Bayesian Analysis of Coefficient Instability in Dynamic Regressions
Abstract
:1. The Bayesian Model
1.1. Notation
1.2. Structure of Prior Information and Updating
- has a multivariate normal distribution conditional on V, with known mean , and covariance equal to where is a known matrix;
- The reciprocal of V has a Gamma distribution, with known parameters and .
2. The Specification of Priors
- Objective, in the sense that it does not require elicitation of subjective priors;
- Fully automatic, in the sense that the model necessitates no inputs from the econometrician other than regressors and regressands, as in OLS regressions with constant coefficients.
2.1. The Prior Mean and Variance of the Coefficients
2.2. The Variance Parameters and
2.3. The Mixing Parameter and the Prior Mixing Probabilities
3. Measures of (In)Stability
4. Monte Carlo Evidence
4.1. Performance When the Data Generating Process (DGP) Is a Stable Regression
- Data generating process: is generated according to:
- Estimated equations: Two equations are estimated. In the first case, a constant and the first lags of and are included in the set of regressors; hence, the estimated model is (1), where:In the second case, a constant and the first three lags of and are included in the set of regressors; hence, the estimated model is (1), where:
- Parameters of the design: Simulations are conducted for three different sample sizes (), four different values of the autoregressive coefficient (), and the two estimated equations detailed above, for a total of 24 experiments.
- Model averaging (TVC-MA) estimates, where:
- Model selection (TVC-MS) estimates, where:
- Estimates obtained from the regression model with stable coefficients when and from model averaging when (denoted by TVC-):
- Estimates obtained from the regression model with stable coefficients when and from model averaging when (denoted by TVC-):This estimator is similar to the previous one, but is used in place of to decide whether there is enough evidence of instability;
- Estimates obtained from the regression model with stable coefficients (OLS):
- OLS estimates obtained from Bai and Perron’s (1998, 2003) sequential10 procedure (denoted by BP), using the Schwarz information criterion (SIC) criterion to choose the number of breakpoints (Pesaran and Timmerman 2002 and 2007). If is the last estimated breakpoint date in the sample, then is the OLS estimate of obtained by using all the sample points from to T;
- Estimates obtained from Pesaran and Timmerman’s (2007) model-averaging procedure (denoted by BP-MA): The location of the last breakpoint is estimated with Bai and Perron’s procedure (as in the point above); if is the last estimated breakpoint date in the sample, then:
- Model averaging (TVC-MA) predictions, where:
- Model selection (TVC-MS) predictions, where:
- Predictions generated by the regression model with stable coefficients when and by model averaging when (denoted by TVC-):
- Predictions generated by the regression model with stable coefficients when and by model averaging when (denoted by TVC-):
- Predictions generated by the regression model with stable coefficients (OLS):
- Predictions obtained from Bai and Perron’s sequential procedure (BP); if is the BP estimate of (see above), then:
- Predictions obtained from Pesaran and Timmerman’s (2007) model-averaging procedure (BP-MA); if is the BP-MA estimate of (see above), then:
4.2. Performance When the DGP Is a Regression with a Discrete Structural Break
- Data generating process: is generated according to:
4.3. Performance When the DGP Is a Regression with Frequently Changing Coefficients
- Data generating process: is generated according to:
5. Empirical Application: Estimating Common Stocks’ Exposures to Risk Factors
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Proofs of Propositions 1 and 2
Appendix A.1.1. V and θ Known, β 1 Unknown
Appendix A.1.2. θ Known, β1 and V Unknown
Appendix A.1.3. θ, β1 and V Unknown
References
- Andrews, Donald W. K. 1993. Tests for parameter instability and structural change with unknown change point. Econometrica 61: 821–56. [Google Scholar] [CrossRef]
- Andrews, Donald W. K., Inpyo Lee, and Werner Ploberger. 1996. Optimal changepoint tests for normal linear regression model. Journal of Econometrics 70: 9–38. [Google Scholar] [CrossRef]
- Bai, Jushan, and Pierre Perron. 1998. Estimating and testing linear models with multiple structural breaks. Econometrica 66: 47–78. [Google Scholar] [CrossRef]
- Bai, Jushan, and Pierre Perron. 2003. Computation and analysis of multiple structural change models. Journal of Applied Econometrics 18: 1–22. [Google Scholar] [CrossRef]
- Bai, Jushan, and Pierre Perron. 2006. Multiple structural change models: A simulation analysis. In Econometric Theory and Practice: Frontier of Analysis and Applied Research (Essays in Honor of Peter Phillips). Edited by D. Corbae, S. Durlauf and B. E. Hansen. Cambridge: Cambridge University Press. [Google Scholar]
- Bitto, Angela, and Sylvia Frühwirth-Schnatter. 2019. Achieving shrinkage in a time-varying parameter model framework. Journal of Econometrics 210: 75–97. [Google Scholar] [CrossRef]
- Brown, Robert L., James Durbin, and James M. Evans. 1975. Techniques for testing the constancy of regression coefficients over time. Journal of the Royal Statistical Society B 37: 149–92. [Google Scholar]
- Carter, Chris K., and Robert Kohn. 1994. On Gibbs sampling for state space models. Biometrika 81: 541–53. [Google Scholar] [CrossRef]
- Casarin, Roberto, German Molina, and Enrique ter Horst. 2019. A Bayesian time varying approach to risk neutral density estimation. Journal of the Royal Statistical Society: Series A 182: 165–95. [Google Scholar] [CrossRef]
- Chan, Joshua C. C. 2017. The stochastic volatility in mean model with time-varying parameters: An application to inflation modeling. Journal of Business & Economic Statistics 35: 17–28. [Google Scholar]
- Chib, Siddhartha, and Edward Greenberg. 1995. Hierarchical analysis of SUR models with extensions to correlated serial errors and time-varying parameter models. Journal of Econometrics 68: 339–60. [Google Scholar] [CrossRef]
- Chow, Gregory C. 1960. Tests of equality between sets of coefficients in two linear regressions. Econometrica 28: 591–605. [Google Scholar] [CrossRef]
- Cogley, Timothy, Giorgio E. Primiceri, and Thomas J. Sargent. 2010. Inflation-gap persistence in the US. American Economic Journal: Macroeconomics 2: 43–69. [Google Scholar] [CrossRef]
- Cogley, Timothy, and Thomas J. Sargent. 2001. Evolving Post World War II U.S. Inflation Dynamics. NBER Macroeconomics Annual 16: 331–73. [Google Scholar]
- Datta, Gauri Sankar. 1996. On priors providing frequentist validity of Bayesian inference for multiple parametric functions. Biometrika 83: 287–98. [Google Scholar] [CrossRef]
- Datta, Gauri Sankar, and Jayanta Kumar Ghosh. 1995. On priors providing frequentist validity for Bayesian inference. Biometrika 82: 37–45. [Google Scholar] [CrossRef]
- D’Agostino, Antonello, Luca Gambetti, and Domenico Giannone. 2013. Macroeconomic forecasting and structural change. Journal of Applied Econometrics 28: 82–101. [Google Scholar] [CrossRef]
- Doan, Thomas, Robert Litterman, and Christopher Sims. 1984. Forecasting and conditional projection using realistic prior distributions. Econometric Reviews 3: 1–100. [Google Scholar] [CrossRef] [Green Version]
- Fama, Eugene F., and Kenneth R. French. 1993. Common risk factors in the returns on bonds and stocks. Journal of Financial Economics 33: 3–56. [Google Scholar] [CrossRef]
- Fama, Eugene F., and Kenneth R. French. 1995. Size and book-to-market factors in earnings and returns. Journal of Finance 50: 131–55. [Google Scholar] [CrossRef]
- Fama, Eugene F., and Kenneth R. French. 1996. Multifactor explanations of asset pricing anomalies. Journal of Finance 51: 55–84. [Google Scholar] [CrossRef]
- Fernandez, Carmen, Eduardo Ley, and Mark F. J. Steel. 2001. Benchmark priors for Bayesian model averaging. Journal of Econometrics 100: 381–427. [Google Scholar] [CrossRef] [Green Version]
- George, Edward I., and Robert E. McCulloch. 1997. Approaches for Bayesian variable selection. Statistica Sinica 7: 339–74. [Google Scholar]
- Ghosh, J. K., and Rahul Mukerjee. 1993. Frequentist validity of highest posterior density regions in the multiparameter case. Annals of the Institute of Statistical Mathematics 45: 293–302. [Google Scholar] [CrossRef]
- Guerre, Emmanuel, and Pascal Lavergne. 2005. Data-driven rate-optimal specification testing in regression models. The Annals of Statistics 33: 840–70. [Google Scholar] [CrossRef]
- Hamilton, James D. 1994. Time Series Analysis. Princeton: Princeton University Press. [Google Scholar]
- Hansen, Bruce E. 2000. Testing for structural change in conditional models. Journal of Econometrics 97: 93–115. [Google Scholar] [CrossRef] [Green Version]
- Hatanaka, Michio, and Kazuo Yamada. 1999. A unit root test in the presence of structural changes in I(1) and I(0) models. In Cointegration, Causality and Forecasting: A Festschrift in Honour of Clive W. J Granger. Edited by R. F. Engle and H. White. Oxford: Oxford University Press. [Google Scholar]
- Hoeting, Jennifer A., David Madigan, Adrian E. Raftery, and Chris T. Volinsky. 1999. Bayesian model averaging: a tutorial. Statistical Science 14: 382–401. [Google Scholar]
- Horowitz, Joel L., and Vladimir G. Spokoiny. 2001. An adaptive, rate-optimal test of a parametric model against a nonparametric alternative. Econometrica 69: 599–631. [Google Scholar] [CrossRef]
- Jeffreys, Harold. 1961. The Theory of Probability, 3rd ed. Oxford: Oxford University Press. [Google Scholar]
- Kass, Robert E., and Larry Wasserman. 1995. A reference Bayesian test for nested hypotheses and its relationship to the Schwarz criterion. Journal of the American Statistical Association 90: 928–34. [Google Scholar] [CrossRef]
- Kastner, Gregor. 2019. Sparse Bayesian time-varying covariance estimation in many dimensions. Journal of Econometrics 210: 98–115. [Google Scholar] [CrossRef]
- Lepski, Oleg V., Enno Mammen, and Vladimir G. Spokoiny. 1997. Optimal spatial adaptation to inhomogeneous smoothness: An approach based on kernel estimates with variable bandwidth selectors. Annals of Statistics 25: 929–47. [Google Scholar]
- Liang, Feng, Rui Paulo, German Molina, Merlise A. Clyde, and Jim O. Berger. 2008. Mixtures of g priors for Bayesian variable selection. Journal of the American Statistical Association 103: 410–23. [Google Scholar] [CrossRef]
- Mukerjee, Rahul, and Dipak K. Dey. 1993. Frequentist validity of posterior quantiles in the presence of a nuisance parameter: Higher order asymptotics. Biometrika 80: 499–505. [Google Scholar] [CrossRef]
- Mumtaz, Haroon, and Konstantinos Theodoridis. 2018. The changing transmission of uncertainty shocks in the US. Journal of Business & Economic Statistics 36: 239–52. [Google Scholar]
- Nyblom, Jukka. 1989. Testing for the constancy of parameters over time. Journal of the American Statistical Association 84: 348–68. [Google Scholar] [CrossRef]
- Pacifico, Antonio. 2019. Structural Panel Bayesian VAR Model to Deal with Model Misspecification and Unobserved Heterogeneity Problems. Econometrics 7: 8. [Google Scholar] [CrossRef]
- Perron, Pierre, and Xiaokang Zhu. 2005. Structural breaks with deterministic and stochastic trends. Journal of Econometrics 129: 65–119. [Google Scholar] [CrossRef]
- Pesaran, M. Hashem, and Allan Timmermann. 2002. Market timing and return prediction under model instability. Journal of Empirical Finance 9: 495–510. [Google Scholar] [CrossRef] [Green Version]
- Pesaran, M. Hashem, and Allan Timmermann. 2007. Selection of estimation window in the presence of breaks. Journal of Econometrics 137: 134–61. [Google Scholar] [CrossRef]
- Petrova, Katerina. 2019. A quasi-Bayesian local likelihood approach to time varying parameter VAR models. Journal of Econometrics. [Google Scholar] [CrossRef]
- Raftery, Adrian E., Miroslav Kárný, and Pavel Ettler. 2010. Online prediction under model uncertainty via dynamic model averaging: Application to a cold rolling mill. Technometrics 52: 52–66. [Google Scholar] [CrossRef]
- Robert, Christian. 2007. The Bayesian Choice: From Decision-Theoretic Foundations to Computational Implementation. Berlin: Springer. [Google Scholar]
- Shively, Thomas S., Robert Kohn, and Sally Wood. 1999. Variable selection and function estimation in additive nonparametric regression using a data-based prior (with discussion). Journal of the American Statistical Association 94: 777–806. [Google Scholar] [CrossRef]
- Smith, Michael, and Robert Kohn. 1996. Nonparametric regression using Bayesian variable selection. Journal of Econometrics 75: 317–43. [Google Scholar] [CrossRef]
- Spokoiny, Vladimir. 2001. Data-driven testing the fit of linear models. Mathematical Methods of Statistics 10: 465–97. [Google Scholar]
- Stock, James H., and Mark W. Watson. 1996. Evidence on structural instability in macroeconomic time series relations. Journal of Business & Economic Statistics 14: 11–30. [Google Scholar]
- West, Mike, and Jeff Harrison. 1997. Bayesian Forecasting and Dynamic Models, 2nd ed. New York: Springer. [Google Scholar]
- Zellner, Arnold. 1986. On assessing prior distributions and Bayesian regression analysis with g-prior distributions. In Bayesian Inference and Decision Techniques: Essays in Honor of Bruno de Finetti. Edited by P. K. Goel and A. Zellner. Amsterdam: North-Holland and Elsevier, pp. 233–43. [Google Scholar]
1. | An alternative approach is to specify and estimate regression models under the hypothesis of constant coefficients, and then test for the presence of structural breaks (e.g., Chow 1960; Brown et al. 1975; Nyblom 1989) and identify the breakpoints (e.g., Andrews 1993; Andrews et al. 1996; Bai and Perron 1998). |
2. | For Monte Carlo studies of frequentist breakpoint detection methods see Hansen (2000) and Bai and Perron (2006). |
3. | Before arriving to the specification of priors proposed in this paper, we tried several other specifications and found that the results can indeed be quite sensitive to rescalings if one chooses other priors. |
4. | A MATLAB function is made available on the internet at https://www.statlect.com/time_varying_regression.htm. The function can be called with the instruction:
|
5. | However, in their model the coefficients do not follow a random walk (they are mean reverting). They also use different priors: While we impose Zellner’s g-prior on (see Section 2), they impose the Minnesota prior. |
6. | However, they assume that is proportional to the identity matrix, while we assume that also is proportional to . Furthermore, they do not estimate V. Their analysis is focused on the one-step-ahead predictions of , which can be computed without knowing V. They approach the estimation of in a number of different ways, but none of them allows one to derive analytically a posterior distribution for . |
7. | In their model the prior covariance of is proportional to , but X is the design matrix of a pre-sample not used for the estimation of the model. |
8. | For example, in the empirical part of the paper, setting and , we are able to simultaneously consider 5 different orders of magnitude of instability. With the same number of points q and an arithmetic grid, we would have been able to consider only 2 orders. |
9. | Note, however, that the parallelism can be misleading, as Bayesian p-values have only a frequentist validity in special cases. Ghosh and Mukerjee (1993); Mukerjee and Dey (1993); Datta and Ghosh (1995), and Datta (1996) provide conditions that priors have to satisfy in order for Bayesian p-values to have also frequentist validity. |
10. | We estimate the breakpoint dates sequentially rather than simultaneously to achieve a reasonable computational speed in our Monte Carlo simulations. Denote by the number of breakpoints estimated by the sequential procedure and by the number estimated by the simultaneous procedure. Given that we are using the SIC criterion to choose the number of points, if , then ; otherwise, if , then . Therefore, in our Monte Carlo simulations (where the true number of breakpoints is either 0 or 1), the sequential procedure provides a better estimate of the number of breakpoints than the simultaneous procedure. |
11. | This identification problem is discussed in a very similar context by Hatanaka and Yamada (1999) and Perron and Zhu (2005). |
Panel A—One Lag in the Estimated Equation | |||||||
---|---|---|---|---|---|---|---|
TVC-MA | TVC-MS | TVC-P | TVC-p | OLS | BP | BP-MA | |
T = 100 | 0.0257 | 0.0286 | 0.0239 | 0.0215 | 0.0205 | 0.0540 | 0.0221 |
T = 200 | 0.0138 | 0.0142 | 0.0121 | 0.0106 | 0.0102 | 0.0479 | 0.0108 |
T = 500 | 0.0066 | 0.0056 | 0.0049 | 0.0043 | 0.0040 | 0.0070 | 0.0043 |
T = 100 | 0.0271 | 0.0303 | 0.0249 | 0.0219 | 0.0207 | 0.0730 | 0.0227 |
T = 200 | 0.0136 | 0.0141 | 0.0119 | 0.0104 | 0.0099 | 0.0329 | 0.0106 |
T = 500 | 0.0064 | 0.0055 | 0.0048 | 0.0041 | 0.0038 | 0.0132 | 0.0039 |
T = 100 | 0.0308 | 0.0352 | 0.0278 | 0.0234 | 0.0219 | 0.1537 | 0.0272 |
T = 200 | 0.0141 | 0.0145 | 0.0121 | 0.0103 | 0.0097 | 0.0853 | 0.0105 |
T = 500 | 0.0062 | 0.0053 | 0.0046 | 0.0039 | 0.0037 | 0.0179 | 0.0038 |
T = 100 | 4.7933 | 5.3498 | 4.7233 | 4.7344 | 0.0666 | 1.9222 | 0.1145 |
T = 200 | 2.5390 | 2.7297 | 2.5072 | 2.5057 | 0.0244 | 0.7189 | 0.0367 |
T = 500 | 0.4448 | 0.4792 | 0.4301 | 0.4287 | 0.0062 | 0.1338 | 0.0072 |
Panel B—Three Lags in the Estimated Equation | |||||||
TVC-MA | TVC-MS | TVC-P | TVC-p | OLS | BP | BP-MA | |
T = 100 | 0.0885 | 0.0964 | 0.0860 | 0.0804 | 0.0785 | 0.0827 | 0.0795 |
T = 200 | 0.0433 | 0.0453 | 0.0414 | 0.0385 | 0.0376 | 0.0379 | 0.0378 |
T = 500 | 0.0186 | 0.0175 | 0.0162 | 0.0150 | 0.0146 | 0.0146 | 0.0146 |
T = 100 | 0.0953 | 0.1033 | 0.0920 | 0.0863 | 0.0842 | 0.0905 | 0.0850 |
T = 200 | 0.0457 | 0.0478 | 0.0434 | 0.0406 | 0.0398 | 0.0399 | 0.0398 |
T = 500 | 0.0194 | 0.0184 | 0.0170 | 0.0159 | 0.0155 | 0.0157 | 0.0156 |
T = 100 | 0.1049 | 0.1134 | 0.1017 | 0.0959 | 0.0940 | 0.1024 | 0.0947 |
T = 200 | 0.0511 | 0.0532 | 0.0484 | 0.0454 | 0.0442 | 0.0447 | 0.0443 |
T = 500 | 0.0215 | 0.0203 | 0.0188 | 0.0174 | 0.0169 | 0.0169 | 0.0169 |
T = 100 | 0.7213 | 0.9599 | 0.6244 | 0.6713 | 0.1505 | 0.1830 | 0.1531 |
T = 200 | 0.2619 | 0.3052 | 0.2317 | 0.2425 | 0.0632 | 0.0867 | 0.0636 |
T = 500 | 0.0327 | 0.0310 | 0.0279 | 0.0264 | 0.0213 | 0.0213 | 0.0213 |
Panel A—One Lag in the Estimated Equation | |||||||
---|---|---|---|---|---|---|---|
TVC-MA | TVC-MS | TVC-P | TVC-p | OLS | BP | BP-MA | |
T = 100 | 1.0384 | 1.0438 | 1.0358 | 1.0319 | 1.0301 | 1.0942 | 1.0332 |
T = 200 | 1.0208 | 1.0214 | 1.0181 | 1.0161 | 1.0155 | 1.2914 | 1.0165 |
T = 500 | 1.0101 | 1.0084 | 1.0073 | 1.0064 | 1.0060 | 1.0121 | 1.0073 |
T = 100 | 1.0393 | 1.0443 | 1.0366 | 1.0325 | 1.0311 | 1.0978 | 1.0351 |
T = 200 | 1.0217 | 1.0229 | 1.0193 | 1.0170 | 1.0159 | 1.0443 | 1.0168 |
T = 500 | 1.0101 | 1.0086 | 1.0075 | 1.0065 | 1.0060 | 1.0144 | 1.0061 |
T = 100 | 1.0453 | 1.0526 | 1.0423 | 1.0371 | 1.0348 | 1.1301 | 1.0420 |
T = 200 | 1.0218 | 1.0230 | 1.0191 | 1.0162 | 1.0155 | 1.0757 | 1.0166 |
T = 500 | 1.0103 | 1.0089 | 1.0078 | 1.0065 | 1.0062 | 1.0229 | 1.0063 |
T = 100 | 1.2256 | 1.2710 | 1.2238 | 1.2206 | 1.0489 | 1.2199 | 1.0484 |
T = 200 | 1.1349 | 1.1548 | 1.1317 | 1.1306 | 1.0224 | 1.0496 | 1.0225 |
T = 500 | 1.0419 | 1.0462 | 1.0392 | 1.0377 | 1.0078 | 1.0198 | 1.0078 |
Panel B—Three Lags in the Estimated Equation | |||||||
TVC-MA | TVC-MS | TVC-P | TVC-p | OLS | BP | BP-MA | |
T = 100 | 1.0841 | 1.0914 | 1.0813 | 1.0762 | 1.0746 | 1.0808 | 1.0759 |
T = 200 | 1.0433 | 1.0454 | 1.0412 | 1.0386 | 1.0375 | 1.0379 | 1.0379 |
T = 500 | 1.0183 | 1.0171 | 1.0158 | 1.0146 | 1.0142 | 1.0143 | 1.0143 |
T = 100 | 1.0845 | 1.0923 | 1.0817 | 1.0769 | 1.0752 | 1.0928 | 1.0772 |
T = 200 | 1.0435 | 1.0454 | 1.0412 | 1.0380 | 1.0372 | 1.0375 | 1.0375 |
T = 500 | 1.0179 | 1.0167 | 1.0154 | 1.0144 | 1.0141 | 1.0141 | 1.0141 |
T = 100 | 1.0889 | 1.0967 | 1.0864 | 1.0816 | 1.0802 | 1.0855 | 1.0815 |
T = 200 | 1.0418 | 1.0435 | 1.0397 | 1.0373 | 1.0363 | 1.0369 | 1.0367 |
T = 500 | 1.0177 | 1.0168 | 1.0155 | 1.0143 | 1.0139 | 1.0140 | 1.0140 |
T = 100 | 1.1381 | 1.1705 | 1.1298 | 1.1353 | 1.0943 | 1.1128 | 1.0886 |
T = 200 | 1.0647 | 1.0727 | 1.0609 | 1.0617 | 1.0439 | 1.0504 | 1.0425 |
T = 500 | 1.0196 | 1.0192 | 1.0178 | 1.0171 | 1.0163 | 1.0160 | 1.0160 |
Panel A—One Lag in the Estimated Equation | |||||||
---|---|---|---|---|---|---|---|
TVC-MA | TVC-MS | TVC-P | TVC-p | OLS | BP | BP-MA | |
T = 100 | 0.1772 | 0.1767 | 0.1807 | 0.1943 | 0.3769 | 0.1737 | 0.2252 |
T = 200 | 0.1148 | 0.1145 | 0.1183 | 0.1250 | 0.3434 | 0.1088 | 0.1863 |
T = 500 | 0.0689 | 0.0692 | 0.0711 | 0.0741 | 0.3453 | 0.0452 | 0.1738 |
T = 100 | 0.1790 | 0.1792 | 0.1831 | 0.1951 | 0.3655 | 0.2140 | 0.2248 |
T = 200 | 0.1237 | 0.1228 | 0.1265 | 0.1346 | 0.3545 | 0.1053 | 0.1930 |
T = 500 | 0.0692 | 0.0694 | 0.0713 | 0.0744 | 0.3452 | 0.0533 | 0.1733 |
T = 100 | 0.1887 | 0.1906 | 0.1924 | 0.2038 | 0.3705 | 0.3016 | 0.2226 |
T = 200 | 0.1261 | 0.1255 | 0.1290 | 0.1360 | 0.3463 | 0.1309 | 0.1894 |
T = 500 | 0.0707 | 0.0708 | 0.0729 | 0.0760 | 0.3449 | 0.0803 | 0.1733 |
T = 100 | 5.1868 | 5.7741 | 5.1508 | 5.1618 | 0.4283 | 2.5268 | 0.4261 |
T = 200 | 3.3069 | 3.5054 | 3.2908 | 3.2956 | 0.3626 | 1.4681 | 0.2585 |
T = 500 | 0.7054 | 0.7362 | 0.7032 | 0.7053 | 0.3542 | 0.6431 | 0.1946 |
Panel B—Three Lags in the Estimated Equation | |||||||
TVC-MA | TVC-MS | TVC-P | TVC-p | OLS | BP | BP-MA | |
T = 100 | 0.3299 | 0.3368 | 0.3322 | 0.3424 | 0.4389 | 0.3628 | 0.3320 |
T = 200 | 0.2127 | 0.2144 | 0.2145 | 0.2202 | 0.3761 | 0.2186 | 0.2421 |
T = 500 | 0.1357 | 0.1361 | 0.1372 | 0.1400 | 0.3540 | 0.1053 | 0.1974 |
T = 100 | 0.3272 | 0.3347 | 0.3291 | 0.3377 | 0.4368 | 0.3948 | 0.3292 |
T = 200 | 0.2201 | 0.2218 | 0.2215 | 0.2270 | 0.3826 | 0.2194 | 0.2460 |
T = 500 | 0.1401 | 0.1405 | 0.1413 | 0.1435 | 0.3507 | 0.1078 | 0.1956 |
T = 100 | 0.3529 | 0.3627 | 0.3547 | 0.3628 | 0.4585 | 0.4161 | 0.3476 |
T = 200 | 0.2420 | 0.2441 | 0.2436 | 0.2499 | 0.3913 | 0.2501 | 0.2591 |
T = 500 | 0.1475 | 0.1478 | 0.1485 | 0.1513 | 0.3638 | 0.1155 | 0.2040 |
T = 100 | 1.3642 | 1.6216 | 1.3155 | 1.3468 | 0.5319 | 1.3814 | 0.5141 |
T = 200 | 0.7399 | 0.8044 | 0.7279 | 0.7389 | 0.4296 | 0.7678 | 0.3266 |
T = 500 | 0.2532 | 0.2569 | 0.2541 | 0.2565 | 0.3651 | 0.3168 | 0.2147 |
Panel A—One Lag in the Estimated Equation | |||||||
---|---|---|---|---|---|---|---|
TVC-MA | TVC-MS | TVC-P | TVC-p | OLS | BP | BP-MA | |
T = 100 | 1.2975 | 1.2989 | 1.3030 | 1.3243 | 1.6029 | 1.3322 | 1.3784 |
T = 200 | 1.1810 | 1.1794 | 1.1867 | 1.1987 | 1.5315 | 1.1777 | 1.2937 |
T = 500 | 1.1101 | 1.1105 | 1.1138 | 1.1208 | 1.6174 | 1.0930 | 1.3093 |
T = 100 | 1.2645 | 1.2643 | 1.2753 | 1.2991 | 1.5421 | 1.2941 | 1.3343 |
T = 200 | 1.2031 | 1.2039 | 1.2095 | 1.2192 | 1.6492 | 1.1700 | 1.3604 |
T = 500 | 1.1099 | 1.1106 | 1.1141 | 1.1213 | 1.6162 | 1.0908 | 1.3064 |
T = 100 | 1.2814 | 1.2815 | 1.2882 | 1.3202 | 1.5781 | 1.3859 | 1.3552 |
T = 200 | 1.1693 | 1.1684 | 1.1742 | 1.1876 | 1.5674 | 1.1481 | 1.2955 |
T = 500 | 1.1082 | 1.1085 | 1.1126 | 1.1187 | 1.6158 | 1.0867 | 1.3069 |
T = 100 | 1.4014 | 1.4357 | 1.4051 | 1.4245 | 1.6442 | 1.3933 | 1.3764 |
T = 200 | 1.2821 | 1.2951 | 1.2841 | 1.2929 | 1.5419 | 1.2005 | 1.3027 |
T = 500 | 1.1807 | 1.1857 | 1.1846 | 1.1887 | 1.6844 | 1.1552 | 1.3481 |
Panel B—Three Lags in the Estimated Equation | |||||||
TVC-MA | TVC-MS | TVC-P | TVC-p | OLS | BP | BP-MA | |
T = 100 | 1.4007 | 1.4022 | 1.4042 | 1.4272 | 1.6117 | 1.5408 | 1.4496 |
T = 200 | 1.2689 | 1.2692 | 1.2738 | 1.2855 | 1.5737 | 1.3308 | 1.3612 |
T = 500 | 1.1770 | 1.1773 | 1.1803 | 1.1877 | 1.5753 | 1.1150 | 1.3172 |
T = 100 | 1.4022 | 1.4059 | 1.4070 | 1.4255 | 1.6490 | 1.6550 | 1.4823 |
T = 200 | 1.2832 | 1.2835 | 1.2872 | 1.2969 | 1.6013 | 1.3515 | 1.3825 |
T = 500 | 1.1576 | 1.1582 | 1.1600 | 1.1634 | 1.5436 | 1.1125 | 1.2884 |
T = 100 | 1.4206 | 1.4245 | 1.4242 | 1.4426 | 1.6930 | 1.5160 | 1.4954 |
T = 200 | 1.2864 | 1.2831 | 1.2891 | 1.3045 | 1.6034 | 1.2747 | 1.3675 |
T = 500 | 1.1733 | 1.1727 | 1.1758 | 1.1820 | 1.6348 | 1.1153 | 1.3417 |
T = 100 | 1.4718 | 1.5054 | 1.4852 | 1.5134 | 1.6644 | 1.4521 | 1.4802 |
T = 200 | 1.3123 | 1.3224 | 1.3183 | 1.3365 | 1.6158 | 1.3670 | 1.3750 |
T = 500 | 1.1916 | 1.1934 | 1.1967 | 1.2029 | 1.5966 | 1.1138 | 1.3327 |
Panel A—One Lag in the Estimated Equation | |||||||
---|---|---|---|---|---|---|---|
TVC-MA | TVC-MS | TVC-P | TVC-p | OLS | BP | BP-MA | |
T = 100 | 0.1768 | 0.1778 | 0.1803 | 0.1939 | 0.3653 | 0.2333 | 0.2331 |
T = 200 | 0.1207 | 0.1210 | 0.1224 | 0.1280 | 0.3535 | 0.1914 | 0.2048 |
T = 500 | 0.0718 | 0.0718 | 0.0722 | 0.0735 | 0.3409 | 0.0925 | 0.1766 |
T = 100 | 0.1856 | 0.1865 | 0.1891 | 0.2031 | 0.3775 | 0.2689 | 0.2413 |
T = 200 | 0.1216 | 0.1219 | 0.1234 | 0.1287 | 0.3531 | 0.1635 | 0.2055 |
T = 500 | 0.0719 | 0.0720 | 0.0724 | 0.0735 | 0.3490 | 0.0982 | 0.1770 |
T = 100 | 0.2003 | 0.2042 | 0.2029 | 0.2146 | 0.3738 | 0.3252 | 0.2403 |
T = 200 | 0.1268 | 0.1275 | 0.1285 | 0.1333 | 0.3353 | 0.1982 | 0.1971 |
T = 500 | 0.0733 | 0.0733 | 0.0737 | 0.0747 | 0.3413 | 0.1108 | 0.1759 |
T = 100 | 5.8872 | 6.5930 | 5.8655 | 5.8674 | 0.4481 | 3.8089 | 0.4898 |
T = 200 | 3.2478 | 3.4124 | 3.2435 | 3.2428 | 0.3766 | 1.6324 | 0.2718 |
T = 500 | 0.8609 | 0.8916 | 0.8608 | 0.8609 | 0.3395 | 0.5805 | 0.1835 |
TVC-MA | TVC-MS | TVC-P | TVC-p | OLS | BP | BP-MA | |
T = 100 | 0.3279 | 0.3378 | 0.3304 | 0.3407 | 0.4386 | 0.3903 | 0.3544 |
T = 200 | 0.2187 | 0.2221 | 0.2202 | 0.2247 | 0.3810 | 0.2514 | 0.2723 |
T = 500 | 0.1349 | 0.1358 | 0.1354 | 0.1364 | 0.3526 | 0.1559 | 0.2151 |
T = 100 | 0.3369 | 0.3483 | 0.3391 | 0.3478 | 0.4395 | 0.3954 | 0.3553 |
T = 200 | 0.2279 | 0.2313 | 0.2292 | 0.2339 | 0.3834 | 0.2607 | 0.2753 |
T = 500 | 0.1389 | 0.1397 | 0.1393 | 0.1404 | 0.3553 | 0.1608 | 0.2176 |
T = 100 | 0.3608 | 0.3735 | 0.3632 | 0.3728 | 0.4500 | 0.4528 | 0.3665 |
T = 200 | 0.2397 | 0.2442 | 0.2410 | 0.2456 | 0.3901 | 0.2756 | 0.2806 |
T = 500 | 0.1489 | 0.1498 | 0.1493 | 0.1504 | 0.3655 | 0.1686 | 0.2241 |
T = 100 | 1.3679 | 1.6564 | 1.3119 | 1.3457 | 0.5345 | 1.2136 | 0.5107 |
T = 200 | 0.7702 | 0.8373 | 0.7648 | 0.7690 | 0.4231 | 0.5511 | 0.3365 |
T = 500 | 0.2467 | 0.2511 | 0.2472 | 0.2480 | 0.3633 | 0.2323 | 0.2291 |
Panel A—One Lag in the Estimated Equation | |||||||
---|---|---|---|---|---|---|---|
TVC-MA | TVC-MS | TVC-P | TVC-p | OLS | BP | BP-MA | |
T = 100 | 1.2637 | 1.2660 | 1.2696 | 1.2887 | 1.5793 | 1.3656 | 1.3679 |
T = 200 | 1.1825 | 1.1833 | 1.1858 | 1.1942 | 1.5627 | 1.2622 | 1.3261 |
T = 500 | 1.1094 | 1.1096 | 1.1101 | 1.1119 | 1.5546 | 1.1515 | 1.2784 |
T = 100 | 1.2760 | 1.2751 | 1.2830 | 1.3093 | 1.5948 | 1.4155 | 1.3831 |
T = 200 | 1.1867 | 1.1868 | 1.1894 | 1.2000 | 1.5554 | 1.2433 | 1.3298 |
T = 500 | 1.1161 | 1.1159 | 1.1170 | 1.1192 | 1.5943 | 1.1564 | 1.3054 |
T = 100 | 1.3009 | 1.3026 | 1.3070 | 1.3339 | 1.6125 | 1.4257 | 1.4093 |
T = 200 | 1.1894 | 1.1903 | 1.1926 | 1.2047 | 1.5493 | 1.2723 | 1.3286 |
T = 500 | 1.1116 | 1.1115 | 1.1123 | 1.1139 | 1.5399 | 1.1672 | 1.2843 |
T = 100 | 1.4028 | 1.4363 | 1.4067 | 1.4220 | 1.6146 | 1.4992 | 1.3924 |
T = 200 | 1.2848 | 1.2972 | 1.2867 | 1.2917 | 1.5963 | 1.2675 | 1.3379 |
T = 500 | 1.1564 | 1.1596 | 1.1574 | 1.1588 | 1.5581 | 1.1752 | 1.2882 |
TVC-MA | TVC-MS | TVC-P | TVC-p | OLS | BP | BP-MA | |
T = 100 | 1.4312 | 1.4333 | 1.4359 | 1.4636 | 1.6667 | 1.5028 | 1.5340 |
T = 200 | 1.2653 | 1.2653 | 1.2681 | 1.2800 | 1.5577 | 1.3186 | 1.3912 |
T = 500 | 1.1713 | 1.1715 | 1.1723 | 1.1737 | 1.5745 | 1.2156 | 1.3453 |
T = 100 | 1.4214 | 1.4247 | 1.4252 | 1.4476 | 1.6373 | 1.4982 | 1.5109 |
T = 200 | 1.2954 | 1.2961 | 1.2993 | 1.3114 | 1.6280 | 1.3697 | 1.4369 |
T = 500 | 1.1687 | 1.1689 | 1.1695 | 1.1711 | 1.5631 | 1.2145 | 1.3402 |
T = 100 | 1.4303 | 1.4342 | 1.4353 | 1.4614 | 1.6616 | 1.5534 | 1.5281 |
T = 200 | 1.2803 | 1.2816 | 1.2829 | 1.2941 | 1.5949 | 1.3301 | 1.4126 |
T = 500 | 1.1652 | 1.1648 | 1.1659 | 1.1681 | 1.5584 | 1.2240 | 1.3402 |
T = 100 | 1.5138 | 1.5417 | 1.5246 | 1.5664 | 1.6848 | 1.5574 | 1.5380 |
T = 200 | 1.3405 | 1.3533 | 1.3469 | 1.3624 | 1.6228 | 1.3507 | 1.4279 |
T = 500 | 1.1838 | 1.1851 | 1.1853 | 1.1889 | 1.5842 | 1.2445 | 1.3475 |
TVC-MA | TVC-MS | TVC-P | TVC-p | OLS | BP | BP-MA | |
---|---|---|---|---|---|---|---|
Mean | 2.94% | 2.48% | 2.70% | 2.15% | 0% | −121.72% | 3.13% |
Standard dev. | 11.02% | 11.68% | 10.82% | 10.63% | 0% | −557.07% | 6.00% |
First quartile | −2.14% | −2.67% | −2.14% | −2.23% | 0% | −46.94% | −0.14% |
Median | 1.85% | 1.30% | 1.17% | 0.11% | 0% | −5.76% | 1.53% |
Third quartile | 7.83% | 7.75% | 7.47% | 6.84% | 0% | 0.20% | 6.37% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciapanna, E.; Taboga, M. Bayesian Analysis of Coefficient Instability in Dynamic Regressions. Econometrics 2019, 7, 29. https://doi.org/10.3390/econometrics7030029
Ciapanna E, Taboga M. Bayesian Analysis of Coefficient Instability in Dynamic Regressions. Econometrics. 2019; 7(3):29. https://doi.org/10.3390/econometrics7030029
Chicago/Turabian StyleCiapanna, Emanuela, and Marco Taboga. 2019. "Bayesian Analysis of Coefficient Instability in Dynamic Regressions" Econometrics 7, no. 3: 29. https://doi.org/10.3390/econometrics7030029
APA StyleCiapanna, E., & Taboga, M. (2019). Bayesian Analysis of Coefficient Instability in Dynamic Regressions. Econometrics, 7(3), 29. https://doi.org/10.3390/econometrics7030029