Observations from Personal Weather Stations—EUMETNET Interests and Experience
Abstract
:1. Introduction
2. Interest in and Experience with Personal Weather Stations across National Meteorological & Hydrological Services in Europe
2.1. Operational Weather Forecasts and Meteorological Applications
2.2. Agriculture Applications
2.3. Urban and Climate Applications
3. Quality Control Techniques
3.1. Background
- the instrument type: Unlike instruments and networks operated by NMHS, PWS are typically set up using a variety of meteorological instrument types from different manufacturers with varying sensor quality. Whilst some systems have been found to compare well with the standard set for NMHS’s AWS, others have been shown to have mean temperature biases well over recommendation [1,6,31,40].
- the positioning of the instrument: NMHS tend to follow well defined WMO guidelines (WMO no. 8) [4] for placing their instruments. Conversely, the positioning of PWS varies considerably. Sites with poor exposure, affected by buildings or trees for example, or installed inside a building, lead to erroneous meteorological observations [1,2,8,30].
- the measurement method: The frequency at which measurements are acquired might vary, depending on the type of site and whether the sampling occurs manually or automatically. In addition, data collection may not be continuous, regardless of whether the sampling is automated or not, so missing data could be common. This could affect services that rely on uninterrupted observations such as daily rainfall accumulations and maximum and minimum temperatures.
- the quality of the metadata: Errors or missing metadata such as inaccurate site location or sensor height can lead to uncertainties in the observations.
3.2. Metadata Check
3.3. Time Consistency Check
3.4. Spatial Check
3.5. Bias Correction
3.6. Available Quality Control Tools
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meier, F.; Fenner, D.; Grassmann, T.; Otto, M.; Scherer, D. Crowdsourcing air temperature from citizen weather stations for urban climate research. Urban Clim. 2017, 19, 170–191. [Google Scholar] [CrossRef]
- Napoly, A.; Grassmann, T.; Meier, F.; Fenner, D. Development and Application of a Statistically-Based Quality Control for Crowdsourced Air Temperature Data. Front. Earth Sci. 2018, 6, 118. [Google Scholar] [CrossRef] [Green Version]
- Cornes, R.C.; Dirksen, M.; Sluiter, R. Correcting citizen-science air temperature measurements across the Netherlands for short wave radiation bias. Meteorol. Appl. 2020, 27, e1814. [Google Scholar] [CrossRef] [Green Version]
- World Meteorological Organization. Guide to Instruments and Methods of Observation (WMO-No.8)—Observing Systems; WMO: Geneva, Switzerland, 2018; Volume III, ISBN 978-92-63-10008-5. [Google Scholar]
- Bell, S.; Cornford, D.; Bastin, L. The state of automated amateur weather observations. Weather 2013, 68, 36–41. [Google Scholar] [CrossRef]
- Bell, S.; Cornford, D.; Bastin, L. How good are citizen weather stations? Addressing a biased opinion. Weather 2015, 70, 75–84. [Google Scholar] [CrossRef] [Green Version]
- De Vos, L.W.; Droste, A.M.; Zander, M.J.; Overeem, A.; Leijnse, H.; Heusinkveld, B.G.; Steeneveld, G.J.; Uijlenhoet, R. Hydrometeorological Monitoring Using Opportunistic Sensing Networks in the Amsterdam Metropolitan Area. Bull. Am. Meteorol. Soc. 2020, 101, E167–E185. [Google Scholar] [CrossRef]
- Droste, A.M.; Heusinkveld, B.G.; Fenner, D.; Steeneveld, G. Assessing the potential and application of crowdsourced urban wind data. Q. J. R. Meteorol. Soc. 2020, 146, 2671–2688. [Google Scholar] [CrossRef]
- Garcia-Marti, I.; Overeem, A.; Noteboom, J.W.; de Vos, L.; de Haij, M.; Whan, K. From proof-of-concept to proof-of-value: Approaching third-party data to operational workflows of national meteorological services. Int. J. Climatol. 2022, 1–18. [Google Scholar] [CrossRef]
- Nipen, T.N.; Seierstad, I.A.; Lussana, C.; Kristiansen, J.; Hov, Ø. Adopting Citizen Observations in Operational Weather Prediction. Bull. Am. Meteorol. Soc. 2020, 101, E43–E57. [Google Scholar] [CrossRef]
- Mandement, M.; Caumont, O. Contribution of personal weather stations to the observation of deep-convection features near the ground. Nat. Hazards Earth Syst. Sci. 2020, 20, 299–322. [Google Scholar] [CrossRef]
- De Vos, L.W.; Leijnse, H.; Overeem, A.; Uijlenhoet, R. Quality Control for Crowdsourced Personal Weather Stations to Enable Operational Rainfall Monitoring. Geophys. Res. Lett. 2019, 46, 8820–8829. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Saunders, K.; Whan, K. Quality control and bias adjustment of crowdsourced wind speed observations. Q. J. R. Meteorol. Soc. 2021, 147, 3647–3664. [Google Scholar] [CrossRef]
- Båserud, L.; Lussana, C.; Nipen, T.N.; Seierstad, I.A.; Oram, L.; Aspelien, T. TITAN automatic spatial quality control of meteorological in-situ observations. Adv. Sci. Res. 2020, 17, 153–163. [Google Scholar] [CrossRef]
- Grassmann, T.; Napoly, A.; Meier, F.; Fenner, D. Quality Control for Crowdsourced Aata from CWS. Technische Universität Berlin: Berlin, Germany, 2018. [Google Scholar] [CrossRef]
- Fenner, D.; Bechtel, B.; Demuzere, M.; Kittner, J.; Meier, F. CrowdQC+—A Quality-Control for Crowdsourced Air-Temperature Observations Enabling World-Wide Urban Climate Applications. Front. Environ. Sci. 2021, 9. [Google Scholar] [CrossRef]
- Clark, M.R.; Webb, J.D.C.; Kirk, P.J. Fine-scale analysis of a severe hailstorm using crowd-sourced and conventional observations. Meteorol. Appl. 2018, 25, 472–492. [Google Scholar] [CrossRef]
- Kirk, P.J.; Clark, M.R.; Creed, E. Weather Observations Website. Weather 2021, 76, 47–49. [Google Scholar] [CrossRef]
- Sgoff, C.; Acevedo, W.; Paschalidi, Z.; Ulbrich, S.; Bauernschubert, E.; Kratzsch, T.; Potthast, R. Assimilation of crowd-sourced surface observations over Germany in a regional weather prediction system. Q. J. R. Meteorol. Soc. 2022, 148, 1752–1767. [Google Scholar] [CrossRef]
- Clark, M. An automated filtering and bias-correction procedure for WOW home AWS data. MetOffice Sp. Appl. Nowcast. Tech. Memo 2022, 38. [Google Scholar]
- Sallis, P.; Shanamuganathan, S.; Ghobakhlou, A. Wireless Sensors in the Vineyard. In Proceedings of the 11th International Conference on Applications of Electrical and Computer Engineering, Athens, Greece, 7–9 March 2012; pp. 83–89. [Google Scholar]
- Coggan, M. Vineyard weather monitoring: Stand-alone systems that measure, record, and display weather data--and often more. Vineyard Winer. Manag. 2002, 28, 61–65. [Google Scholar]
- Marcu, I.; Voicu, C.; Drăgulinescu, A.M.C.; Fratu, O.; Suciu, G.; Balaceanu, C.; Andronache, M.M. Overview of IoT basic platforms for precision agriculture. Lect. Notes Inst. Comput. Sci. Soc. Telecommun. Eng. LNICST 2019, 283, 124–137. [Google Scholar] [CrossRef]
- Beaulant, A.-L.; Miahle, P.; Brunier, L.; Deudon, O.; Brun, F. Quality controls applied to opportunistic data for agriculture. In Proceedings of the WMO TECO-2022, Paris, France, 10–13 October 2022. [Google Scholar]
- METEOPREC Project. Available online: https://numerique.acta.asso.fr/meteoprec/ (accessed on 26 November 2022).
- Graf, M.; Hachem, A.E.; Eisele, M.; Seidel, J.; Chwala, C.; Kunstmann, H.; Bárdossy, A. Combined rainfall estimates from personal weather station and commercial microwave link data in Germany. EGU Gen. Assem. 2021. [Google Scholar] [CrossRef]
- De Vos, L.; Leijnse, H.; Overeem, A.; Uijlenhoet, R. The potential of urban rainfall monitoring with crowdsourced automatic weather stations in Amsterdam. Hydrol. Earth Syst. Sci. 2017, 21, 765–777. [Google Scholar] [CrossRef] [Green Version]
- EEA; Ivits, E.; Tóth, G.; Gregor, M.; Milego Agràs, R.; Fons Esteve, J.; Marín, A.; Schröder, C.; Mancosu, E. Land Take and Land Degradation in Functional Urban Areas; Publications Office of the European Union: Luxembourg, 2022. [Google Scholar]
- EEA. Urban Sprawl in Europe: Joint EEA-FOEN Report; Publications Office of the European Union: Luxembourg, 2016. [Google Scholar]
- Chapman, L.; Bell, C.; Bell, S. Can the crowdsourcing data paradigm take atmospheric science to a new level? A case study of the urban heat island of London quantified using Netatmo weather stations. Int. J. Climatol. 2017, 37, 3597–3605. [Google Scholar] [CrossRef]
- Fenner, D.; Meier, F.; Bechtel, B.; Otto, M.; Scherer, D. Intra and inter ‘local climate zone’ variability of air temperature as observed by crowdsourced citizen weather stations in Berlin, Germany. Meteorol. Z. 2017, 26, 525–547. [Google Scholar] [CrossRef]
- Hammerberg, K.; Brousse, O.; Martilli, A.; Mahdavi, A. Implications of employing detailed urban canopy parameters for mesoscale climate modelling: A comparison between WUDAPT and GIS databases over Vienna, Austria. Int. J. Climatol. 2018, 38, e1241–e1257. [Google Scholar] [CrossRef] [Green Version]
- Feichtinger, M.; de Wit, R.; Goldenits, G.; Kolejka, T.; Hollósi, B.; Žuvela-Aloise, M.; Feigl, J. Case-study of neighborhood-scale summertime urban air temperature for the City of Vienna using crowd-sourced data. Urban Clim. 2020, 32, 100597. [Google Scholar] [CrossRef]
- Gubler, M.; Christen, A.; Remund, J.; Brönnimann, S. Evaluation and application of a low-cost measurement network to study intra-urban temperature differences during summer 2018 in Bern, Switzerland. Urban Clim. 2021, 37, 100817. [Google Scholar] [CrossRef]
- Brousse, O.; Simpson, C.; Walker, N.; Fenner, D.; Meier, F.; Taylor, J.; Heaviside, C. Evidence of horizontal urban heat advection in London using six years of data from a citizen weather station network. Environ. Res. Lett. 2022, 17, 44041. [Google Scholar] [CrossRef]
- Venter, Z.S.; Brousse, O.; Esau, I.; Meier, F. Hyperlocal mapping of urban air temperature using remote sensing and crowdsourced weather data. Remote Sens. Environ. 2020, 242, 111791. [Google Scholar] [CrossRef]
- Zumwald, M.; Knüsel, B.; Bresch, D.N.; Knutti, R. Mapping urban temperature using crowd-sensing data and machine learning. Urban Clim. 2021, 35, 100739. [Google Scholar] [CrossRef]
- Golroudbary, V.R.; Zeng, Y.; Mannaerts, C.M.; Su, Z. Urban impacts on air temperature and precipitation over The Netherlands. Clim. Res. 2018, 75, 95–109. [Google Scholar] [CrossRef]
- Nyberg, L.; Mobini, S.; Karagiorgos, K.; Olsson, J.; Larsson, R.; Petersson, L.; Van de Beek, R.; Gustafsson, K.; Grahn, T. New data sources for cloudburst risk assessment and management. Vatten Tidskr. Vattenvård/J. Water Manag. Res. 2022, 78, 77–85. [Google Scholar]
- Jenkins, G. A comparison between two types of widely used weather stations. Weather 2014, 69, 105–110. [Google Scholar] [CrossRef]
- WMO. Manual on the WMO Integrated Global Observing System (WMO-No.1160)-Annex VIII; WMO: Geneva, Switzerland, 2021; ISBN 9789263111609. [Google Scholar]
- Dirksen, M.; Knap, W.H.; Steeneveld, G.-J.; Holtslag, A.A.M.; Tank, A.M.G.K. Downscaling daily air-temperature measurements in the Netherlands. Theor. Appl. Climatol. 2020, 142, 751–767. [Google Scholar] [CrossRef]
- Alerskans, E.; Lussana, C.; Nipen, T.N.; Seierstad, I.A. Optimizing spatial quality control for a dense network of meteorological stations. J. Atmos. Ocean. Technol. 2022, 39, 973–984. [Google Scholar] [CrossRef]
- Beele, E.; Reyniers, M.; Aerts, R.; Somers, B. Quality control and correction method for air temperature data from a citizen science weather station network in Leuven, Belgium. Earth Syst. Sci. Data. 2022, 14, 4681–4717. [Google Scholar] [CrossRef]
Variable | References *1 | Openly Available QC Tools | Link to Tool *2/References Regarding QC Method |
---|---|---|---|
Temperature | [1,2,3,6,7,10,11,16,19,30,33,35,36,37,38] | CrowdQC | https://depositonce.tu-berlin.de/handle/11303/7520.3 [2,15] |
CrowdQC+ | https://github.com/dafenner/CrowdQCplus [16] | ||
TitanLib | https://github.com/metno/TITAN[14] | ||
NetAtmoQC | https://source.coderefinery.org/iOBS/wp2/task-2-3/netatmoqc | ||
Precipitation | [6,7,11,12,26,27,38] | PWSQC | https://github.com/LottedeVos/PWSQC [12] |
Wind | [7,8,13,17] | ||
Humidity | [6,7,11,19] | ||
Pressure | [11,12,17] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hahn, C.; Garcia-Marti, I.; Sugier, J.; Emsley, F.; Beaulant, A.-L.; Oram, L.; Strandberg, E.; Lindgren, E.; Sunter, M.; Ziska, F. Observations from Personal Weather Stations—EUMETNET Interests and Experience. Climate 2022, 10, 192. https://doi.org/10.3390/cli10120192
Hahn C, Garcia-Marti I, Sugier J, Emsley F, Beaulant A-L, Oram L, Strandberg E, Lindgren E, Sunter M, Ziska F. Observations from Personal Weather Stations—EUMETNET Interests and Experience. Climate. 2022; 10(12):192. https://doi.org/10.3390/cli10120192
Chicago/Turabian StyleHahn, Claudia, Irene Garcia-Marti, Jacqueline Sugier, Fiona Emsley, Anne-Lise Beaulant, Louise Oram, Eva Strandberg, Elisa Lindgren, Martyn Sunter, and Franziska Ziska. 2022. "Observations from Personal Weather Stations—EUMETNET Interests and Experience" Climate 10, no. 12: 192. https://doi.org/10.3390/cli10120192
APA StyleHahn, C., Garcia-Marti, I., Sugier, J., Emsley, F., Beaulant, A. -L., Oram, L., Strandberg, E., Lindgren, E., Sunter, M., & Ziska, F. (2022). Observations from Personal Weather Stations—EUMETNET Interests and Experience. Climate, 10(12), 192. https://doi.org/10.3390/cli10120192