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Abstract: In this study, the Acısu Basin—viz., the headwater of the Gediz Basin—in Turkey, was
modelled using three types of hydrological models and three different calibration algorithms. A
well-known lumped model (GR4J), a commonly used semi-distributed (SWAT+) model, and a skillful
distributed (mHM) hydrological model were built and integrated with the Parameter Estimation
Tool (PEST). PEST is a model-independent calibration tool including three algorithms—namely,
Levenberg Marquardt (L-M), Shuffled Complex Evolution (SCE), and Covariance Matrix Adoption
Evolution Strategy (CMA-ES). The calibration period was 1991–2000, and the validation results were
obtained for 2002–2005. The effect of the model structure and calibration algorithm selection on the
discharge simulation was evaluated via comparison of nine different model-algorithm combinations.
Results have shown that mHM and CMA-ES combination performed the best discharge simulation
according to NSE values (calibration: 0.67, validation: 0.60). Although statistically the model results
were classified as acceptable, the models mostly missed the peak values in the hydrograph. This
problem may be related to the interventions made in 2000–2001 and may be overcome by changing
the calibration and validation periods, increasing the number of iterations, or using the naturalized
gauge data.
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1. Introduction

Hydrological models are used in various areas such as climate models, management
of water resources, design of hydraulic structures, and drought/flood prediction. The
capabilities of hydrological models are limited by the data and measurement techniques
that are used. If the input of model is insufficient, temporal or spatial extrapolation is used
with the available data. At the same time, the changes in land use and climate conditions
need to be considered in terms of their effects on the hydrologic cycle [1].

Hydrological models, classified in terms of their spatial resolutions, are investigated
in this study. These structures are lumped, semi-distributed, and distributed. Lumped
models represent the whole basin as a single unit by using the averages of the variables
that belong to the basin [2]. Distributed models split the basin into grids and conduct
the process for each grid individually with the inputs and state variables that belong to
these grids. Semi-distributed models combine the advantages of both lumped and dis-
tributed models. Instead of defining the spatial variability as continuous, as the distributed
models do, semi-distributed models define the basin as an integration of lumped models.
In this way, they require less computational load and smaller data than the distributed
models. They also represent the characteristics and heterogeneity of the basin better than
lumped models. There are numerous studies in the literature on hydrological modelling
in recent decades [3–5]. For example, [6] focused on the changes in the Lake Tana Basin,
Ethiopia, using different models and their hydrological responses. The researchers built
two lumped models (GR4J and IHACRES) and a semi-distributed model (SWAT) for the
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study area using four major gauged watersheds. The findings of the study showed that
the lumped models demonstrated superior discharge simulation performance to SWAT
in small catchment, although the situation is reversed in large catchments since SWAT
represents the heterogeneity of these catchments. In [7], researchers aimed to test GR4J
and SWAT for robustness. Both have undergone calibration and validation studies during
climatically diverse time periods. Both exhibit relative robustness despite a greater perfor-
mance decline for the GR4J model between calibration and validation. Additionally, [8]
compared three lumped models’—GR4J, Australian Water Balance Model (AWMB), and
Sacramento—discharge performances on the Godavari River Basin, India, considering NSE
values of the calibration results. The results of the study showed that the GR4J model is
helpful in terms of discharge simulations for the study area. In [9], 15 hydrological models,
including GR4J, SWAT, and mHM, were built for Lake Erie, USA, to evaluate the models’
capabilities on hydrological variables such as discharge, evaporation, and soil moisture.
The findings of the study demonstrated that the best hydrographs are produced by the
mHM model in terms of the resulting NSE values.

Regardless of their classification, the non-measurable parameters of each hydrological
model need to be adjusted to represent real basin characteristics. This process is known as
calibration [10]. Initially, the calibration process was conducted manually based on expert
knowledge. Today, using automatic calibration methods with the advantages of improved
technology is more common. These calibration methods avoid subjective interceptions,
computation load, and waste of time by using different algorithms and objective functions.
Auto-calibration algorithms attain parameter values to optimize objective function value.
There are two different types of auto-calibration algorithms, namely, local and global. Local
calibration algorithms aim to converge the optimum objective function value based on
three main criteria: movement direction of parameters, iteration number, and termination
criteria. Local methods that assign gradient-based values to the parameters in their range
accept the zero-slope point as the optimum value. This causes possible optimum values
to be missed if more than one optimum solution is found. Global methods overcome this
problem by approaching the parameter space from all sides. They manipulate parameter
values in order to improve the objective function by using deterministic and probabilistic
rules [11]. These algorithm types have been used with various hydrological models in
several studies. In [12], researchers integrated one local (Levenberg–Marquardt (LM)), and
two global (Dynamically Dimensioned Search (DDS) and Shuffled Complex Evolution
(SCE)) algorithms with a semi-distributed hydrological model (HEC-HMS) built on vari-
ous basins in Germany. They used an empirical combination of Nash-Sutcliffe Efficiency
(NSE) and volumetric error (VoE) as the objective function for discharge calibration, and
they found that DDS is superior to other algorithms in this study’s circumstances with
0.75–0.90 in calibration and 0.57–0.73 in validation. Furthermore, [13] investigated the
value of different soil moisture products (The Advanced Microwave Scanning Radiometer
on the Earth Observing System (EOS) Aqua satellite (AMSR-E), soil moisture active passive
(SMAP), and total water storage anomalies from Gravity Recovery and Climate Experi-
ment (GRACE)) on Hydrologiska Bryåns Vattenbalansavdelning (HBV) by multi-objective
calibration (discharge (Q), groundwater (GW), soil moisture (SM)) and soil for each model
set-up with Levenberg–Marquardt (LM), shuffled complex evolution (SCE), and covariance
matrix adoption evolution strategy (CMAES) algorithms for the Moselle River Basin in
Germany and France. The findings of the study demonstrated that the global optimization
algorithms (SCE and CMAES) outperformed the local algorithm (LM) after 3000 iterations
for each method according to three different objective functions, namely, NSE-Q, NSE-LNQ,
and CORR. Additionally, [14] compared the discharge simulation performances resulting
from calibration with the SCE and sequential uncertainty fitting algorithm (SUFI2) for the
SWAT model to assess the climate change impact for the Upper Coruh Basin in Turkey
under regional climate projections (RCP 4.5 and RCP 8.5). The SUFI2 algorithm has 0.67 and
0.62 NSE values for calibration and validation periods, respectively. The SCE algorithm
has shown better performance with 0.73 (calibration) and 0.79 (validation) NSE values.
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There have been many studies on performance comparison of similar and simple models;
however, the effect of sophisticated models and global search algorithms on discharge
performances in a headwater catchment has not been studied yet. Selection of the model
and calibration algorithm is key for discharge simulations in catchment hydrology.

In this study, we integrated three different model structures with three calibration
algorithms for the Acısu Basin. We used PEST and ERA5 model inputs. We selected GR4J
as the lumped model, SWAT+ as the semi-distributed model, and mHM as the distributed
model, and the Levenberg–Marquardt (LM), Shuffled Complex Evolution (SCE), and
Covariance Matrix Adoption Evolution Strategy (CMAES) as the calibration algorithms.
The resulting discharge values were compared for all combinations. The effect of the model
structure and calibration algorithm on discharge performances was evaluated according to
these results.

2. Materials and Methods
2.1. Study Area

The Gediz Basin, which is located at the Aegean Region of Turkey, has a surface area of
1,703,586 km2. It is one of the 5 largest basins in Turkey. It originates from Murat Mountain
in Kutahya. The longest river in the basin is the Gediz River, which ends in the Aegean Sea
in İzmir. Including 5 dams, 2 lakes, and 1 hydropower plant, the Gediz Basin is of capital
importance in terms of water resources. The water potential of the basin consists of 58.63%
potential evapotranspiration loss, 28.22% groundwater recharge, and 13.15% surface flow.
The Acısu Basin is a sub-basin of the Gediz Basin, and it has a drainage area of 3256 km2

and a height of 890 m. It is located at the headwater of the Gediz Basin with its semi-arid
climate. The study area is the drainage area of the stream gauging station 523. The study
domain is given in Figure 1.
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2.2. Data

In this study, common datasets are defined for each model to evaluate and compare
results fairly. So, the three models are driven by ERA5 reanalysis data. Each model re-
quires various data types in different resolutions. Therefore, the daily meteorological
input—precipitation (P (mm)), potential evapotranspiration (PET (mm)), and minimum
and maximum temperature (Tmin (◦C), Tmax (◦C))—obtained from the ERA5 dataset is used
by downscaling in line with each model’s resolution. Further, measured P, Taverage, Tmin,
and Tmax data, which belong to General Directorate of Meteorology of Turkey (MGM), were
used to evaluate the ERA5 data (Table 1). Additionally, physically based models (SWAT+
and mHM) are driven by spatial data, such as digital elevation model, land use, and soil
data. DEM and land use data are shown in Figure 1 within the study domain. Having 30 m
spatial resolution, Advanced Spaceborne Thermal Emission and Reflection Radiometer
(ASTER) DEM data are used for SWAT+ and mHM. As land use data, the Coordination of
Information on the Environment (CORINE) open-source land use map with 100 m spatial
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resolution is used; as soil map, Food and Agriculture Organisation’s (FAO) digital soil map
of the world with 1/5,000,000 scale data is used.

Table 1. Monthly and annual data belong to the General Directorate of Meteorology of Turkey
and ERA5.

Total Precipitation
(mm)

Average Temperature
(◦C)

Maximum Temperature
(◦C)

Minimum Temperature
(◦C)

MGM ERA5 MGM ERA5 MGM ERA5 MGM ERA5

January 69.2 59.7 3.2 3.2 12.8 12.3 −10.6 −9.4
February 62.2 56.1 3.4 3.9 14.4 14.2 −8.9 −9.9

March 60.0 58.6 6.5 7.2 19.2 18.8 −6.5 −5.2
April 63.5 56.6 11.0 11.9 21.5 21.6 −1.2 −0.1
May 43.7 40.2 15.6 16.8 23.3 24.9 4.2 5.2
June 19.8 17.9 19.8 21.4 27.3 28.6 9.9 9.6
July 17.4 10.2 23.3 24.6 30.2 30.8 12.8 15.5

August 12.4 7.6 23.3 24.3 29.7 30.4 15.9 17.3
September 14.7 10.1 19.2 20.0 26.9 28.3 9.4 11.1

October 37.5 27.2 14.2 14.6 22.8 23.0 3.1 4.1
November 74.0 58.4 8.4 8.3 18.3 17.2 −2.9 −1.8
December 88.3 69.3 4.7 4.6 13.9 13.2 −5.4 −5.6

Annual 562.8 472.0 12.8 13.5 30.2 30.8 −10.6 −9.9

Precipitation and average temperature data were examined using scatter diagrams
and regression equations (Figure 2) to evaluate ERA5 input and interpret the results.
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Figure 2. Comparison of MGM and ERA5 data.

As discharge observation, data of stream gauge 523, which belong to the General
Directorate of State Hydraulic Works Turkey, are used. A line graph of the discharge data
is given in Figure 3.

2.3. Hydrologic Models

To compare the effect of the model structure on the discharge, three different models,
which are classified based on their spatial resolution, are set up on the Acısu Basin. GR4J is
lumped, SWAT+ is semi-distributed, and mHM is the distributed hydrological model. Each
model has different procedures and parametrizations to conduct hydrological processes
with different resolutions.
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2.3.1. GR4J

The lumped model facilitates the use and set up process. It shows the whole basin’s
response to the forcing inputs. Constituting semi-distributed and distributed hydrological
models by gathering, the lumped models are fundamental and the starting point of these
models [15]. Gênie Rural â 4 Paramêtres Journalier (GR4J) is a lumped hydrological model
processing in daily time-step, presented and improved in the early 2000s [16]. It requires
daily P and PET as input time series. To obtain daily data as time series from ERA5, the
mean areal average values of the grids are calculated using spatial P and PET data. GR4J
relates these inputs to the hydrological processes using its 4 parameters given in Table 2.

Table 2. GR4J parameter descriptions.

Parameter Description

X1 Production storage capacity (mm)
X2 Groundwater exchange coefficient (mm)
X3 One day ahead maximum capacity of the routing store (mm)
X4 Time base of unit hydrograph (day)

GR4J conducts the process that represents the rainfall–runoff relationship via 2 box
model methods, which are called production storage and routing storage. The structure
of the model is given in Figure 4. As the precipitation reaches the surface, the first unit of
the model that meets the water mass after the interception process is production storage.
The largest amount of net precipitation after infiltration is transferred to routing storage
by using the unit hydrograph method. Then, the remaining net precipitation is routed
by a unit hydrograph the base width of which is twice that of the previous step. Finally,
the amount of water coming from routing storage and the routed part of the remaining
net precipitation merge. The summation of these values ends up with the output of GR4J,
which is discharge.

2.3.2. SWAT+

A soil water assessment tool was developed by Dr. Jeff Arnold as a result of his
research conducted for the USDA-ARS (U.S. Department of Agriculture—Agricultural
Research Service) to foresee the effects of land use and management in a basin with a
heterogeneous structure [17]. In addition to being a physically based model, SWAT is a
semi-distributed and continuous hydrological model working at a daily time-step which
has a wide use area such as rainfall–runoff relationship, climate change, and environmental
studies at small or large basins [18–20]. The semi-distributed structure of the model consists
of sub-basins and hydrologic response units (HRUs) in detail. In earlier versions of the
SWAT model, the smallest spatial sub-division of a basin is represented by HRUs. As a new
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feature in SWAT+, HRUs are divided into landscape units (LSUs). LSUs are divided into
two parts, namely, upland and floodplain. The HRUs are homogenous in themselves in
terms of their physical characteristics [21]. We used QGIS software and QSWAT+ plugin in
this study to set up the model because of its easy-to-use interface and its being the most
up-to-date version of the SWAT+ model. It requires DEM, land use, and a soil map as
physical data, and precipitation, temperature, wind speed, solar radiation, and relative
humidity as climatic and hydrological data. Although SWAT+ can automatically calculate
PET with different methods, we added the ERA5 PET data to compare results fairly with
other models. We only focused on the discharge output of the SWAT+ model in line with
our objective. The discharge value was obtained at the outlet location by routing the output
of each HRU individually through the main outlet. During the modelling process, we
divided the Acısu Basin into 5 sub-basins and 1981 HRUs ranging in surface area from 6 to
60.26 km2. SWAT+ conducts the process in two phases, namely, the land phase and routing
phase. Considering the information given in [22], we used the SCS-CN (Soil Conservation
Service—Curve Number) method in the land phase, and the Muskingum method in the
routing phase.
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2.3.3. mHM

The mesoscale Hydrologic Model (mHM) is a distributed, physically based and con-
tinuous hydrologic model published by a team from UFZ (Helmholtz Centre for Environ-
mental Research) [23,24]. The fundamental numerical approaches regarding the hydrologic
processes of the mHM are tested by using well-known and acknowledged lumped models
such as HBV [25] and VIC [26]. The input and parameter variety for each grid of mHM
set this model apart from other rainfall–runoff models. With this difference, changes in
characteristics of the basin can be better represented as the spatial resolution of the model
run and forcing data increases. We ran the model at 0.015625 degrees (~2 km) spatial resolu-
tion, which is assumed to be appropriate for the study area. We used ERA5 meteorological
forcings at 0.25 degrees. We also used high resolution soil data at 0.001953125 degrees
(~200 m). We used the multi-parameter regionalization (MPR) approach [27] and a new
routing scheme, i.e., adaptive timestep, spatially varying celerity [28]. The model structure
is given in Figure 5.



Climate 2022, 10, 196 7 of 16

Climate 2022, 10, x FOR PEER REVIEW 7 of 17 
 

 

models such as HBV [25] and VIC [26]. The input and parameter variety for each grid of 

mHM set this model apart from other rainfall–runoff models. With this difference, 

changes in characteristics of the basin can be better represented as the spatial resolution 

of the model run and forcing data increases. We ran the model at 0.015625 degrees (~2 km) 

spatial resolution, which is assumed to be appropriate for the study area. We used ERA5 

meteorological forcings at 0.25 degrees. We also used high resolution soil data at 

0.001953125 degrees (~200 m). We used the multi-parameter regionalization (MPR) ap-

proach [27] and a new routing scheme, i.e., adaptive timestep, spatially varying celerity 

[28]. The model structure is given in Figure 5. 

 

Figure 5. mHM cell structure. 

All processes are applied in each cell individually, and the continuity of the model is 

provided by using ordinary differential equations (ODE). The results of ODEs obtained 

from each cell are routed by using the Muskingum method through the main outlet [29]. 

In this study, open-source Fortran based code of mHM is compiled with Cygwin to 

run the model in Windows environment. 

2.4. Calibration of Models 

2.4.1. Sensitivity Analysis 

Sensitivity analyses and calibrations of the examined models are performed by using 

the Parameter Estimation Tool (PEST), which is a model-independent auto-calibration 

tool [30]. Sensitivity analysis is used to indicate the effect of a change in parameter value 

to objective function. The main purpose of using this method is to eliminate ineffective 

parameters before the calibration process to avoid wasting time on unnecessary iterations. 

In this study, sensitivity analysis of the models’ parameters is performed using the auto-

sensitivity module of PEST. It is basically based on the equation given below: 

𝑆 =  
∆ 𝑂𝐹 (%)

∆ 𝑃𝑎𝑟 (%)
 (1) 

where S is sensitivity value, “ΔOF” is change in objective function as percentage corre-

sponding to parameter change, and “ΔPar” is change in parameter value as percentage. 

Figure 5. mHM cell structure.

All processes are applied in each cell individually, and the continuity of the model is
provided by using ordinary differential equations (ODE). The results of ODEs obtained
from each cell are routed by using the Muskingum method through the main outlet [29].

In this study, open-source Fortran based code of mHM is compiled with Cygwin to
run the model in Windows environment.

2.4. Calibration of Models
2.4.1. Sensitivity Analysis

Sensitivity analyses and calibrations of the examined models are performed by using
the Parameter Estimation Tool (PEST), which is a model-independent auto-calibration
tool [30]. Sensitivity analysis is used to indicate the effect of a change in parameter value
to objective function. The main purpose of using this method is to eliminate ineffective
parameters before the calibration process to avoid wasting time on unnecessary iterations.
In this study, sensitivity analysis of the models’ parameters is performed using the auto-
sensitivity module of PEST. It is basically based on the equation given below:

S =
∆ OF (%)

∆ Par (%)
(1)

where S is sensitivity value, “∆OF” is change in objective function as percentage corre-
sponding to parameter change, and “∆Par” is change in parameter value as percentage.

2.4.2. Calibration Algorithms

Calibration is a process which is performed to obtain optimum results from models by
adjusting parameter values. The calibration of each model’s parameters was performed by
using three algorithms of PEST, namely, Levenberg–Marquardt (LM), Shuffled Complex
Evolution (SCE), and Covariance Matrix Adoption Evolution Strategy (CMAES). These
are classified as local and global algorithms. LM is a local optimization algorithm which
is composed of gradient descent and Gauss–Newton methods [31]. SCE and CMAES are
global optimization algorithms. SCE is a combination of the competitive evolution, the local
direct search of downhill simplex method, a controlled random search, and the concept of
complex shuffling [32]. Finally, CMAES is another global optimization algorithm including
stochastic approaches and non-linear functions. It uses the maximum likelihood method to
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attain parameter values, thereby giving results closer to the optimum solution in previous
iterations [33].

3. Results
3.1. Sensitivity Analysis

To define the effectiveness of the parameters on the models’ objective, sensitivity analy-
sis was performed for GR4J, SWAT+, and mHM. Four parameters of GR4J, 20 parameters of
SWAT+ affecting discharge [34], and 66 parameters of mHM were involved in this process
to eliminate unsensitive components. The sensitivity analysis of this study was completed
by using auto-sensitivity analysis of PEST for the calibration period (1991–2000). The
threshold of the sensitivity value was selected as 0.0025 subjectively using the information
shared in [35]. The results of the sensitivity analysis are given in Figures 6–8.
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For the Acısu Basin, the results of the sensitivity analysis showed that the most effective
parameter is “X2” which is the change in groundwater storage for GR4J, and three out of
four parameters of the GR4J model were defined as sensitive.

The SWAT+ sensitivity analysis results demonstrated that “cn2” (SCS curve number)
is the most sensitive parameter in discharge. The sensitivity analysis of SWAT+ was
performed using 20 parameters, and 11 out of 20 parameters above the threshold were
selected as sensitive. Descriptions of the sensitive parameters were given in Table 3
for SWAT+.

Table 3. SWAT+ parameter descriptions.

Parameter Desscription Unit

cn2 SCS curve number -
awc Soil water content -

k Hydraulic conductivity of saturated soil mm/hr
perco Percolation coefficient -
revap Evaporation coefficient from shallow aquifer to root -
canmx Maximum canopy storage mm

esco Soil evaporation compensation factor -
epco Plant uptake compensation factor -
evrch Reach evaporation adjustment factor -
flomin Minimum amount of water to be stored in the aquifer for return flow mm

revap_min Minimum water depth required in shallow aquifer for “revap” mm

Finally, mHM sensitivity analysis resulted in 15 sensitive parameters out of 69 param-
eters. The most sensitive parameter of mHM is “PTF_lower66_5_clay” which is a coefficient
of the pedotransfer function for soil including clay lower than 66.5%. Descriptions of
sensitive parameters are given in Table 4 for mHM. These results show that soil-related
parameters at each model are dominant for the study area.

Table 4. mHM parameter descriptions.

Parameter Parameter Description

PTF_lower66_5_clay Pedotransfer function (PTF) soil moisture constant for less than 66.5% clay
PTF_Ks_sand PTF hydraulic conductivity constant for saturated sand
PTF_Ks_clay PTF hydraulic conductivity constant for saturated clay

rootFractionCoefficient_pervious Root fraction coefficient for pervious area
PTF_lower66_5_Db PTF density constant for less than 66.5% sand

PTF_lower66_5_constant PTF soil moisture constant for less than 66.5% sand
PTF_Ks_constant PTF hydraulic conductivity constant for saturated soil

rootFractionCoefficient_forest Root fraction coefficient for forest
infiltrationShapeFactor Shape factor that divides effective precipitation into infiltration and surface flow

PET_a_forest Forest—PET correction factor
PET_a_pervious Pervious area—PET correction factor

PET_b Agricultural land—PET correction factor
PET_c Agricultural land—PET correction factor (2)

canopyInterceptionFactor Canopy interception factor
exponentSlowInterflow Slow interflow exponent

3.2. Calibration and Validation

The sensitive parameters were used in the calibration period from 1991 to 2000 and
the validation period from 2002 to 2005 with daily time-step for each model. GR4J, SWAT+,
and mHM were integrated with PEST to calibrate and validate these models by using three
optimization algorithms—namely, Levenberg–Marquardt (LM), shuffled complex evolution
(SCE), and covariance matrix adoption evolution strategy (CMAES). These algorithms have
some common limitations. The limitations were defined similarly for each algorithm for
fair comparison. The maximum iteration number was defined as 1000 and termination
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criteria were defined as lower than 10–6 change in the objective function (NSE) through 15
successive iterations for all three algorithms.

To assess discharge simulation performance, the calibration process was accomplished
on a daily time basis for the models. The resultant parameter values and defined parameter
boundaries are given in Table 5 for GR4J, SWAT+, and mHM.

Table 5. Calibrated parameters of each model.

Model Parameter
Calibrated Value Limit

L-M SCE-UA CMAES Min Max

G
R

4J

X1 399.99 346.37 347.02 10 2000
X2 0.00 0.46 0.47 −8 6
X3 10.00 10.00 10.00 10 500
X4 1.77 1.32 1.33 1 4

SW
A

T+

cn2 0.77 0.67 0.68 0.65 0.95
awc 0.02 0.01 0.01 0.01 0.51

k 200.40 189.18 193.07 0.00 2000.00
perco 0.28 0.16 0.20 0.00 1.00
revap 0.20 0.05 0.16 0.02 0.20
canmx 19.99 23.55 22.33 0.00 100.00

esco 0.67 0.37 0.39 0.00 1.00
epco 0.04 0.17 0.17 0.00 1.00
evrch 0.67 0.75 0.56 0.50 1.00
flomin 500.00 355.52 1059.35 0.00 1250.00

m
H

M

PTF_lower66_5_clay 0.0017 0.0012 0.0019 0.0001 0.0029
PTF_Ks_sand 0.0083 0.0221 0.0158 0.0060 0.0260
PTF_Ks_clay 0.0079 0.0130 0.0124 0.0030 0.0130

rootFractionCoefficient_pervious 0.0608 0.0095 0.0460 0.0010 0.0900
PTF_lower66_5_Db −0.3463 −0.2141 −0.2315 −0.5513 −0.0913

PTF_lower66_5_constant 0.6877 0.6724 0.6750 0.5358 1.1232
PTF_Ks_constant −0.7105 −1.1978 −1.0251 −1.2000 −0.2850

rootFractionCoefficient_forest 0.9401 0.9623 0.9872 0.9000 0.9990
infiltrationShapeFactor 1.9602 1.1113 1.0000 1.0000 4.0000

PET_a_forest 0.7221 1.2466 1.2885 0.3000 1.3000
PET_a_pervious 0.7414 0.3604 0.3176 0.3000 1.3000

PET_b 0.6823 0.7020 0.5982 0.0000 1.5000
PET_c −0.9670 −0.0001 −0.0427 −2.0000 0.0000

canopyInterceptionFactor 0.1520 0.1501 0.2135 0.1500 0.4000
exponentSlowInterflow 0.1948 0.2324 0.2054 0.0500 0.3000

Using the parameter values shown in the tables above, GR4J, SWAT+, and mHM
were run for calibration and validation periods. According to the NSE values which
were calculated for discharge outputs that belong to each model–algorithm combination,
Tables 6 and 7 were arranged and given with other statistical performance indicators.

Table 6. Calibration results.

Calibratoin
1991–2000 NSE R2 KGE RSR PBIAS MSE RMSE

mHM-CMAES 0.67 0.66 0.74 0.58 2.0 77.84 8.82
mHM-SCE 0.67 0.67 0.74 0.57 −1.9 76.59 8.75
GR4J-SCE 0.63 0.63 0.72 0.61 0.4 86.29 9.29

GR4J-CMAES 0.63 0.63 0.72 0.61 0.4 86.29 9.29
SWAT+-SCE 0.56 0.57 0.72 0.66 −2.0 102.76 10.14

SWAT+-CMAES 0.56 0.57 0.72 0.67 2.8 103.13 10.16
mHM-LM 0.54 0.55 0.71 0.68 −1.5 108.23 10.40

SWAT+-LM 0.53 0.55 0.70 0.68 −3.4 108.32 10.41
GR4J-LM 0.44 0.59 0.22 0.75 −55.5 131.05 11.45
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Table 7. Validation results.

Validation
2002–2005 NSE R2 KGE RSR PBIAS MSE RMSE

mHM-CMAES 0.60 0.61 0.61 0.63 −9.9 52.96 7.28
mHM-SCE 0.56 0.58 0.55 0.67 −16.6 58.63 7.66
GR4J-LM 0.55 0.62 0.44 0.67 −42.7 59.24 7.70
GR4J-SCE 0.44 0.67 0.60 0.75 23.5 73.77 8.59

GR4J-CMAES 0.44 0.67 0.60 0.75 23.5 73.50 8.57
SWAT+-SCE 0.38 0.41 0.57 0.79 −2.4 81.58 9.03

SWAT+-CMAES 0.38 0.41 0.60 0.78 0.2 81.36 9.02
SWAT+-LM 0.35 0.40 0.54 0.81 −9.4 86.29 9.29
mHM-LM 0.31 0.37 0.53 0.83 −20.4 91.59 9.57

As shown in Tables 6 and 7, model–algorithm combinations were ordered by their
NSE values. Calibrating using, respectively, LM, SCE, and CMAES, GR4J has an NSE value
of 0.44, 0.63, and 0.63; SWAT+ has 0.53, 0.56, and 0.56; mHM has 0.54, 0.67, and 0.67.

For the validation period with, respectively, LM, SCE, and CMAES, GR4J has NSE
value of 0.55, 0.44, and 0.44; SWAT+ has 0.35, 0.38, and 0.38; mHM has 0.31, 0.56, and 0.60.
Iterations are continuously completed for all of the combinations with PEST. From the aspect
of performance evaluation, mHM-CMAES integration has shown “good” performance
according to the classification given in Table 8 and presented in [36].

Table 8. Classification of discharge simulation performance.

Performance RSR NSE PBIAS

Very Good 0.00 ≤ RSR ≤ 0.50 0.70 < NSE ≤ 1.00 PBIAS < ±10
Good 0.50 < RSR ≤ 0.60 0.65 < NSE ≤ 0.75 ±10 ≤ PBIAS < ±15

Satisfactory 0.60 < RSR ≤ 0.70 0.50 < NSE ≤ 0.65 ±15 ≤ PBIAS < ±25
Poor RSR > 0.70 NSE ≤ 0.5 PBIAS ≥ ±25

A comparison of these statistical findings was supported with a bar chart in
Figures 9 and 10 to virtualize model and algorithm performances with their average NSE
values for calibration and validation processes, respectively.
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What stands out in Figure 9 is that SCE’s and CMAES’s NSE values are close to each
other. SCE and CMAES have average NSE values as 0.62 and outperformed LM, which has
a 0.50 average NSE value after calibration.

CMAES dominated other algorithms in validation with an average NSE value of 0.47,
whilst SCE has 0.46 and LM has 0.40 average NSE values as can be seen in Figure 10. In
model basis, mHM outperformed other two models with an average NSE value of 0.63.
SWAT+ and GR4J have average NSE values of 0.37 and 0.48, respectively. By the end of the
comparison process, the hydrograph of the best combination is given in Figure 11.
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As shown in Figure 11, the resultant hydrograph with the highest NSE value in general
is the mHM–CMAES combination. Besides reaching 0.67 and 0.60 NSE values, respectively,
it has 0.67 and 0.61 R2 values, which is shown Figure 12 with scatter plots.

In line with hydrographs, the distribution of calibrated and validated values demon-
strates that simulated values are mostly lower than observed values.

Additionally, SWAT+ and mHM can present visual results for various outputs—i.e.,
discharge, potential evapotranspiration, snowpack, and soil moisture content. In Figure 13,
the annual output of each model for the last year of validation (2005) is given as maps to
visualize the discharge distribution in the study domain. A representative map of GR4J
output is given for comparing the distributed structure of the models.



Climate 2022, 10, 196 13 of 16

Climate 2022, 10, x FOR PEER REVIEW 13 of 17 
 

 

 

Figure 11. Comparison of observed discharge data with mHM–CMAES simulation results. 

As shown in Figure 11, the resultant hydrograph with the highest NSE value in gen-

eral is the mHM–CMAES combination. Besides reaching 0.67 and 0.60 NSE values, respec-

tively, it has 0.67 and 0.61 R2 values, which is shown Figure 12 with scatter plots. 

 

Figure 12. Scatter diagram of observed and simulated discharge data. 

In line with hydrographs, the distribution of calibrated and validated values demon-

strates that simulated values are mostly lower than observed values. 

Additionally, SWAT+ and mHM can present visual results for various outputs—i.e., 

discharge, potential evapotranspiration, snowpack, and soil moisture content. In Figure 

13, the annual output of each model for the last year of validation (2005) is given as maps 

to visualize the discharge distribution in the study domain. A representative map of GR4J 

output is given for comparing the distributed structure of the models. 

 

Figure 13. Map outputs of each model. 

  

Figure 12. Scatter diagram of observed and simulated discharge data.

Climate 2022, 10, x FOR PEER REVIEW 13 of 17 
 

 

 

Figure 11. Comparison of observed discharge data with mHM–CMAES simulation results. 

As shown in Figure 11, the resultant hydrograph with the highest NSE value in gen-

eral is the mHM–CMAES combination. Besides reaching 0.67 and 0.60 NSE values, respec-

tively, it has 0.67 and 0.61 R2 values, which is shown Figure 12 with scatter plots. 

 

Figure 12. Scatter diagram of observed and simulated discharge data. 

In line with hydrographs, the distribution of calibrated and validated values demon-

strates that simulated values are mostly lower than observed values. 

Additionally, SWAT+ and mHM can present visual results for various outputs—i.e., 

discharge, potential evapotranspiration, snowpack, and soil moisture content. In Figure 

13, the annual output of each model for the last year of validation (2005) is given as maps 

to visualize the discharge distribution in the study domain. A representative map of GR4J 

output is given for comparing the distributed structure of the models. 

 

Figure 13. Map outputs of each model. 

  

Figure 13. Map outputs of each model.

4. Discussion

Hydrological model selection is a key factor for decision makers in the planning
and management of water resources. Hydrological models have various strengths and
limitations depending on their model structure, model inputs, and their ability to represent
the nature of the hydrological phenomenon. Basically, they convert rainfall to runoff, route
in the channels, and are mainly used for predictions and forecasts using forecasted weather
inputs. All performed model–algorithm integrations captured the discharge pattern for
the Acısu Basin except for the first year of validation (Figure 11). This inaccuracy may be
related to the excluded period of 2001–2002. This exclusion was made to significantly avoid
the negative impact of this period on the calibration process. Moreover, Table 1 shows that
the ERA5 dataset has almost 20% less annual precipitation and higher temperatures leading
to more potential evapotranspiration. In line with these details, the models produced less
discharge than expected.

In general, the model and three different calibration algorithm capabilities were tested
for the study area. The findings showed that the results of the combinations are close to the
results of the studies performed for the Acısu Basin and surrounding area [15,37] for similar
methods. The main differences between the model structures in this study are their spatial
resolutions and model complexity. GR4J is a lumped model, whereas SWAT+ is a semi-
distributed model. Since mHM is a distributed hydrological model, the model structure is
more sensitive to the input data and its resolution for representing the characteristics of the
basin. Most importantly, users can retrieve flux and state simulations from any location in
the basin. On the other hand, GR4J and SWAT+ have limitations in defining meteorological
inputs as spatially distributed. These models can involve meteorological inputs in the
process as time series. GR4J allows users to define single time series for the whole basin,
while SWAT+ gives the opportunity to add inputs at different locations.
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One of the general results presented in the literature is that the error values decrease by
using the average of the spatial values of the basin in the lumped models compared to the
distributed models. As a result of the analyses in this study, contrary to the aforementioned
situation, the distributed model (mHM) shows better discharge simulation performance
than the lumped and semi-distributed models according to NSE. When the obtained data
and results were examined, it was concluded that this was due to the heterogeneous
structure of the basin and that the model structure of mHM more successfully defines the
basin characteristics in terms of the resolution which it processes heterogeneity. Although
the reanalysis data of the ERA5 or coarse soil map may be insufficient as resolution or for
this specific study area due to its small surface area, mHM still simulated the discharge
better than the other two models. The reason for this result may be the model’s skillful
multi-parameter regionalization algorithm (MPR) capturing the heterogeneity of the basin
characteristics with a limited number of calibrated parameters. This approach is a unique
feature of mHM as compared to the other distributed models.

The modelling procedure needs fine-tuning of the model parameters to come closer
to the optimum. This process is known as calibration. Both local (LM) and global (SCE,
CMAES) algorithms were applied to the hydrological models in this study. Results are
given in Tables 6 and 7. Global algorithms provide a comprehensive search for the optimum
parameter set. As it is expected considering previous studies [14,32], SCE and CMAES
ended with better results than LM while CMAES was the best.

The Acısu Basin has an important location at the upstream of the Gediz Basin, which is
one of the largest basins in Turkey. Hydrological model studies in this region have priority
for irrigation because of its agricultural potential [38–40]. For this reason, it is thought that
alternative modeling approaches will guide researchers for studies to be carried out in the
basin. Therefore, modelling studies can be directive for researchers for the basin. We aimed
to facilitate the method selection for decision makers.

5. Conclusions

As a developing country, the population and thus the need for industrial, irrigation
and drinking water is increasing rapidly in Turkey. For this reason, the importance of
studies on water resources for the effective use of water is increasing day by day. The
Gediz Basin is especially important in hydrological studies due to its agricultural land and
potential drought risk. To assess future conditions, hydrological models are preliminary
tools. For the purpose of facilitating the selection of a hydrological model and its calibration
algorithm, three hydrological model structures (lumped, semi distributed, distributed) and
three algorithms (LM, SCE, CMAES) were compared with nine combinations in this study.
Based on the comparison and results, the following conclusions can be drawn:

1. In contrast to general findings, the distributed model (mHM) simulated the discharge
with higher performance than the coarser models (SWAT+ and GR4J).

2. Global optimization algorithms (CMAES and SCE) have extensive ability to search
for the optimum parameter set compared to a local algorithm (LM). The highest
performance was shown by CMAES based on average NSE through calibration and
validation.

3. In terms of time efficiency, each model has a different run-time for the study domain.
A single run takes an average of 30 s for mHM, 2 min for SWAT+, and 4 s for GR4J.

4. Since mHM and SWAT+ allows the drawing of outputs for any sub-basin located at
the upstream, it is advantageous compared to GR4J under data-limited modelling
conditions.

5. The resultant hydrographs demonstrated that simulated discharge values were lower
than observed values in general. The reason for this is related to the difference between
ERA5 data and MGM measurements. The direct relationship between precipitation
and discharge leads the models to simulate lower values.

The results obtained with the applied models and algorithms are limited to the Acısu
Basin. In order to generalize the results, it is recommended that the basins with differ-
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ent geographical, meteorological, and geological characteristics with similar models and
algorithms be examined. The modelers should identify the priorities of the modeling
practice and select the right model for the right purpose. Input demands can be covered
by open-source global data sources and currently the distributed model can easily be
set up for any location in the world. However, if only flood forecasting is the aim and
process understanding is not necessary, relatively simple models can be utilized for a
quick solution for the domain. Future work should focus on appropriate model structure
selection for flood or drought forecasting using ERA5 land inputs and ECMWF forecasted
meteorological forcing.
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