 (42) | 0.972 | 1.375 | 0.146 | 10.907 | 10.790 |
LS GPVC LS | 11.203 | 10.569 (16) | 1.060 | 1.532 | 0.170 | 11.114 | 10.981 |
NLS GPVC NLS | 10.030 | 11.364 (43) | 0.883 | 1.256 | 0.131 | 9.962 | 9.858 |
RPVC | 12.892 | 11.524 (46) | 1.119 | 1.592 | 0.241 | 12.766 | 12.578 |
RPCV LS | 11.084 | 10.772 (26) | 1.029 | 1.466 | 0.192 | 10.985 | 10.836 |
RPVC NLS | 13.327 | 11.476 (45) | 1.161 | 1.682 | 0.202 | 13.221 | 13.062 |
LS RPVC | 12.331 | 10.816 (33) | 1.140 | 1.636 | 0.214 | 12.219 | 12.051 |
NLS RPVC | 12.630 | 10.801 (28) | 1.169 | 1.677 | 0.207 | 12.521 | 12.358 |
LS RPCV LS | 11.256 | 10.596 (17) | 1.062 | 1.535 | 0.177 | 11.164 | 11.026 |
NLS RPVC NLS | 12.145 | 10.837 (34) | 1.121 | 1.619 | 0.189 | 12.047 | 11.898 |
AV | SD | IR | SR | TO | AV | AV | |
---|---|---|---|---|---|---|---|
1/N | 8.302 | 20.058 (47) | 0.414 | 0.570 | - | - | - |
CCC | 7.946 | 12.262 (10) | 0.648 | 0.902 | 0.319 | 7.938 | 7.925 |
CCC LS | 6.832 | 12.263 (11) | 0.557 | 0.775 | 0.329 | 6.823 | 6.810 |
CCC NLS | 7.725 | 12.388 (16) | 0.624 | 0.867 | 0.296 | 7.717 | 7.704 |
LS CCC | 7.731 | 12.261 (9) | 0.631 | 0.878 | 0.323 | 7.723 | 7.709 |
NLS CCC | 7.588 | 12.278 (14) | 0.618 | 0.859 | 0.319 | 7.579 | 7.566 |
LS CCC LS | 6.471 | 12.359 (15) | 0.524 | 0.728 | 0.325 | 6.462 | 6.449 |
NLS CCC NLS | 7.758 | 12.439 (20) | 0.624 | 0.869 | 0.321 | 7.749 | 7.736 |
DCC | 7.425 | 12.182 (3) | 0.610 | 0.845 | 0.325 | 7.416 | 7.403 |
DCC LS | 6.567 | 12.200 (6) | 0.538 | 0.747 | 0.334 | 6.558 | 6.544 |
DCC NLS | 6.901 | 12.247 (8) | 0.563 | 0.780 | 0.302 | 6.892 | 6.879 |
LS DCC | 7.386 | 12.184 (4) | 0.606 | 0.840 | 0.325 | 7.377 | 7.364 |
NLS DCC | 7.296 | 12.193 (5) | 0.598 | 0.829 | 0.325 | 7.287 | 7.274 |
LS DCC LS | 6.518 | 12.203 (7) | 0.534 | 0.741 | 0.334 | 6.509 | 6.495 |
NLS DCC NLS | 6.781 | 12.266 (12) | 0.553 | 0.764 | 0.300 | 6.772 | 6.760 |
RM2006 | 7.350 | 12.012 (2) | 0.612 | 0.843 | 0.287 | 7.342 | 7.329 |
RM2006 LS | 7.442 | 11.870 (1) | 0.627 | 0.867 | 0.294 | 7.434 | 7.421 |
RM2006 NLS | 7.101 | 12.274 (13) | 0.579 | 0.798 | 0.296 | 7.093 | 7.081 |
RM1994 | 7.777 | 12.644 (29) | 0.615 | 0.848 | 0.296 | 7.769 | 7.756 |
RM1994 LS | 7.157 | 12.391 (17) | 0.578 | 0.796 | 0.292 | 7.149 | 7.136 |
RM1994 NLS | 7.906 | 12.606 (27) | 0.627 | 0.865 | 0.254 | 7.899 | 7.888 |
DECO | 5.631 | 12.899 (43) | 0.437 | 0.608 | 0.317 | 5.622 | 5.609 |
DECO NLS | 5.641 | 13.162 (44) | 0.429 | 0.599 | 0.386 | 5.630 | 5.614 |
LS DECO | 5.631 | 12.899 (42) | 0.437 | 0.608 | 0.317 | 5.622 | 5.609 |
NLS DECO | 5.631 | 12.899 (41) | 0.437 | 0.608 | 0.317 | 5.622 | 5.609 |
NLS DECO NLS | 5.640 | 13.162 (45) | 0.429 | 0.599 | 0.386 | 5.630 | 5.614 |
OGARCH | 7.819 | 12.556 (24) | 0.623 | 0.859 | 0.101 | 7.816 | 7.812 |
OGARCH LS | 6.848 | 12.687 (32) | 0.540 | 0.744 | 0.113 | 6.845 | 6.840 |
OGARCH NLS | 7.985 | 12.451 (22) | 0.641 | 0.891 | 0.078 | 7.984 | 7.981 |
LS OGARCH | 7.581 | 12.716 (37) | 0.596 | 0.821 | 0.103 | 7.579 | 7.575 |
NLS OGARCH | 7.821 | 12.555 (23) | 0.623 | 0.859 | 0.101 | 7.818 | 7.814 |
LS OGARCH LS | 7.029 | 12.893 (40) | 0.545 | 0.751 | 0.111 | 7.026 | 7.021 |
NLS OGARCH NLS | 7.993 | 12.451 (21) | 0.642 | 0.891 | 0.078 | 7.991 | 7.988 |
GPVC | 7.282 | 12.707 (34) | 0.573 | 0.789 | 0.155 | 7.277 | 7.271 |
GPVC LS | 7.225 | 12.435 (19) | 0.581 | 0.801 | 0.120 | 7.222 | 7.218 |
GPVC NLS | 6.560 | 12.672 (31) | 0.518 | 0.712 | 0.132 | 6.557 | 6.552 |
LS GPVC | 7.200 | 12.713 (36) | 0.566 | 0.783 | 0.138 | 7.196 | 7.190 |
NLS GPVC | 7.223 | 12.697 (33) | 0.569 | 0.782 | 0.153 | 7.219 | 7.212 |
LS GPVC LS | 6.521 | 12.568 (25) | 0.519 | 0.718 | 0.172 | 6.516 | 6.509 |
NLS GPVC NLS | 6.568 | 12.665 (30) | 0.519 | 0.713 | 0.130 | 6.565 | 6.559 |
RPVC | 8.453 | 12.712 (35) | 0.665 | 0.920 | 0.248 | 8.446 | 8.436 |
RPCV LS | 7.355 | 12.415 (18) | 0.592 | 0.822 | 0.193 | 7.350 | 7.342 |
RPVC NLS | 8.011 | 12.816 (39) | 0.625 | 0.863 | 0.201 | 8.005 | 7.997 |
LS RPVC | 7.000 | 12.615 (28) | 0.555 | 0.765 | 0.227 | 6.994 | 6.985 |
NLS RPVC | 6.488 | 13.243 (46) | 0.490 | 0.676 | 0.203 | 6.482 | 6.474 |
LS RPCV LS | 6.535 | 12.588 (26) | 0.519 | 0.718 | 0.180 | 6.530 | 6.523 |
NLS RPVC NLS | 6.874 | 12.741 (38) | 0.540 | 0.743 | 0.182 | 6.869 | 6.862 |
AV | SD | IR | SR | TO | AV | AV | |
---|---|---|---|---|---|---|---|
1/N | 12.732 | 12.755 (47) | 0.998 | 1.418 | - | - | - |
CCC | 10.636 | 8.697 (7) | 1.223 | 1.750 | 0.265 | 10.629 | 10.618 |
CCC LS | 7.605 | 8.868 (19) | 0.858 | 1.208 | 0.284 | 7.597 | 7.585 |
CCC NLS | 10.356 | 8.732 (8) | 1.186 | 1.694 | 0.254 | 10.349 | 10.338 |
LS CCC | 10.158 | 8.738 (9) | 1.163 | 1.659 | 0.269 | 10.150 | 10.139 |
NLS CCC | 10.186 | 8.758 (11) | 1.163 | 1.659 | 0.263 | 10.179 | 10.168 |
LS CCC LS | 7.319 | 9.045 (23) | 0.809 | 1.137 | 0.281 | 7.312 | 7.300 |
NLS CCC NLS | 9.802 | 8.809 (16) | 1.113 | 1.581 | 0.277 | 9.795 | 9.784 |
DCC | 10.939 | 8.612 (3) | 1.270 | 1.825 | 0.271 | 10.932 | 10.920 |
DCC LS | 7.691 | 8.796 (15) | 0.874 | 1.233 | 0.286 | 7.683 | 7.671 |
DCC NLS | 10.763 | 8.661 (6) | 1.243 | 1.782 | 0.260 | 10.756 | 10.745 |
LS DCC | 10.923 | 8.608 (2) | 1.269 | 1.823 | 0.271 | 10.915 | 10.904 |
NLS DCC | 10.889 | 8.599 (1) | 1.266 | 1.819 | 0.269 | 10.882 | 10.871 |
LS DCC LS | 7.672 | 8.795 (14) | 0.872 | 1.230 | 0.284 | 7.664 | 7.653 |
NLS DCC NLS | 10.725 | 8.649 (5) | 1.240 | 1.778 | 0.258 | 10.718 | 10.707 |
RM2006 | 10.378 | 8.765 (13) | 1.184 | 1.706 | 0.292 | 10.369 | 10.357 |
RM2006 LS | 9.295 | 8.629 (4) | 1.077 | 1.540 | 0.300 | 9.287 | 9.275 |
RM2006 NLS | 9.578 | 8.884 (20) | 1.078 | 1.527 | 0.313 | 9.569 | 9.556 |
RM1994 | 8.112 | 9.545 (37) | 0.850 | 1.209 | 0.323 | 8.103 | 8.089 |
RM1994 LS | 6.813 | 9.279 (24) | 0.734 | 1.033 | 0.317 | 6.804 | 6.791 |
RM1994 NLS | 9.912 | 9.282 (25) | 1.068 | 1.520 | 0.265 | 9.904 | 9.892 |
DECO | 6.883 | 9.577 (39) | 0.719 | 1.009 | 0.277 | 6.875 | 6.864 |
DECO NLS | 6.257 | 9.784 (43) | 0.640 | 0.887 | 0.340 | 6.247 | 6.233 |
LS DECO | 6.882 | 9.577 (39) | 0.719 | 1.008 | 0.277 | 6.875 | 6.863 |
NLS DECO | 6.873 | 9.577 (41) | 0.718 | 1.007 | 0.277 | 6.865 | 6.854 |
NLS DECO NLS | 6.257 | 9.784 (44) | 0.640 | 0.887 | 0.340 | 6.247 | 6.233 |
OGARCH | 12.682 | 9.305 (26) | 1.363 | 1.958 | 0.088 | 12.680 | 12.676 |
OGARCH LS | 11.229 | 10.166 (45) | 1.105 | 1.556 | 0.097 | 11.226 | 11.222 |
OGARCH NLS | 12.878 | 9.376 (29) | 1.374 | 1.971 | 0.063 | 12.877 | 12.874 |
LS OGARCH | 12.588 | 9.346 (28) | 1.347 | 1.928 | 0.088 | 12.586 | 12.582 |
NLS OGARCH | 12.682 | 9.305 (26) | 1.363 | 1.958 | 0.088 | 12.680 | 12.676 |
LS OGARCH LS | 11.414 | 10.359 (46) | 1.102 | 1.548 | 0.090 | 11.411 | 11.408 |
NLS OGARCH NLS | 12.878 | 9.376 (29) | 1.374 | 1.971 | 0.063 | 12.877 | 12.874 |
GPVC | 11.014 | 9.504 (36) | 1.159 | 1.636 | 0.145 | 11.010 | 11.004 |
GPVC LS | 11.064 | 9.438 (31) | 1.172 | 1.657 | 0.105 | 11.061 | 11.057 |
GPVC NLS | 10.637 | 9.478 (33) | 1.122 | 1.569 | 0.134 | 10.634 | 10.628 |
LS GPVC | 11.235 | 9.595 (42) | 1.171 | 1.652 | 0.120 | 11.232 | 11.226 |
NLS GPVC | 10.939 | 9.576 (38) | 1.142 | 1.611 | 0.145 | 10.935 | 10.929 |
LS GPVC LS | 9.183 | 9.503 (35) | 0.966 | 1.345 | 0.139 | 9.179 | 9.174 |
NLS GPVC NLS | 10.656 | 9.473 (32) | 1.125 | 1.572 | 0.132 | 10.652 | 10.647 |
RPVC | 11.558 | 8.741 (10) | 1.322 | 1.896 | 0.216 | 11.552 | 11.544 |
RPCV LS | 10.172 | 9.038 (22) | 1.126 | 1.594 | 0.174 | 10.168 | 10.161 |
RPVC NLS | 11.023 | 8.761 (12) | 1.258 | 1.791 | 0.193 | 11.018 | 11.010 |
LS RPVC | 9.859 | 8.845 (18) | 1.115 | 1.566 | 0.202 | 9.854 | 9.846 |
NLS RPVC | 9.802 | 8.925 (21) | 1.098 | 1.558 | 0.193 | 9.797 | 9.789 |
LS RPCV LS | 9.188 | 9.490 (34) | 0.968 | 1.346 | 0.151 | 9.184 | 9.178 |
NLS RPVC NLS | 9.995 | 8.828 (17) | 1.132 | 1.600 | 0.183 | 9.990 | 9.982 |
AV | SD | IR | SR | TO | AV | AV | |
---|---|---|---|---|---|---|---|
1/N | −30.668 | 43.046 (47) | −0.713 | −0.960 | - | - | - |
CCC | −25.344 | 22.796 (13) | −1.112 | −1.460 | 0.381 | −25.355 | −25.371 |
CCC LS | −25.390 | 22.796 (14) | −1.114 | −1.462 | 0.383 | −25.401 | −25.418 |
CCC NLS | −23.540 | 23.614 (33) | −0.997 | −1.318 | 0.318 | −23.550 | −23.566 |
LS CCC | −25.295 | 22.748 (12) | −1.112 | −1.463 | 0.385 | −25.306 | −25.323 |
NLS CCC | −26.760 | 22.916 (21) | −1.168 | −1.532 | 0.373 | −26.771 | −26.787 |
LS CCC LS | −26.818 | 22.925 (22) | −1.170 | −1.535 | 0.375 | −26.828 | −26.844 |
NLS CCC NLS | −25.222 | 23.536 (26) | −1.072 | −1.414 | 0.335 | −25.233 | −25.248 |
DCC | −26.146 | 22.840 (16) | −1.145 | −1.508 | 0.419 | −26.158 | −26.175 |
DCC LS | −26.248 | 22.850 (17) | −1.149 | −1.513 | 0.419 | −26.259 | −26.276 |
DCC NLS | −23.982 | 23.354 (24) | −1.027 | −1.359 | 0.333 | −23.993 | −24.008 |
LS DCC | −26.384 | 22.858 (18) | −1.154 | −1.520 | 0.419 | −26.395 | −26.412 |
NLS DCC | −27.056 | 22.905 (20) | −1.181 | −1.554 | 0.419 | −27.067 | −27.084 |
LS DCC LS | −26.495 | 22.865 (19) | −1.159 | −1.526 | 0.421 | −26.506 | −26.523 |
NLS DCC NLS | −24.849 | 23.458 (25) | −1.059 | −1.401 | 0.331 | −24.859 | −24.875 |
RM2006 | −22.356 | 22.084 (4) | −1.012 | −1.327 | 0.356 | −22.367 | −22.383 |
RM2006 LS | −23.045 | 22.006 (2) | −1.047 | −1.370 | 0.356 | −23.055 | −23.071 |
RM2006 NLS | −21.109 | 23.116 (23) | −0.913 | −1.206 | 0.274 | −21.116 | −21.126 |
RM1994 | −22.685 | 22.716 (11) | −0.999 | −1.307 | 0.337 | −22.695 | −22.711 |
RM1994 LS | −23.388 | 22.619 (10) | −1.034 | −1.350 | 0.335 | −23.398 | −23.413 |
RM1994 NLS | −21.739 | 23.572 (28) | −0.922 | −1.215 | 0.235 | −21.745 | −21.755 |
DECO | −28.184 | 24.101 (42) | −1.169 | −1.550 | 0.404 | −28.197 | −28.215 |
DECO NLS | −27.588 | 23.858 (35) | −1.156 | −1.533 | 0.367 | −27.599 | −27.617 |
LS DECO | −28.182 | 24.100 (41) | −1.169 | −1.550 | 0.404 | −28.195 | −28.213 |
NLS DECO | −28.166 | 24.098 (40) | −1.169 | −1.549 | 0.404 | −28.178 | −28.197 |
NLS DECO NLS | −27.591 | 23.859 (36) | −1.156 | −1.533 | 0.367 | −27.602 | −27.620 |
OGARCH | −20.677 | 23.592 (30) | −0.877 | −1.145 | 0.124 | −20.680 | −20.683 |
OGARCH LS | −20.855 | 23.577 (29) | −0.885 | −1.155 | 0.126 | −20.857 | −20.860 |
OGARCH NLS | −19.608 | 22.343 (7) | −0.878 | −1.156 | 0.063 | −19.610 | −19.613 |
LS OGARCH | −20.516 | 24.433 (44) | −0.840 | −1.098 | 0.130 | −20.518 | −20.522 |
NLS OGARCH | −20.677 | 23.592 (30) | −0.877 | −1.145 | 0.124 | −20.680 | −20.683 |
LS OGARCH LS | −20.564 | 24.390 (43) | −0.843 | −1.103 | 0.132 | −20.567 | −20.570 |
NLS OGARCH NLS | −19.608 | 22.343 (7) | −0.878 | −1.156 | 0.061 | −19.610 | −19.613 |
GPVC | −14.454 | 22.017 (3) | −0.657 | −0.868 | 0.138 | −14.457 | −14.462 |
GPVC LS | −14.100 | 22.418 (9) | −0.629 | −0.831 | 0.136 | −14.103 | −14.107 |
GPVC NLS | −20.436 | 22.235 (5) | −0.919 | −1.209 | 0.048 | −20.438 | −20.440 |
LS GPVC | −15.361 | 22.807 (15) | −0.674 | −0.902 | 0.165 | −15.364 | −15.368 |
NLS GPVC | −14.829 | 21.853 (1) | −0.679 | −0.892 | 0.134 | −14.832 | −14.837 |
LS GPVC LS | −17.991 | 24.031 (38) | −0.749 | −0.995 | 0.226 | −17.996 | −18.004 |
NLS GPVC NLS | −20.471 | 22.244 (6) | −0.920 | −1.210 | 0.048 | −20.472 | −20.474 |
RPVC | −15.076 | 23.561 (27) | −0.640 | −0.849 | 0.203 | −15.080 | −15.086 |
RPCV LS | −14.841 | 23.612 (32) | −0.629 | −0.837 | 0.201 | −14.844 | −14.850 |
RPVC NLS | −23.341 | 23.711 (34) | −0.984 | −1.289 | 0.134 | −23.344 | −23.349 |
LS RPVC | −18.340 | 23.935 (37) | −0.766 | −1.017 | 0.226 | −18.345 | −18.353 |
NLS RPVC | −26.862 | 26.877 (46) | −0.999 | −1.331 | 0.178 | −26.868 | −26.876 |
LS RPCV LS | −17.991 | 24.031 (38) | −0.749 | −0.995 | 0.226 | −17.996 | −18.004 |
NLS RPVC NLS | −25.379 | 24.937 (45) | −1.018 | −1.338 | 0.140 | −25.383 | −25.388 |
AV | SD | IR | SR | TO | AV | AV | |
---|---|---|---|---|---|---|---|
1/N | 13.130 | 16.057 (47) | 0.818 | 1.148 | - | - | - |
CCC | 12.592 | 10.935 (21) | 1.152 | 1.666 | 0.333 | 12.583 | 12.569 |
CCC LS | 12.200 | 10.873 (17) | 1.122 | 1.628 | 0.342 | 12.191 | 12.178 |
CCC NLS | 12.038 | 10.852 (15) | 1.109 | 1.600 | 0.310 | 12.029 | 12.017 |
LS CCC | 12.455 | 10.936 (22) | 1.139 | 1.648 | 0.340 | 12.446 | 12.432 |
NLS CCC | 12.466 | 10.894 (18) | 1.144 | 1.656 | 0.333 | 12.457 | 12.443 |
LS CCC LS | 11.992 | 10.932 (20) | 1.097 | 1.592 | 0.336 | 11.983 | 11.970 |
NLS CCC NLS | 12.656 | 10.945 (23) | 1.156 | 1.679 | 0.340 | 12.646 | 12.633 |
DCC | 11.729 | 10.801 (11) | 1.086 | 1.554 | 0.336 | 11.720 | 11.706 |
DCC LS | 11.873 | 10.761 (7) | 1.103 | 1.590 | 0.340 | 11.864 | 11.850 |
DCC NLS | 10.560 | 10.716 (3) | 0.985 | 1.402 | 0.315 | 10.551 | 10.538 |
LS DCC | 11.714 | 10.800 (10) | 1.085 | 1.551 | 0.333 | 11.705 | 11.691 |
NLS DCC | 11.701 | 10.801 (12) | 1.083 | 1.549 | 0.333 | 11.692 | 11.678 |
LS DCC LS | 11.845 | 10.761 (6) | 1.101 | 1.585 | 0.340 | 11.835 | 11.821 |
NLS DCC NLS | 10.534 | 10.714 (2) | 0.983 | 1.397 | 0.312 | 10.525 | 10.512 |
RM2006 | 11.197 | 10.716 (4) | 1.045 | 1.476 | 0.271 | 11.189 | 11.177 |
RM2006 LS | 11.987 | 10.531 (1) | 1.138 | 1.627 | 0.279 | 11.978 | 11.966 |
RM2006 NLS | 10.943 | 10.776 (8) | 1.016 | 1.442 | 0.291 | 10.935 | 10.923 |
RM1994 | 13.040 | 11.344 (37) | 1.150 | 1.630 | 0.275 | 13.032 | 13.021 |
RM1994 LS | 12.758 | 11.017 (27) | 1.158 | 1.653 | 0.273 | 12.750 | 12.738 |
RM1994 NLS | 12.229 | 11.068 (28) | 1.105 | 1.566 | 0.252 | 12.222 | 12.211 |
DECO | 11.054 | 11.293 (34) | 0.979 | 1.415 | 0.321 | 11.045 | 11.032 |
DECO NLS | 11.262 | 11.791 (45) | 0.955 | 1.392 | 0.409 | 11.251 | 11.235 |
LS DECO | 11.054 | 11.293 (34) | 0.979 | 1.415 | 0.321 | 11.045 | 11.032 |
NLS DECO | 11.055 | 11.293 (36) | 0.979 | 1.415 | 0.321 | 11.046 | 11.033 |
NLS DECO NLS | 11.262 | 11.791 (45) | 0.955 | 1.392 | 0.409 | 11.251 | 11.235 |
OGARCH | 10.576 | 10.959 (25) | 0.965 | 1.377 | 0.103 | 10.573 | 10.569 |
OGARCH LS | 9.694 | 10.852 (16) | 0.893 | 1.281 | 0.120 | 9.691 | 9.686 |
OGARCH NLS | 10.568 | 11.197 (33) | 0.944 | 1.348 | 0.088 | 10.566 | 10.563 |
LS OGARCH | 10.200 | 10.921 (19) | 0.934 | 1.332 | 0.103 | 10.197 | 10.192 |
NLS OGARCH | 10.580 | 10.958 (24) | 0.966 | 1.377 | 0.103 | 10.577 | 10.573 |
LS OGARCH LS | 9.853 | 10.847 (14) | 0.908 | 1.304 | 0.115 | 9.850 | 9.845 |
NLS OGARCH NLS | 10.581 | 11.197 (32) | 0.945 | 1.350 | 0.088 | 10.579 | 10.576 |
GPVC | 9.374 | 11.733 (43) | 0.799 | 1.121 | 0.161 | 9.370 | 9.363 |
GPVC LS | 9.194 | 11.126 (31) | 0.826 | 1.168 | 0.124 | 9.191 | 9.186 |
GPVC NLS | 9.425 | 11.598 (41) | 0.813 | 1.146 | 0.145 | 9.421 | 9.416 |
LS GPVC | 9.295 | 11.436 (38) | 0.813 | 1.143 | 0.141 | 9.291 | 9.285 |
NLS GPVC | 9.379 | 11.742 (44) | 0.799 | 1.122 | 0.159 | 9.375 | 9.368 |
LS GPVC LS | 9.617 | 10.737 (5) | 0.896 | 1.283 | 0.180 | 9.612 | 9.605 |
NLS GPVC NLS | 9.435 | 11.585 (40) | 0.815 | 1.149 | 0.145 | 9.432 | 9.426 |
RPVC | 11.163 | 11.486 (39) | 0.972 | 1.376 | 0.268 | 11.155 | 11.144 |
RPCV LS | 9.965 | 10.803 (13) | 0.922 | 1.319 | 0.201 | 9.959 | 9.951 |
RPVC NLS | 12.158 | 11.600 (42) | 1.048 | 1.497 | 0.218 | 12.152 | 12.143 |
LS RPVC | 10.150 | 11.125 (30) | 0.912 | 1.291 | 0.239 | 10.143 | 10.133 |
NLS RPVC | 10.847 | 11.091 (29) | 0.978 | 1.388 | 0.212 | 10.841 | 10.833 |
LS RPCV LS | 9.637 | 10.782 (9) | 0.894 | 1.279 | 0.187 | 9.632 | 9.624 |
NLS RPVC NLS | 11.130 | 10.964 (26) | 1.015 | 1.451 | 0.189 | 11.125 | 11.118 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trucíos, C.; Zevallos, M.; Hotta, L.K.; Santos, A.A.P. Covariance Prediction in Large Portfolio Allocation. Econometrics 2019, 7, 19. https://doi.org/10.3390/econometrics7020019
Trucíos C, Zevallos M, Hotta LK, Santos AAP. Covariance Prediction in Large Portfolio Allocation. Econometrics. 2019; 7(2):19. https://doi.org/10.3390/econometrics7020019
Chicago/Turabian StyleTrucíos, Carlos, Mauricio Zevallos, Luiz K. Hotta, and André A. P. Santos. 2019. "Covariance Prediction in Large Portfolio Allocation" Econometrics 7, no. 2: 19. https://doi.org/10.3390/econometrics7020019
APA StyleTrucíos, C., Zevallos, M., Hotta, L. K., & Santos, A. A. P. (2019). Covariance Prediction in Large Portfolio Allocation. Econometrics, 7(2), 19. https://doi.org/10.3390/econometrics7020019