Goodness–of–Fit Tests for Bivariate Time Series of Counts
Abstract
:1. Introduction
2. Goodness-of-Fit Methods for Univariate Time Series of Counts
3. Bivariate Models for Time Series of Counts
3.1. Bivariate INAR Model
3.2. Bivariate PAR Model
4. Goodness-of-Fit Tests
4.1. Tests for the BINAR Model
4.2. Tests for the BPAR Model
4.3. Computations
5. Asymptotics
5.1. Asymptotics of the Test Statistic: BINAR Case
- (A.1)
- Let be a non-negative function satisfying .
- (A.2)
- Let follow model (6), where the spectral radius of is smaller than 1.
- (A.3)
- Let correspond to distributions with finite second moment. Furthermore, let the second partial derivatives of with respect to exist and be continuous in and suppose that
- (A.4)
- Let be an estimator of such that for some
- Generate , where are iid and follow the distribution with PGF .
- Compute pseudo-observations , using Equation (6) with replaced by , and replaced by .
- Fit the model (6) using , and compute the bootstrap estimator of .
- Compute the corresponding test statistic .
- Repeat steps 1–4 several times, say B, and obtain the sequence of test statistics, .
- Compute the p-value as .
5.2. Asymptotics of the Test Statistic: BPAR Case
- (B.1)
- The series is strictly stationary solution of (7) with parameters such that and is compact.
- (B.2)
- The estimator of the parameter is such that
6. Extension to Generalized BPAR Model
7. Simulations
8. Real-Data Application
9. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Proofs
Appendix A.1. Proof of Theorem 1
- There exist constants and such that
- The marginal distributions of converge to the marginal distributions of Q uniformly in and .
Appendix A.2. Proof of Theorem 3
References
- Ahmad, Ali, and Christian Francq. 2016. Poisson QMLE of count time series models. Journal of Time Series Analysis 37: 291–314. [Google Scholar] [CrossRef]
- Al-Osh, Mohamed A., and Abdulhamid A. Alzaid. 1987. First–order integer–valued autoregressive (INAR(1)) process. Journal of Time Series Analysis 8: 261–75. [Google Scholar] [CrossRef]
- Aleksandrov, Boris, and Christian H. Weiss. 2020. Testing the dispersion structure of count time series using Pearson residuals. AStA Advances in Statistical Analysis 104: 325–61. [Google Scholar] [CrossRef]
- Andreassen, Camilla Mondrup. 2013. Models and Inference for Correlated Count Data. Ph.D. thesis, Aarhus University, Aarhus, Denmark. [Google Scholar]
- Biswas, Atanu, and Peter Xue Kun Song. 2009. Discrete-valued ARMA processes. Statistics and Probability Letters 79: 1884–89. [Google Scholar] [CrossRef]
- Ciu, Yan, Qi Li, and Fukang Zhu. 2020. Flexible bivariate Poisson integer-valued GARCH model. Annals of the Institute of Statistical Mathematics 72: 1449–77. [Google Scholar]
- Ciu, Yan, and Fukang Zhu. 2018. A new bivariate integer-valued GARCH model allowing for negative cross-correlation. TEST 27: 428–52. [Google Scholar]
- Davis, Richard A., Scott H. Holan, Robert Lund, and Nalini Ravishanker. 2015. Handbook of Discrete-Valued Time Series. New York: Chapman and Hall/CRC. [Google Scholar]
- Davis, Richard A., and Heng Liu. 2016. Theory and inference for a class of nonlinear models with application to time series of counts. Statistica Sinica 26: 1673–707. [Google Scholar] [CrossRef] [Green Version]
- Du, Jin-Guan, and Yuan Li. 1991. The integer-valued autoregressive (INAR(p)) model. Journal of Time Series Analysis 12: 129–42. [Google Scholar]
- Dunn, James E. 1967. Characterization of the bivariate negative binomial distribution. Journal of the Arkansas Academy of Science 21: 77–86. [Google Scholar]
- Esquível, Manuel L. 2008. Probability generating functions for discrete real–valued random variables. Theory of Probability and Its Applications 52: 40–57. [Google Scholar] [CrossRef] [Green Version]
- Ferland, René, Alain Latour, and Driss Oraichi. 2006. Integer-valued GARCH processes. Journal of Time Series Analysis 27: 923–42. [Google Scholar] [CrossRef]
- Fokianos, Konstantinos. 2012. Count time series. In Handbook of Statistics 30: Time Series—Methods and Applications. Edited by Tata Subba Rao, Suhasini Subba Rao and Calyampudi Radhakrishna Rao. Amsterdam: Elsevier, pp. 315–47. [Google Scholar]
- Fokianos, Konstantinos, and Michael H. Neumann. 2013. A goodness–of–fit tests for Poisson count processes. Electronic Journal of Statistics 7: 793–819. [Google Scholar] [CrossRef]
- Fokianos, Konstantinos, Andres Rahbek, and Dag Tjøstheim. 2009. Poisson autoregression. Journal of the American Statistical Association 104: 1430–39. [Google Scholar] [CrossRef] [Green Version]
- Fokianos, Konstantinos, and Dag Tjøstheim. 2012. Nonlinear Poisson autoregression. Annals of the Institute of Statistical Mathematics 64: 1205–25. [Google Scholar] [CrossRef]
- Franke, Jürgen, and T. Subba Rao. 1995. Multivariate First-Order Integer-Valued Autoregressions. Technical Report. Kaiserslautern: Universität Kaiserslautern. [Google Scholar]
- Freeland, R. Keith. 1998. Statistical Analysis of Discrete Time series with Application to the Analysis of Workers’ Compensation Claims Data. Ph.D. thesis, Management Science Division, Faculty of Commerce and Business Administration, University of British Columbia, Vancouver, BC, Canada. Available online: https://open.library.ubc.ca/cIRcle/collections/ubctheses (accessed on 25 February 2021).
- Freeland, R. Keith, and Brendan P. M. McCabe. 2004. Analysis of low count time series data by Poisson autoregression. Journal of Time Series Analysis 25: 701–22. [Google Scholar] [CrossRef]
- Giacomini, Raffaella, Dmitris Politis, and Halbert White. 2013. A warp-speed method for conducting Monte Carlo experiments involving bootstrap estimators. Econometric Theory 29: 567–89. [Google Scholar] [CrossRef] [Green Version]
- Heinen, Andréas, and Erick Rengifo. 2007. Multivariate autoregressive modeling of time series count data using copulas. Journal of Empirical Finance 14: 564–583. [Google Scholar] [CrossRef]
- Hudecová, Šárka, Marie Hušková, and Simos G. Meintanis. 2015. Tests for time series of counts based on the probability generating function. Statistics 49: 316–37. [Google Scholar] [CrossRef] [Green Version]
- Ibragimov, Il’dar Abdulovich, and Rafail Zalmonovich Chasminskij. 1981. Statistical Estimation, Asymptotic Theory. New York: Springer. [Google Scholar]
- Jiménez-Gamero, M. Dolores, Sangyeol Lee, and Simos G. Meintanis. 2020. Goodness-of-fit tests for parametric specifications of conditionally heteroscedastic models. TEST 29: 682–703. [Google Scholar] [CrossRef]
- Kim, Hanwool, and Sangyeol Lee. 2017. On first order integer-valued autoregressive process with Katz family innovations. Journal of Statistical Computation and Simulation 87: 546–62. [Google Scholar] [CrossRef]
- Kocherlakota, Subrahmaniam, and Kathleen Kocherlakota. 1992. Bivariate Discrete Distributions. New York: Marcel Dekker Inc. [Google Scholar]
- Lakshminarayana, J., S. N. Narahari Pandit, and K. Srinivasa Rao. 1999. On a bivariate Poisson distribution. Communications in Statistics—Theory and Methods 28: 267–76. [Google Scholar] [CrossRef]
- Latour, Alain. 1997. The multivariate GINAR(p) process. Advances in Applied Probability 29: 228–48. [Google Scholar] [CrossRef]
- Lee, Youngmi, Sangyeol Lee, and Dag Tjøstheim. 2018. Asymptotic normality and parameter change test for bivariate Poisson INGARCH models. TEST 27: 52–69. [Google Scholar] [CrossRef]
- Leucht, Anne, Jens-Peter Kreiss, and Michael H. Neumann. 2015. A model specification test for GARCH(1,1) processes. Scandinavian Journal of Statistics 42: 1167–93. [Google Scholar] [CrossRef] [Green Version]
- Liu, Heng. 2012. Some Models for Time Series of Counts. Ph.D. thesis, Columbia University, New York, NY, USA. [Google Scholar]
- Mamode Khan, Naushad Ali, Yuvraj Sunecher, Vandna Jowaheer, Miroslav M. Ristić, and Maleika Heenaye–Mamode Khan. 2019. Investigating GQL–based inferential approaches for non-stationary BINAR(1) model under different quantum of over-dispersion with application. Computational Statistics 34: 1275–313. [Google Scholar] [CrossRef]
- McKenzie, Eddie. 1985. Some simple models for discrete variate time series. Water Resources Bulletin 21: 645–50. [Google Scholar] [CrossRef]
- McKenzie, Eddie. 2003. Discrete variate time series. Stochastic Processes: Modelling and Simulation. In Handbook of Statistics. Amsterdam: Elsevier, vol. 21, pp. 573–606. [Google Scholar]
- Meintanis, Simos G., and Dimitris Karlis. 2014. Validation tests for the innovation distribution in INAR time series models. Computational Statistics 29: 1221–41. [Google Scholar] [CrossRef]
- Neumann, Michael H. 2011. Absolute regularity and ergodicity of Poisson count processes. Bernoulli 17: 1258–84. [Google Scholar] [CrossRef] [Green Version]
- Partrat, Christian. 1994. Compound model for two dependent kinds of claim. Insurance: Mathematics and Economics 15: 219–31. [Google Scholar] [CrossRef]
- Pedeli, Xanthi, and Dimitris Karlis. 2011. A bivariate INAR(1) process with application. Statistical Modelling 11: 325–49. [Google Scholar] [CrossRef]
- Pedeli, Xanthi, and Dimitris Karlis. 2013a. On composite likelihood estimation of a multivariate INAR(1) model. Journal of Time Series Analysis 34: 206–20. [Google Scholar] [CrossRef]
- Pedeli, Xanthi, and Dimitris Karlis. 2013b. On estimation of the bivariate Poisson INAR process. Communications in Statistics—Simulation and Computation 42: 514–33. [Google Scholar] [CrossRef]
- Pedeli, Xanthi, and Dimitris Karlis. 2013c. Some properties of multivariate INAR(1) processes. Computational Statistics & Data Analysis 67: 213–25. [Google Scholar]
- Popović, Predrag M., Aleksandar S. Nastić, and Miroslav M. Ristić. 2018. Residual analysis with bivariate INAR models. REVSTAT 16: 349–64. [Google Scholar]
- R Core Team. 2019. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. [Google Scholar]
- Santos, Cláudia, Isabel Pereira, and Manuel G. Scotto. 2019. On the theory of periodic multivariate INAR processes. Statistical Papers. [Google Scholar] [CrossRef]
- Schweer, Sebastian. 2016. A goodness–of–fit test for integer valued autoregressive processes. Journal of Time Series Analysis 37: 77–98. [Google Scholar] [CrossRef]
- Schweer, Sebastian, and Christian H. Weiss. 2014. Compound Poisson INAR(1) processes: Stochastic properties and testing for overdispersion. Computational Statistics & Data Analysis 77: 267–84. [Google Scholar]
- Scotto, Manuel G., Christian H. Weiss, and Sónia Gouveia. 2015. Thinning-based models in the analysis of integer-valued time series: A review. Statistical Modelling 15: 590–618. [Google Scholar] [CrossRef]
- Shi, Peng, Xiaoping Feng, and Jean-Philippe Boucher. 2016. Multilevel modeling of insurance claims using copulas. The Annals of Applied Statistics 10: 834–36. [Google Scholar] [CrossRef]
- Steutel, Fred W., and Klaas van Harn. 1979. Discrete analogues of self-decomposability and stability. Annals of Probability 7: 893–99. [Google Scholar] [CrossRef]
- Vernic, Raluca. 1997. On the bivariate generalized poisson distribution. ASTIN Bulletin 27: 22–32. [Google Scholar] [CrossRef] [Green Version]
- Weiss, Christian H. 2018a. Discrete-Valued Time Series. Hoboken: John Wiley & Sons. [Google Scholar]
- Weiss, Christian H. 2018b. Goodness–of–fit testing of a count series’ marginal distribution. Metrika 81: 619–51. [Google Scholar] [CrossRef]
- Weiss, Christian H., Annika Homburg, and Pedro Puig. 2019. Testing for zero inflation and overdispersion in INAR(1) models. Statistical Papers 60: 473–98. [Google Scholar] [CrossRef]
- Weiss, Christian H., and Sebastian Schweer. 2015. Detecting overdispersion in INARCH(1) processes. Statistica Neerlandica 69: 281–97. [Google Scholar] [CrossRef]
- Zhu, Rong, and Harry Joe. 2006. Modelling count data time series with Markov processes based on binomial thinning. Journal of Time Series Analysis 27: 725–38. [Google Scholar] [CrossRef]
Poisson BINAR | BPAR | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.01 | 0.05 | 0.10 | 0.01 | 0.05 | 0.10 | 0.01 | 0.05 | 0.10 | 0.01 | 0.05 | 0.10 | |
100 | 0.000 | 0.010 | 0.030 | 0.011 | 0.039 | 0.104 | 0.002 | 0.029 | 0.075 | 0.013 | 0.077 | 0.145 |
200 | 0.001 | 0.010 | 0.048 | 0.017 | 0.065 | 0.114 | 0.006 | 0.040 | 0.076 | 0.028 | 0.094 | 0.168 |
500 | 0.002 | 0.025 | 0.069 | 0.005 | 0.049 | 0.105 | 0.005 | 0.050 | 0.094 | 0.014 | 0.053 | 0.127 |
0.01 | 0.05 | 0.10 | 0.01 | 0.05 | 0.10 | 0.01 | 0.05 | 0.10 | 0.01 | 0.05 | 0.10 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
100 | 0.005 | 0.139 | 0.328 | 0.004 | 0.065 | 0.135 | 0.357 | 0.581 | 0.694 | 0.080 | 0.196 | 0.296 |
200 | 0.120 | 0.639 | 0.902 | 0.009 | 0.119 | 0.331 | 0.715 | 0.897 | 0.955 | 0.167 | 0.432 | 0.540 |
500 | 0.951 | 1.000 | 1.000 | 0.132 | 0.884 | 0.984 | 1.000 | 1.000 | 1.000 | 0.637 | 0.861 | 0.920 |
0.01 | 0.05 | 0.10 | 0.01 | 0.05 | 0.10 | 0.01 | 0.05 | 0.10 | 0.01 | 0.05 | 0.10 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
100 | 0.085 | 0.357 | 0.469 | 0.060 | 0.169 | 0.265 | 0.347 | 0.672 | 0.821 | 0.124 | 0.350 | 0.526 |
200 | 0.446 | 0.740 | 0.833 | 0.143 | 0.345 | 0.460 | 0.448 | 0.871 | 0.956 | 0.203 | 0.568 | 0.746 |
500 | 0.942 | 0.989 | 0.994 | 0.502 | 0.701 | 0.797 | 0.810 | 0.996 | 1.000 | 0.524 | 0.874 | 0.957 |
Test for Data from BPAR | Test for Data from BINAR(1) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.01 | 0.05 | 0.10 | 0.01 | 0.05 | 0.10 | 0.01 | 0.05 | 0.10 | 0.01 | 0.05 | 0.10 | |
100 | 0.003 | 0.022 | 0.061 | 0.613 | 0.791 | 0.852 | 0.003 | 0.024 | 0.082 | 0.011 | 0.244 | 0.626 |
200 | 0.006 | 0.027 | 0.102 | 0.955 | 0.988 | 0.994 | 0.004 | 0.058 | 0.168 | 0.109 | 0.810 | 0.942 |
500 | 0.009 | 0.136 | 0.278 | 1.000 | 1.000 | 1.000 | 0.030 | 0.151 | 0.346 | 0.724 | 0.980 | 0.995 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hudecová, Š.; Hušková, M.; Meintanis, S.G. Goodness–of–Fit Tests for Bivariate Time Series of Counts. Econometrics 2021, 9, 10. https://doi.org/10.3390/econometrics9010010
Hudecová Š, Hušková M, Meintanis SG. Goodness–of–Fit Tests for Bivariate Time Series of Counts. Econometrics. 2021; 9(1):10. https://doi.org/10.3390/econometrics9010010
Chicago/Turabian StyleHudecová, Šárka, Marie Hušková, and Simos G. Meintanis. 2021. "Goodness–of–Fit Tests for Bivariate Time Series of Counts" Econometrics 9, no. 1: 10. https://doi.org/10.3390/econometrics9010010
APA StyleHudecová, Š., Hušková, M., & Meintanis, S. G. (2021). Goodness–of–Fit Tests for Bivariate Time Series of Counts. Econometrics, 9(1), 10. https://doi.org/10.3390/econometrics9010010