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Abstract: In Peninsular India, the Krishna River basin is the second largest river basin that is
overutilized and more vulnerable to climate change. The main aim of this study is to determine the
future projection of monthly streamflows in the Krishna River basin for Historic (1980–2004) and
Future (2020–2044, 2045–2069, 2070–2094) climate scenarios (RCP 4.5 and 8.5, respectively), with the
help of the Soil Water and Assessment Tool (SWAT). SWAT model parameters are optimized using
SWAT-CUP during calibration (1975 to 1990) and validation (1991–2003) periods using observed
discharge data at 5 gauging stations. The Cordinated Regional Downscaling EXperiment (CORDEX)
provides the future projections for meteorological variables with different high-resolution Global
Climate Models (GCM). Reliability Ensemble Averaging (REA) is used to analyze the uncertainty
of meteorological variables associated within the multiple GCMs for simulating streamflow. REA-
projected climate parameters are validated with IMD-simulated data. The results indicate that
REA performs well throughout the basin, with the exception of the area near the Krishna River’s
headwaters. For the RCP 4.5 scenario, the simulated monsoon streamflow values at Mantralayam
gauge station are 716.3 m3/s per month for the historic period (1980–2004), 615.6 m3/s per month
for the future1 period (2020–2044), 658.4 m3/s per month for the future2 period (2045–2069), and
748.9 m3/s per month for the future3 period (2070–2094). Under the RCP 4.5 scenario, lower values
of about 50% are simulated during the winter. Future streamflow projections at Mantralayam and
Pondhugala gauge stations are lower by 30 to 50% when compared to historic streamflow under RCP
4.5. When compared to the other two future periods, trends in streamflow throughout the basin show
a decreasing trend in the first future period. Water managers in developing water management can
use the recommendations made in this study as preliminary information and adaptation practices for
the Krishna River basin.

Keywords: climate change; RCM; Reliability Ensemble Averaging (REA); river basin; streamflow;
SWAT

1. Introduction

Many studies have shown that climate change is an important factor affecting water
resources [1–3]. The majority of the effects of climate change are associated with warming,
shifts in precipitation patterns, and increases in annual mean temperature trends [4].
Seasonal rainfall in Southern Asia exhibits inter-decadal variability, a significant decreasing
trend, and frequent deficit monsoons due to regional inhomogeneities [5]. Furthermore,
most Asian countries are experiencing an increase in water demand due to increases in
population, irrigated agriculture, and industry [6]. In India, there is evidence that climate
extreme events will be on the rise as a result of changes in intense rainfall events and
abrupt temperature changes [5,7–10]. The rate of change of extreme weather events, such
as droughts or floods, will affect the quantity and quality of water resources, human health,
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environmental conditions, and agricultural production as a consequence [11–13]. Hence, it
is important to analyze the impact of climate change on water resources at the basin level in
order to understand the variability of streamflow in future periods and to provide support
for regional resource management [14,15].

Representative Concentration Pathways (RCPs) are the scenarios proposed by IPCC
AR5 to represent future greenhouse gas emissions. In the Indian summer monsoon, the
model scenario projects an increase in both mean and extreme precipitation [5]. The use of
regional climate models, as opposed to global climate models, has been shown to be more
efficient for assessing the effects of climate change on hydrology at the basin level [16–18].
The reliability ensemble averaging (REA) method proposed by [19] is used to reduce
model uncertainty. The nonparametric empirical bias correction method is used to correct
additional bias in the ensemble climate data. Quantile–Quantile (QQ) mapping is the
correction adopted to improve the efficiency of climate model data for future periods used
in impact and vulnerability studies [20].

The hydrological model serves as a tool for determining the quantity and quality of
hydrologic variables in combination with climate model data [21–24]. Distributed models
provide detailed heterogeneity by spatially using a greater number of parameters in the wa-
tershed [25]. Several studies have emphasized the importance of streamflow variability in
a watershed, both spatially and temporally, rather than the overall water budget [17,26–29].
However, the components of the water budget, including evapotranspiration fluxes and soil
moisture storage, are very important for closing the water budget [1,3,30]. The SWAT model
proves to be reasonably superior in predicting future streamflow under changing climate
by accurately producing the observed streamflow through calibration. Yet, SWAT faces a
significant challenge in identifying the appropriate model parameters during calibration.
To evaluate the performance of the model’s calibration and validation, Sensitivity Analysis
(SA) and Uncertainty Analysis (UA) were performed [17,18,31]. SA and UA are the two
processes that enable the model’s uncertainty to be reduced. The SWAT-CUP combines
various calibration and uncertainty analysis techniques, such as Generalized Likelihood
Uncertainty Estimation (GLUE), Markov Chain Monte Carlo (MCMC), Parameter Solution
(Parasol), and Sequential Uncertainty Fitting (SUFI-2) [32].The SUFI-2 calibration technique
developed by [33,34] seems to be superior, as it requires fewer simulations to obtain good
quality calibration and uncertainty results. The model errors are proposed to be the addi-
tional uncertainty created by comparing the simulated streamflows and RCM-simulated
streamflows with the streamflow data measured at the gauging station [17,35].

In India, the impact of climate change analysis has been carried out extensively in the
realm of hydrology and water resources. For instance, the impact of climate change on
streamflow [36–40] and on precipitation [41–44] is analyzed over various river basins in
India. In some cases, the uncertainty analysis is carried out in order to provide qualitative
projections using REA [45], Bayesian analysis [20] and the possibilistic approach [46].

Decreased runoff with an increase in water consumption is seen in the Krishna River
basin over the past decades due to climate change and anthropogenic activities [47]. Climate
change is expected to have a significant impact on the hydrology of the Krishna River basin,
with some noticeable trends in the future [42,48]. These include a decrease in water yield
and average precipitation, as well as an increase in average temperature, in most areas
of the Krishna River basin. According to the International Water Management Institute
(IWMI) research reports [49–51], the Krishna River is categorized as an economically water
scarce and food deficit region, suggesting the need for increased water-related investments.
Future water supply and demand in the basin are also affected by factors such as spatial
variation and future population growth, cropping intensity, and ground water use, along
with industrial, domestic, and environmental water demand. Tirupathi et al. (2018) [52]
performed an analysis of extreme events in the Krishna River basin using multiple models
of RCP 4.5 and RCP 8.5 scenarios. They concluded that shifts in the monsoon rainfall and
extreme rainfall events in the non-monsoon period must be considered to mitigate the risks
in water management strategies.
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Based on the availability of data, spatial and temporal variations in climate parameters
and streamflow are analyzed without considering any man-made structures, such as dams,
diversions, etc. The climate model data obtained from five RCMs under the representative
concentration pathways (RCP) 4.5 scenario and four RCMs under the RCP 8.5 scenario
are used. The RCP 4.5 is a stabilization scenario in which total radiative forcing stabilizes
shortly after 2100 while not exceeding the long-run radiative forcing target level [53]. The
RCP 8.5 is a high greenhouse gas emissions scenario that projects a significant increase in
GHG emissions and concentrations over time, resulting in a radiative forcing of 8.5 W/m2

at the end of the century [54]. Based on the uncertainties in the climate predictions of
the different RCMs, as proposed by [55] and [52], the importance of developing the REA
method is supported. The use of REA climate data reduces the uncertainty of climate
model data. In addition to REA, precipitation must be corrected by QQ mapping in order
to project future climate change.

The SWAT model was calibrated and validated using streamflow data from multi-
ple gauge stations. The SUFI-2 algorithm was used to calibrate, validate, and analyze
uncertainty [32,33]. To assess the impacts of climate change, the REA precipitation and
minimum and maximum temperature data were used to simulate the streamflow in the
future. From 1975 to 2100, the monsoon and monthly variations of the climate parameters
and streamflow were tracked. The Mann–Kendall trend test is used to analyze the trend of
streamflow in the basin at the subbasin level for all future periods. The research questions
addressed in the present study are: (i) How does one minimize the uncertainty associated
with the use of multiple climate models? (ii) How well does the SWAT model calibrate and
validate the hydrological responses at multiple gauging points? (iii) What is the possible
impact of climate change on streamflow over the Krishna River basin in India?

Following a brief introduction to the work, the study area characteristics and data
used are discussed. This work also includes the overall methodology and inputs used, as
well as the models used and their significance and uncertainty techniques. The results and
discussions in the following section include the bias corrected climate variables, as well as
the calibration, validation, and performance evaluation of the Hydrological model, followed
by an analysis of the results, which associates the effects of climate change on streamflow
with their trends. Finally, the conclusion section discusses the methods’ strengths and
weaknesses, as well as remarks and proposed elements for future research.

2. Study Area and Data Used
2.1. Study Area

The River Krishna basin is one of the longest rivers in central southern India, with
a total surface area of 258,948 sq. km. The basin is located between 13◦10′ to 19◦22′

North latitudes and 73◦17′ to 81◦9′ East longitudes, as shown in Figure 1. It covers four
Indian states: Karnataka (43.8%), Andhra Pradesh and Telangana (29.81% together), and
Maharashtra (26.36%). The river has several tributaries, with Ghatprabha, Malprabha, and
Tungabadhra joining on the right and Bhima, Musi, and Munneru joining on the left. The
Krishna basin is divided into seven subbasins: Bhima Upper, Bhima Lower, Krishna Upper,
Krishna Middle, Krishna Lower, Tungabadhra Upper, and Tungabadhra Lower.

The climate of the basin is tropical, with an average annual precipitation of 960 mm
and minimum and maximum temperatures of 20.73 ◦C and 32.2 ◦C, respectively. The basin
experiences varying average annual precipitation, with a maximum value of 2000 mm in
the Western Ghats region and values ranging from 300 mm to 1000 mm in the delta region.
Streamflow has been characterized by low flows from March to May and high flows from
August to November.
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Figure 1. Location map of the Krishna River basin.

The total population of the Krishna River basin was 74.2 million as per the 2011 census.
Approximately 68% of the population in the basin lives in rural areas, with agriculture
serving as the main source of income [56]. Approximately 77% of the total geographical
area of the basin is cultivable, with the main crops identified as rice, corn, cotton, sorghum,
millet, and sugar cane, along with a variety of horticulture crops. Increased population
necessitates increased consumption of water for domestic and industrial purposes, putting
strain on the basin’s water resources. The huge projects being developed in all states have
caused interstate conflicts over water rights. According to [51], the basin is nearing closure
because consumption exceeds the availability of water in the basin, which suggests the
need to assess monthly changes in climate parameters and their impact on runoff when
developing a water allocation policy.

2.2. Data and Methods

Table 1 lists various datasets and their resolutions. DEM estimates the basin’s min-
imum, maximum, and mean elevations as 18 m, 1903 m, and 518 m, respectively. Ap-
proximately 50.47% of the total area falls under the elevation zone of 500 m to 750 m.
The basin is made up of 132 climate grid points measuring 50 km × 50 km, as well as
47 hydrometeorological stations.

Missing values are contributed by the streamflow data obtained from hydrometeoro-
logical stations. Due to missing stream flow data at many stations, only 14 out of 47 stations’
data were used for calibration and validation of the model. Land use information for
the Krishna basin is divided into 14 categories, as shown in Figure 2a, with Agriculture
(72.56%) the most important. Figure 2b represents a soil map dominated by fine-textured
soil. Laterite and lateritic soils, red soils, alluvium, black soils, mixed soils (red and black,
red and yellow, etc.), and alkaline and saline soils are the important soil types found in
the basin. A slope map with a maximum of 5 classes based on the percentage rise was
generated using DEM, as shown in Figure 2c.
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Table 1. Description and source of hydro geospatial and climatological database.

Data Type Resolution Source

Digital Elevation Model 30 m Advanced Space borne Thermal Emission and Reflection Radiometer (ASTER),
Land use/Land cover 400 m https://swat.tamu.edu/data/india-dataset/, accessed on 15 March 2019
Soil 1:5,000,000 https://swat.tamu.edu/data/india-dataset/, accessed on 15 March 2019
Observed Climate data 0.5◦ grid Indian Meteorological Department, Pune.

Climate Model data 0.5◦ grid
Centre for Climate Change Research (CCCR), Indian Institute of Meteorology
(IITM) Pune. ftp://cccr.tropmet.res.in/iRODS_DATA/CORDEX-Data,
accessed on 23 May 2017

River Discharge 14 stations Central Water Commission (CWC)
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Based on the availability of data, spatial and temporal variations in climate parameters
and streamflow are analyzed without considering any man-made structures, such as dams,
diversions, etc. The climate model data obtained from five RCMs as mentioned in Table 2
under the representative concentration pathways (RCP) 4.5 scenario and RCP 8.5 scenario
are used with the assumption that emissions will be reduced by the end of the century.
RCP 4.5 is a stabilization scenario in which total radiative forcing stabilizes shortly after
2100 while not exceeding the long-run radiative forcing target level [53]. RCP 8.5 is a high
greenhouse gas emissions scenario that projects a significant increase in GHG emissions
and concentrations over time, resulting in a radiative forcing of 8.5 W/m2 at the end of the
century [54].

https://swat.tamu.edu/data/india-dataset/
https://swat.tamu.edu/data/india-dataset/
ftp://cccr.tropmet.res.in/iRODS_DATA/CORDEX-Data
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Table 2. Details of RCM models.

Acronym RCP Full Name

ACCESS 4.5 8.5 Australian Community Climate and Earth
System Simulator

CCSM4 4.5 8.5 Community Climate System Model

CNRM_CM5 4.5 8.5 Centre National de Recherché
Meteorologiques

NorESM 1 4.5 8.5 Norwegian Earth System Model 1
MPI-ESM-LR 4.5 - Max Plank Institute Earth System Model

The SWAT model was used to simulate streamflow for the reference period using
observed daily meteorological data from 1970–2005. It has a spatial resolution of 0.5◦ × 0.5◦

and includes maximum temperature (Tmax), minimum temperature (Tmin), and precipita-
tion. The SWAT model was calibrated and validated using daily stream flow data collected
from 14 gauge stations. To simulate the hydrologic characteristics for future periods using
SWAT, an ensemble of high resolution past and future climate projections from regional
scales—with mid-range and high-range concentration pathways of RCP 4.5 and 8.5 green-
house gas (GHG) emissions scenario from the Centre for Climate Change Research (CCCR),
Indian Institute of Tropical Meteorology, Pune, India—was obtained.

The inter-model uncertainty of climate models is estimated using the REA method, as
discussed in the following sections.

2.3. Reliability Ensemble Averaging (REA)

Giorgi and Mearns (2003) [57] developed the REA method, which allows for the best
estimate and reliable climate model data with a range of uncertainty. The calculation
of REA follows a two-step approach: model performance and model convergence. For
this study, REA is quantified using the algorithm developed by [19] for variables such as
precipitation and minimum and maximum temperatures. Model performance is measured
using the inverse of the Root Mean Square Error (RMSE), obtained from the Cumulative
Distribution Functions (CDF) deviations between observed and simulated values for the
period 1975–2005. Uncertainty in RCM’s future data is quantified using the model con-
vergence approach, which considers the CDF deviations between individual RCMs and
the weighted mean CDF derived from the model performance approach. In REA, initial
weights (Equation (2)) are calculated based on the RCM’s ability to simulate historical
observations in terms of root mean square error (RMSE) (Equation (1)), which indicates the
model performance criteria.

RMSE = [
1
N ∑N

i=1(Observedi − RCMi)]

1
2

(1)

Wint =

[
1

RMSEi

]
[∑n

I=1
1

RMSEi
]

(2)

The following are the steps used to quantify the reliability of the climate model and to
obtain the reliability ensemble mean:

• Divide the total range of RCM variable data into 10 equal intervals of CDF with respect
to the observed time series data and compute the RMSE. Inverse values of RMSE are
considered as the proportional weights, and the sum of the weights of all RCMs is
equal to one. Higher weights are assigned to models that perform better.

• Model convergence criteria are applied by considering the weights obtained from
model performance criteria as the initial weight for their respective RCMs.

• The product of the initial weight (Wint) and the corresponding CDF of the future
simulated with RCM (FRCMi) is taken as the weighted mean CDF (Fwm):
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Fwm = ∑
i

Wint(i) x FRCMi (3)

• The same procedure is repeated again as in Step 1, but the RMSE calculated with
respect to the weighted CDF and future projection of RCM and weights obtained will
be used in the next iteration for the respective RCMs, and a new weighted CDF with
different weights is computed.

• Repeat Steps 2 to 4 until the same weight repeats and the model convergence criteria
is met.

This procedure is adapted to all grid points and three meteorological variables, such
as precipitation and minimum and maximum temperatures, under the RCP 4.5 and 8.5 sce-
narios in the study area due to the varied nature of RCMs for the different grids and climate
variables. The ensemble average of the climate variables for a particular grid is calculated
using the weighted sum of the product of corresponding final weights with the respective
meteorological variables. Thus, an ensemble weighted average of each climate variable is
given as input to the distributed hydrological model for each grid instead of providing
each RCM input separately. The minimum and maximum temperatures of the climate
model data projects values that are similar to the observed data. The REA precipitation
has additional bias, which is reduced by adopting the non-parametric quantile mapping
method described in the following section.

2.4. Quantile Mapping Method of Bias Correction

Quantile mapping is the most used bias correction technique due to its ease of handling
large amounts of data and its computational efficiency [58,59]. The statistical bias correction
used for ensemble precipitation obtained from the REA method was equal distance-based
quantile-to-quantile matching. For a given variable, the CDF of REA data is first matched
with the CDF of observations, resulting in the generation of a correction function based
on the quantile. Then, this correction function is used to remove bias from the REA data
quantile by quantile (Figure 3).
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2.5. SWAT Model Setup

SWAT is a physically based, semi-distributed, and continuous process-based model
that is used to simulate the rainfall–runoff process. It also predicts the hydrological impacts
of climate change on water resources. The model was built using geospatial data (DEM, land
use, soil and slope maps) and the hydrometeorological data. The watershed was divided
into 50 subbasins with a threshold area of 60,000 sq km, and the subbasins were further
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divided into 898 hydrological response units (HRUs) based on 5, 10, and 10 threshold
values for land use, soil type, and slope class of the watershed, respectively. As land use
plays a major role in simulating the surface runoff, land use with less than 5% is eliminated.
While determining HRUs of the basin, 10% of the soil and slope classes in the subbasin is
eliminated. The increased number of subbasins and HRUs helps in projecting the variability
of the watershed spatially. The observed meteorological data from 1970 to 2005 were used to
simulate the streamflow, with a warm up period of 5 years. The calibration and validation
of the model were carried out with SWAT-CUP.

2.6. Calibration and Validation of the Model Using SWAT-CUP

Uncertainties caused by input data, model structures, and parameters can be re-
duced using SWAT’s calibration and uncertainty programs. The model was calibrated and
validated using SUFI-2, which aims to cover the most measured data with the smallest
uncertainty bands. It can map the uncertainties of parameter ranges and propose the
95% prediction uncertainty (95PPU), which helps in evaluating overall uncertainty in the
hydrologic response output. The model performance was evaluated using the R2, Nash–
Sutcliff Efficiency (NSE) and Percent bias (PBias). The ranges of R2 and NSE are 0 and 1,
respectively, with a value close to 1 indicating high model performance and efficiency. The
low-magnitude values of PBias indicate better simulations, with an optimum value as 0.
Positive values indicate underestimation of the model, while negative values indicate
overestimation of the model.

Monthly streamflow data from 1975 to 1990 were used to calibrate the model, and
data from 1991 to 2003 were used to validate it. Streamflow is generated by the summation
of variables, such as base flow, interflow, and surface runoff. The parameters responsible
for these variables were used against monthly streamflow data from five gauge stations.
Previous studies, as well as the minimum and maximum parameter ranges established by
the SWAT user guide, are used for the calibration of the Krishna River basin. SUFI-2 was
used to set up the 15-parameter combinations for each iteration, and the SWAT simulation
for each combination of approximately 500 iterations generated the uncertainty measures
and goodness of fit by establishing new parameter ranges. The calibration process was
repeated until acceptable statistics of goodness of fit were generated. The final parameter
ranges obtained were used for model validation. The uncertainty in the measured stream-
flow was accounted for by including the estimated error of 10%. The statistical indices used
for evaluating the model simulation and predictability are the coefficient of determination
(R2), Nash–Sutcliff Efficiency (NSE), and Percent Bias (PBias).

2.7. Statistical Methods

For each basin, statistically significant trends in annual streamflow were determined
using the Mann–Kendall’s (M-K) tau non-parametric test. If the probability value is less
than or equal to 0.10, i.e., Kendall’s tau value equals zero, the trend was considered to
be statistically significant. The degree of correspondence between two variables x and y,
where x represents time and y represents streamflow, was calculated using Kendall’s tau.
If τ = 1, then the data shows perfect positive correlation; if τ = −1, then the data exhibits
perfect negative correlation; and τ = 0 shows no correlation between the pairs. Thus, a
positive value of τ represents an increase in trend, while a negative value of τ represents a
decrease in trend. The magnitude of the trend was estimated using Sen’s method [60–62].

3. Results and Discusion
3.1. Future Projections of REA Climate Data

The observed and simulated REA precipitation and maximum and minimum tempera-
tures are compared before and after bias correction. The results show that the observed and
simulated REA temperature values agreed well, and that the precipitation data projects
the same after the biases are reduced using Q-Q mapping. The climate parameters ob-
tained cover the years 1975 to 2099. The analysis divides the total period into four 25-year
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segments: Historic (1980–2004), Future1 (2020–2044), Future2 (2045–2069), and Future3
(2070–2094). Figure 4 depicts the annual average precipitation (in mm/year) for the historic
and future periods under RCP 4.5 and 8.5 scenarios.
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Figure 4. Annual average precipitation variation in the Krishna basin for (a) Historic, Future1
(b,e), Future2 (c,f), and Future3 (d,g) periods under RCP 4.5 and RCP 8.5 scenarios.

The annual average variations of precipitation show an increase in the western part of
the basin in Future1 and a decrease in the Future2 period under RCP 4.5. Under RCP 8.5,
annual average precipitation decreases by 36% in Future1, 10% in Future2, and 60% in
Future3. However, Mishra and Lilhare (2016) [11] projected a continuous increasing trend of
water balance components, along with rainfall and air temperature, in both the RCP 4.5 and
8.5 scenarios of CMIP5 models in the Krishna River basin. Rainfall increases approximately
8–20% under RCP 4.5 and 10–40% in the case of RCP 8.5 by the end century. Similarly, the
surface runoff, streamflow, and ET were projected to increase of approximately 20–55%,
20–60%, and 4–9% under RCP 4.5 and 35–120%, 40–120%, and 2–8% in the case of RCP
8.5 by the end of the century. Tirupathi et al. (2018) [52] projected a decrease in rainfall
under future scenarios for different climate models. In the present study, daily minimum
and maximum temperatures within the basin show higher values in the Future periods
as compared to the Historic period under both scenarios. The Future2 period has higher
temperature values than the other two future periods. Figures 5 and 6 depicts seasonal
variations of precipitation, i.e., monsoon (June–September), winter (October–January), and
summer (February–May), for the RCP 4.5 and 8.5 scenarios.
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From Figure 5, it is observed that the spatial distribution of precipitation is uniform
throughout the basin, with extreme values projected in the Bhima and Middle Krishna
subbasins of the Krishna River under RCP 4.5. A seasonal shift in precipitation is also
projected in the winter and summer seasons of the Bhima and Tungabadra subbasins
in the Future2 period and Bhima and Middle Krishna subbasins in the Future3 period.
Extreme precipitation values are observed throughout the basin for the three future periods
of the RCP 8.5 scenario, while the remaining portion of the basin projects precipitation
values similar to the other scenario. The number of the extreme precipitation values is
reduced in the future periods of the basin under RCP 8.5 as compared to RCP 4.5. Reduced
precipitation is observed in the future periods as compared to the Historic period, with
increased precipitation values in the central portion of the basin of the Future3 period.
Precipitation values in the winter and summer seasons of the future periods are higher than
in the Historic period. This reflects the shift in the monsoon in future periods. Even extreme
values are observed in the central parts of the basin as compared to the Historic period in
the winter and summer seasons. The maximum temperature represents an increase in all
seasons in the future periods when compared to the Historic period. There is an overall
increase in precipitation and temperatures in the Future3 period in the basin.

The temporal variations of the REA climate data of the future periods compared to
the Historic period projects high precipitation values from June to October in Future2 &
Future3, and they are more or less similar to the values of the Historic period. Peak values
are observed in June (560 mm in Historic, 410 mm in Future1, 490 mm in Future2, and
520 mm in Future3), with a minimum value of 280 mm in Future1 and a maximum value
of 485 mm in Future3 is detected in July under the RCP 4.5 scenario. Extreme precipitation
values under the RCP 8.5 scenario range from 757.6 mm/day (monsoon) to 563.5 mm/day
(summer). Precipitation values have increased overall in all months of the Future3 period
of the RCP 4.5 scenario. Minimum and maximum temperature values rise in all months
of the future period. From March to May, high temperatures are expected to range from
20 ◦C/day to 28 ◦C/day for the minimum temperature and 33 ◦C/day to 44 ◦C/day for
the maximum temperature. Peak values of maximum temperatures observed in April
are 34 ◦C/day in the Historic period, 36 ◦C/day in the Future1 period, 42 ◦C/day in the
Future2 period, and 44 ◦C/day in the Future3 period in the RCP 4.5 scenario. Under the
RCP 8.5 scenario, the basin experiences an overall temperature increase of 20 to 30 ◦C/day.

3.2. Calibration and Validation of the SWAT Model

The SUFI-2 algorithm was used to analyze the sensitivity and uncertainty of the SWAT
model. For the calibration process, 15 parameters (from the SWAT-CUP manual) were
chosen and used. The optimum parameter range obtained for the watershed calibration
with the identical initial parameter ranges are shown in Table 3. An increase in stream
flow is obtained with higher CN values and a decrease in baseflow and vice versa [63].
Whereas from Table 3, the actual CN are changed in relation to the 5% change to obtain the
calibration. In this study, the rate of change of the streamflow is inconsistent with baseflow
due to the change in CN values.

For example, the initial range of ESCO (Soil Evaporation Compensation Factor) is 0.4 to
0.8, but the final range is 0.94, 0.55, 0.83, 0.46, and 0.54 for the gauge stations Huvinhedgi,
Narsingapur, Yadgir, Damercherla, and Keesara. The decrease in the ESCO values permits
water from lower layers to upper layers to compensate the water deficit and leads to high
soil evapotranspiration, thereby decreasing the surface runoff and baseflow. Thus, the
changes in ESCO have a promising impact on the decreased rate in the streamflow values
of the basin [64]. Table 4 represents the R2, NSE, and PBias values obtained at five gauge
stations during the calibration and validation periods.
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Table 3. Calibration parameter ranges for the five-gauge stations.

S.No Parameter Initial Final Huvinhedgi Narsingpur Yadgir Damercherla Keesara

1 R__CN2.mgt −0.20 0.20 −0.19 0.03 0.05 −0.17 0.17

2 V__ALPHA_BF.gw 0 1.00 0.20 0.96 0.95 0.16 0.26

3 V__GW_DELAY.gw 0 500 275 45 427 414 352

4 V__GWQMN.gw 0 5000 1.24 1.75 1.70 1050 1100

5 V__GW_REVAP.gw 0.02 0.20 0.19 0.19 0.17 0.16 0.14

6 R__SOL_K(..).sol 0.14 0.99 0.99 0.37 0.66 0.55 0.72

7 R__SOL_AWC(..).sol −0.15 0.60 0.04 0.55 0.29 0.34 0.42

8 R__SOL_BD(..).sol 0.05 0.70 0.69 0.12 0.67 0.61 0.58

9 V__ALPHA_BNK.rte 0.00 1.00 0.60 0.40 0.43 0.36 0.65

10 V__CH_N2.rte −0.09 0.09 0.09 0.11 0.08 0.07 0.04

11 V__CH_K2.rte 18.72 103.96 88.36 86.75 47.45 48.42 53.26

12 V__ESCO.hru 0 1.00 0.94 0.55 0.83 0.46 0.62

13 R__EPCO.hru 0 1.00 0.30 0.59 0.16 0.51 0.48

14 R__SLSUBBSN.hru −0.12 0.30 0.13 0.09 −0.05 0.25 0.06

Where V__ represents that existing parameter, value is to be replaced by the given value and R__ represents that
existing parameter value to be multiplied by (1+ a given value). Bold values representing the sensitive param.

Table 4. Goodness of fit parameters for calibration and validation periods.

Stream Gauge Station
Calibration Validation

R2 NSE PBias R2 NSE PBias

Huvinhedgi 0.62 0.62 −13.50 0.42 0.42 79.80

Narsingapur 0.62 0.52 −41.90 0.50 0.47 −73.50

Yadgir 0.86 0.58 −27.10 0.40 0.32 −88.50

Damercherla 0.80 0.75 −8.35 0.58 0.43 −57.80

Keesara 0.68 0.62 −12.40 0.52 0.48 65.40

The performance of the model may suffer as a result of any combination of errors, such
as geospatial data, including the land use and soil map, climate data, and the difference
between the observed and simulated streamflow. However, the R2 and NSE values for
the calibration range from 0.52 to 0.86 and 0.32 to 0.58, respectively, indicating that the
performance was good and satisfactory during the calibration and validation periods.

The average thickness of the 95PPU band indicates the calibration strength and repre-
sents the width of the uncertainty interval, and it must be as small as possible. The 95PPU
plot projects the uncertainty band generated during the calibration and validation of the
model. The monthly time series of observed and simulated streamflows obtained with
the fitted parameter value of the five gauge stations projects the minimum variations in
streamflow dynamics over the calibration and validation periods.

Comparisons of the observed mean monthly streamflow and those produced by SWAT
using REA data at three gauge stations (Figure 7)—i.e., the Huvinhedgi outlet of the Upper
Bhima, Lower Bhima and Upper Krishna; the Mantralayam outlet of the Upper and Lower
Tungabadhra; and the Pondhugala outlet of the Krishna River basin. The observed stream-
flow in July and August is more variable than the simulated streamflow at Huvinhedgi,
whereas the model projects similar streamflow at Mantralayam in months other than June
and July. The Pondhugala, downstream of the Huvinhedgi and Mantralayam, shows a
similar pattern in mean monthly streamflow, with maximum flows in August, September,
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and October. The errors in the mean monthly streamflow may be due to the failure to
account for reservoirs and changes in land use in the Krishna River basin.
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3.3. Future Streamflow Projections

According to the climate projections, lower streamflows are simulated for the future
periods. Flow Duration Curves (FDCs) at three gauge stations—Huvinhedgi (Figure 8),
Mantralayam (Figure 9), and Pondhugala (Figure 10)—are used to explain the relation-
ship between the magnitude and frequency of streamflow for the future periods. These
curves enumerate the flow of exceedance for a given level of probability developed on
an annual, monsoon, and non-monsoon basis, assisting water managers in determining
water availability in the face of climate change. Figure 8 depicts the FDC of the Huvinhedgi
gauge station, representing total flows upstream of the basin, which demonstrates an
overall decrease in flows during the Future1 period, with flows during theFuture2 and
Future3 periods comparable to the historic period. Though Future2 and Future3 project an
increase in precipitation for the basin, there is a decrease in high flows (flows that exceed
10–30% of time) and low flows are (flows that exceed 80% of time), which is mainly due to
a likely increase in temperatures. The median flows (flows that exceed 30–70% of time) are
similar to the Historic period flows. Both scenarios project similar patterns of curves with
changes in quantity, with RCP 4.5 projecting comparatively fewer quantities than RCP 8.5.

The annual FDC of the Mantralayam and Pondhugala stations shows a decrease in high
and low flows, but an increase in median flows. Flows are decreasing in the Future1 period.
In the monsoon period, high flows are forecast throughout the period, with lower values
in future periods compared to the Historic period. However, Nikam et al. (2018) [65]
projected an increase in streamflow under the RCP 4.5 and 8.5 scenarios using IITMRegCM4-
4 predictions that are calibrated and validated at single gauge stations. In the present study,
the streamflows are simulated using REA climate data, which is calibrated and validated at
multiple gauge stations. Many studies have even reported that the Krishna River basin is
becoming more vulnerable as a result of increased human consumption of surface water
resources, a reduction in surface water base flows due to over abstraction of groundwater,
and fewer releases to the ocean. It also implies that hydrological changes anywhere
in the basin have a negative impact on total water availability and water distribution
spatially during droughts. Hence, it is important to consider water availability deficits
when developing water use policies in the Krishna River basin.
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3.4. Climate Change Impact Assessment

The impact of climate change on the basin’s water resources was estimated by imple-
menting the calibrated SWAT model with REA weather data obtained from an ensemble of
five RCM for one historic and three future periods. The streamflow analysis was carried out
on a monthly basis at three gauge stations: Huvinhedgi, Mantralayam, and Pondhugala.
The streamflow from the Bhima subbasins was accumulated at Huvinhedgi, where Ma-
tralayam is the outlet of the Tungabadra. Streamflows from Huvinhedgi and Mantralayam
meets the Pondhugala station, covering the remaining portions of the Krishna River basin.
The REA precipitation data used in the SWAT model for the Krishna River subbasins
(Figure 4) suggests a 20% decrease in the annual average values in the Future1 period
and 4 to 6% decrease in the Future2 period, with Future3 projected to be the same as the
Historic period. The monthly streamflow simulated by the SWAT model for the historic
and future periods were analyzed, and the results are projected as normalized values of
mean monthly flow as a ratio of annual flow. The absolute values of streamflow as the ratio
of mean monthly flow and annual flow (Figure 11a) and relative change with respect to the
Historic period (Figure 11b) show an increase in the Future2 and Future3 periods.

The absolute monthly flows simulated at Huvinhedgi during monsoon, winter, and
summer are 716.3 m3/s, 390.5 m3/s, and 26.2 m3/s for the Historic period, whereas they are
615.65 m3/s, 100.3 m3/s, and 10.3 m3/s for the Future1 period of the RCP 4.5 scenario, and
2900.2 m3/s, 389.8 m3/s, and 259.8 m3/s are the overestimated streamflow values under the
RCP 8.5 scenario. At Mantralayam and Pondhugala, the streamflows represent a decrease
of about 50%, 40%, and 30% in the Future1, Future2, and Future3 periods, respectively,
compared to the Historic period.
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Figure 11. Mean monthly flow as a ratio of mean annual flow for historic and future periods of RCP
4.5 (line plot) and RCP 8.5 (dotty plot) at (a) Huvinhedgi, (b) Mantralayam, and (c) Pondhugula
(top: absolute values, bottom: relative change).

The relative change in streamflow suggests that streamflow decreases throughout the
year, with an increase in June for the three gauge stations. Figure 11 shows mean monthly
flow as a ratio of the mean annual flow for the historic and future periods at Huvinhedgi,
Mantralayam, and Pondhugala (top: absolute values, bottom: relative change).

The Mann–Kendall Trend test was used to determine statistically significant trends in
the annual streamflow of 50 subbasins obtained from the SWAT model setup. In the analysis,
the MK test results of streamflow showed no trend at 21 subbasins among 50 subbasins
datasets during the Historic period. However a decreasing trend at 50 and 48 subbasins is
shown in the Future1 period under the RCP 4.5 and 8.5 scenarios, respectively. Increases in
trend were observed at 17 subbasins in the Future2 period under RCP 4.5 and 27 subbasins
under RCP 8.5, with no trend in the remaining subbasins. Furthermore, a decreasing trend
in 24 subbasins was observed under RCP 4.5, with an increasing trend in 38 subbasins under
RCP 8.5 of the Future3 period. The trend analysis suggests that almost all of the subbasins
have a decreasing trend in both the past and the future (Table 5). Figure 12 represents
positive (increase) and negative (decrease) trends at the outlets of all subbasins spatially.

Table 5. Number of subbasins with increasing or decreasing trend.

Climate Period
RCP 4.5 RCP 8.5

Increasing Decreasing Increasing Decreasing

Historic 1 28
Future I - 50 - 48
Future II 17 2 27 2
Future III - 24 38 1
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4. Conclusions

In this study, future streamflows are projected using REA climate data of the RCP
4.5 and 8.5 scenarios in the SWAT Model, which is calibrated and validated at multiple
gauge stations using SWAT-CUP. The REA data from the five climate models have a high
correlation with the observed climate data from IMD, similar results were observed for
Munneru basin which is a sub-basin for Krishna river basin [66]. The ability of the climate
model data to simulate climate variables near the origin of the Krishna River basin, namely,
the Western Ghats regions, is limited. The mean monthly precipitation data for the Historic
period obtained from REA show less variation in the Middle Krishna, Lower Krishna, and
Lower Tungabhadra. Precipitation data in the Future1 period decreased by approximately
20% when compared to the Historic period. The mean monthly flows as a ratio of the
annual flow suggest a decrease in the streamflow during the Future1 period and an increase
during the Future2 and Future3 periods. FDCs also suggest decreased flows in the basin,
emphasizing the importance of implementing necessary changes in water use policies.
Annual streamflow trends in all the 50 subbasins show a statistically significant decreasing
trend in the Future1 period. No significant trends are observed in most of the subbasins
in the Future2 and Future3 periods. As most of the subbasins of the Krishna River basin
exhibit decreasing trends over all consecutive periods, effective adaptation and water
conservation strategies are required. However, in the present study, the change in LULC is
not considered for simulating streamflow for future scenarios.

Specifically, the impact of climate change on water resources of the basin is high
during the Future1 period, with lower simulated streamflow. The periods from April
to June have lower streamflow values in the basin. Because the basin is dominated by
agricultural land, it is critical to avoid water shortage conditions through controlled usage
and water management during these times. Based on the projected impacts, water resource
management and adaptation strategies, such as changing cropping patterns and adapting
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various irrigation schemes, will be developed. Future streamflow projections based on the
ensemble climate variables in this study enable decision makers to be onboard, and the
projections provide them with relevant insight into possible adaptation measures.
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