Modeling the Impact of Future Climate Change Impacts on Rainfed Durum Wheat Production in Algeria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Observed Baseline and Projected Future Climate Data
2.3. The Aquacrop Model
2.3.1. AquaCrop Model Description
2.3.2. AquaCrop Model Input Data
Observed Historical Climatic Data and Projected Future
Soil Data
2.3.3. AquaCrop Model Calibration and Validation
2.4. Statistical Correlation between Durum Wheat Grain Yields and Growing Season Length with Temperature, Rainfall and Net Solar Radiation Changes
3. Results
3.1. Assessment of the Quality of the Simulated Climate Data for the Baseline Period
3.2. Projected Climate during the Mexicali Cultivar Growing Season
3.3. Evaluation of AquaCrop Model Performance in Simulation Wheat Grain Yield and Above-Ground Biomass
3.3.1. Impact of Future Climate Change on Durum Wheat Grain Yield
3.3.2. Wheat Growing Season Length, Reference Evapotranspiration and Water Productivity Prediction under Future Climate Change Scenarios
3.4. Adaptation of Durum Wheat Cultivation to Future Climate Change by Adjusting a Sowing Date
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mbow, C.; Rosenzweig, C.; Barioni, L.G.; Benton, T.G.; Herrero, M.; Krishnapillai, M.; Liwenga, E.; Pradhan, P.; Rivera Ferre, M.G.; Sapkota, T.; et al. Food Security. In Climate Change and Land 2019, an IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Shukla, P.R., Skea, J., CalvoBuendia, E., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D.C., Zhai, P., Slade, R., Connors, S., van Diemen, R., et al., Eds.; in press.
- IPCC. Intergovernmental Panel on Climate Change. Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., et al., Eds.; in press.
- WMO World Meteorological Organization. The Global Climate in 2015–2019; World Meteorological Organization Publication: Geneva, Switzerland, 2019; p. 20. [Google Scholar]
- Raza, A.; Razzaq, A.; Mehmood, S.S.; Zou, X.; Zhang, X.; Lv, Y.; Xu, J. Impact of climate change on crop adaptation and strategies to tackle its outcome: A review. Plants 2019, 8, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tandzi Ngoune, L.; Mutengwa, S.C. Factors Affecting Yield of Crops, Agronomy, Climate Change & Food Security; Khan, A., Ed.; IntechOpen, 2020; Available online: https://www.intechopen.com/chapters/70658 (accessed on 30 January 2022). [CrossRef]
- IPCC. Intergovernmental Panel on Climate Change. Africa. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Barros, V.R., Field, C.B., Dokken, D.J., Mastrandrea, M.D., Mach, K.J., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 1199–1265. [Google Scholar]
- Webber, H.; Ewert, F.; Olesen, J.E.; Müller, C.; Fronzek, S.; Ruane, A.C.; Bourgault, M.; Martre, P.; Ababaei, B.; Bindi, M.; et al. Diverging importance of drought stress for maize and winter wheat in Europe. Nat. Commun. 2018, 9, 4249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panda, A. Climate Change and Agricultural Insurance in the Asia and Pacific Region; The Asian Development Bank: Mandaluyong, Philippines, 2021; 44p. [Google Scholar]
- Iglesias, A.; Garrote, L. Adaptation strategies for agricultural water management under climate change in Europe. Agric. Water Manag. 2015, 155, 113–124. [Google Scholar] [CrossRef] [Green Version]
- Snowdon, R.J.; Wittkop, B.; Chen, T.-W.; Stahl, A. Crop adaptation to climate change as a consequence of long-term breeding. Theor. Appl. Genet. 2021, 134, 1613–1623. [Google Scholar] [CrossRef]
- Kourat, T. Évaluation du Changement Climatiqueet Impact sur la Production du blé dur Pluvial dans les Hautes Plaines Orientales de L’algérie. Ph.D. Thesis, ENSA El Harrach, Algiers, Algeria, 2021. Available online: http://localhost:8080/xmlui/handle/123456789/2489 (accessed on 3 January 2022).
- Bessaoud, O.; Pellissier, J.P.; Rolland, J.P.; Khechimi, W. Rapport de Synthèse sur L’agriculture en Algérie; Research Report; CIHEAM-IAMM: Montpellier, France, 2019; p. 82. [Google Scholar]
- MATE. Ex Ministère de l’Aménagement de Territoire et de l’Environnement. In Etude Diagnostique sur la Biodiversité et les Changements Climatiques en Algérie; Cooperatioproject between the Algerian Ministry of Land Planning and the Environment (MATE), United Nations Development Program (UNDP) and Global Environment Facility (GEF); Final Report; MATE: Algiers, Algeria, 2015; p. 111. [Google Scholar]
- Harrag, M.; Boulfred, Y. La sécurité alimentaire en Algérie Une étude analytique sur les céréales Food security in Algeria An analyticalstudy on cereals. Rev. L’économie Financ. Aff. 2019, 2, 162–188. Available online: Chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/viewer.html?pdfurl=https%3A%2F%2Fwww.asjp.cerist.dz%2Fen%2FdownArticle%2F109%2F3%2F2%2F92285&clen=170135 (accessed on 11 January 2022).
- Rapacza, M.; Macko-Podgórnib, A.; Jurczyka, B.; Kucharc, L. Modeling wheat and triticale winter hardiness under current and predicted winter scenarios for Central Europe: A focus on deacclimation. Agric. For. Meteorol. 2021, 313, 108739. [Google Scholar] [CrossRef]
- Zheng, Z.; Cai, H.; Wang, Z.; Wang, X. Simulation of Climate Change Impacts on Phenology and Production of Winter Wheat in Northwestern China Using CERES-Wheat Model. Atmosphere 2020, 11, 681. [Google Scholar] [CrossRef]
- Qian, B.; Jing, Q.; Cannon, A.J.; Smith, W.; Grant, B.; Semenov, M.A.; Xu, Y.-P.; Ma, D. Effectiveness of using representative subsets of global climate models in future crop yield projections. Sci. Rep. 2021, 11, 20565. [Google Scholar] [CrossRef]
- Agriconsulting. Support to Climate Change Mitigation and Adaptation in the ENPI South Region. Algeria Country Report, ENPI/2012/308-787. 2013. Available online: https://www.climamed.eu/wp-content/uploads/files/Algeria-Country-Report.pdf (accessed on 5 December 2021).
- Climat-Med. Policy Fiche: Managing the Impact of Climate Change on Agriculture. 2018. Climat-Med. 13 Pages. Available online: https://www.climamed.eu/wp-content/uploads/files/Agriculture-CC-Algeria.pdf (accessed on 20 December 2021).
- Wayne, G. The Beginner’s Guide to Representative Concentration Pathways. 2013. Available online: https://skepticalscience.com/docs/RCP_Guide.pdf (accessed on 13 December 2021).
- Rouabhi, A.; Adouane, C.; Felloussia, A.L. Assessment of climate change and its effects on cereal production by 2070 in north Algeria. Rev. Agric. 2019, 10, 27–39. Available online: file:///C:/Users/USER/Downloads/Rouabhi-al.pdf (accessed on 2 January 2022).
- Kourat, T.; Medjerrab, A. Analyse et cartographie des pluies et l’incidence de leursvariabilitéspatiotemporelle sur la délimitation des zones céréalières dans les hautesplainesorientales de l’Algérie. Révue. Agric. 2016, 1, 220–229. Available online: //efaidnbmnnnibpcajpcglclefindmkaj/viewer.html?pdfurl=https%3A%2F%2Frevue-agro.univ-setif.dz%2Fdocuments%2Fnumerospecial%2FSession6%2FKourat%2520et%2520Medjerb.pdf&clen=1619913&chunk=true (accessed on 5 December 2021).
- Kourat, T. Analyse et Cartographie des Pluies et L’incidence de leurs Variabilite Spatio-Temporelle sur la Délimitation Des zones Céréalières dans les Hautes Plaines Orientales de L’algérie. Master’s Thesis, Faculté des Sciences de la Terre, De Geographie et de L’amenagement de Territoire, Université des Sciences et de la TechnologieHouari Boumediene, Algiers, Algeria, 2015. [Google Scholar]
- Moss, R.H.; Babiker, M.; Brinkman, S.; Calvo, E.; Carter, T.; Edmonds, J.A.; Elgizouli, I.; Emori, S.; Lin, E.; Hibbard, K.; et al. Towards New Scenarios for Analysis of Emissions, Climate Change, Impacts, and Response Strategies; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2008. [Google Scholar]
- Van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.-F.; et al. The representative concentration pathways: An overview. Clim. Chang. 2011, 109, 5. [Google Scholar] [CrossRef]
- Saeed Al Blooshi, F.; Alyan, S.; Joshua, N.J.; Ksiksi, T.K. Modeling Current and Future Climate Change in the UAE using Various GCMs in MarksimGCMR. Open Atmos. Sci. J. 2019, 13, 56–64. [Google Scholar] [CrossRef]
- Arbadi, R.; Bacciu, V.; Benkheira, A.; Bouazzaoui, A.; Bouzid, B.W.; Brachemi, O.; Ziani Cherif, S.M.; Ghouari, N.; Salis, M.; Tefiani, W. Réduction D’échelle et ModélisationClimatique Avec Une Application a la Gestion des ForetsenAlgérie; Technical Paper; ClimaSouth: Algiers, Algeria, 2018; p. 56. [Google Scholar]
- Navarro-Racines, C.E.; Tarapues, J.; Thornton, P.; Jarvis, A.; Ramirez-Villegas, J. High-resolution and bias-corrected CMIP5 projections for climate change impact assessments. Sci. Data 2020, 7, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foughali, A.; Tramblay, Y.; Bargaoui, Z.; Carreau, J.; Ruellan, D. Hydrological Modeling in Northern Tunisia with Regional Climate Model Outputs: Performance Evaluation and Bias-Correction in Present Climate Conditions. Climate 2015, 3, 459–473. [Google Scholar] [CrossRef] [Green Version]
- Tramblay, Y.; El Adlouni, S.; Servat, E. Trends and variability in extreme precipitation indices over Maghreb countries. Nat. Hazards Earth Syst. Sci. 2013, 13, 3235–3248. [Google Scholar] [CrossRef] [Green Version]
- Latief, A.; Syed, S.M. Satelite Farming. In An Information and Technology Based Agriculture; Springer: Berlin/Heidelberg, Germany, 2018; 181p. [Google Scholar]
- Steduto, P.; Hsia, T.C.; Raes, D.; Fereres, E. AquaCrop—The FAO Crop Model to Simulate Yield Response to Water: I. Concepts and Underlying Principles. J. Agron. 2009, 101, 426–437. [Google Scholar] [CrossRef] [Green Version]
- Raes, D.; Steduto, P.; Hsiao, T.C.; Fereres, E. AquaCrop; Version 4.0; Manuel d’utilisation; FAO, Land and Water Division: Rome, Italy, 2014. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration. Guidelines for Computing Crop Requirements. FAO Irrigation and Drainage Paper; FAO: Rome, Italy, 2015; Volume 56, 15p. [Google Scholar]
- Saxton, K.E.; Willey, P.H. The SPAW Model for Agricultural Field and Pond Hydrologic Simulation; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Kaly, E.; Malou, R.; Akpo, L.E. Évaluation du modèleAquaCrop de la FAO enrizicultureirriguée dans le Delta du FleuveSénégal. J. Anim. Plant Sci. 2016, 30, 4781–4796. [Google Scholar]
- Khebbat, Z. Etat Hydrique du sol et Performance D’une Collection de Variétés de blé dur. Ph.D. Thesis, Faculté des Sciences de la Nature et de la Vie, Université Ferhat Abbas, Setif, Algeria, 2015; 83p. [Google Scholar]
- Gray, C.D.; Kinnear, P.R. IBM SPSS Statistics 19 Made Simple; Psychology Press: New York, NY, USA, 2012; p. 688. [Google Scholar]
- Rosa, S.L.K.; Souza, J.L.M.D.; Tsukahara, R.Y. Performance of the AquaCrop model for the wheat crop in the subtropical zone in Southern Brazil. Pesqui. Agropecuária Bras. 2020, 55, e01238. [Google Scholar] [CrossRef] [Green Version]
- Romera, R.; Sánchez, E.; Domínguez, M.; Gaertner, M.; Gallardo, C. Evaluation of present-climate precipitation in 25 km resolution regional climate model simulations over Northwest Africa. Clim. Res. 2015, 66, 125–139. [Google Scholar] [CrossRef]
- Freidenreich, S.M.; Ramaswamy, V. Analysis of the biases in the downward shortwave surface flux in the GFDL CM2.1 general circulation model. J. Geophys. Res. 2011, 116, D08208. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Matsui, H. Aerosol radiative forcings induced by substantial changes in anthropogenic emissions in China from 2008 to 2016. Atmos. Chem. Phys. 2021, 21, 5965–5982. [Google Scholar] [CrossRef]
- Erda, L.; Wei, X.; Hui, J.; Yinlong, X.; Yue, L.; Liping, B.; Liyong, X. Climate change impacts on crop yield and quality with CO2 fertilization in China. Philos. Trans. R. Soc. B Biol. Sci. 2015, 360, 2149–2154. [Google Scholar] [CrossRef] [Green Version]
- Degener, J.F. Atmospheric CO2 fertilization effects on biomass yields of 10 crops in northern Germany. Front. Environ. Sci. 2015, 3, 48. [Google Scholar] [CrossRef] [Green Version]
- Bouras, E.; Jarlan, L.; Khabba, S.; Er-Raki, S.; Dezetter, A.; Sghir, F.; Tramblay, Y. Assessing the impact of global climate changes on irrigated wheat yields and water requirements in a semi-arid environment of Morocco. Sci. Rep. 2019, 9, 19142. [Google Scholar] [CrossRef] [PubMed]
- Pugh, T.; Müller, C.; Elliott, J.; Deryng, D.; Folberth, C.; Olin, S.; Schmid, E.; Arneth, A. Climate analogues suggest limited potential for intensification of production on current croplands under climate change. Nat. Commun. 2016, 7, 12608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, S.P. Food for Thought: Lower-than-expected crop yield stimulation with rising CO2 concentrations. Science 2006, 312, 918–1921. [Google Scholar] [CrossRef]
- Tubiello, F.N.; Amthor, J.S.; Boote, K.; Donatelli, M.; Easterling, W.; Fischer, G.; Gifford, R.M.; Howden, S.; Reilly, J.; Rosenzweig, C. Crop response to elevated CO2 and world food supply: A comment on “Food for Thought” by Long et al. Science 312:1918–1921. Eur. J. Agron. 2007, 25, 215–223. [Google Scholar] [CrossRef]
- Xiao, D.; Bai, H.; Liu, D.L. Impact of future climate change on wheat production: A simulated case for china’s wheat system. Sustainability 2018, 10, 1277. [Google Scholar] [CrossRef] [Green Version]
- Xiong, W.; Holman, I.; Lin, E.; Conway, D.; Li, Y.; Wu, W. Untangling relative contributions of recent climate and CO2 trends to national cereal production in China. Environ. Res. Lett. 2012, 7, 044014. [Google Scholar] [CrossRef]
- Asseng, S.; Kheir, A.M.S.; Kassie, B.T.; Hoogenboom, G.; Abdelaal, A.I.N.; Haman, D.Z.; Ruane, A.C. Can Egypt become self-sufficient in wheat? Environ. Res. Lett. 2018, 13, 094012. [Google Scholar] [CrossRef] [Green Version]
- ESCWA. Economic and Social Commission of Western Asia. Modelling Climate Change Impacts on Agricultural Productivity Using AquaCroptools and RICCAR Datasets. Climate Change & Natural Resources Sustainability Cluster; Virtual Workshop for the Arab Region; ESCWA: Beirut, Lebanon, 2020. [Google Scholar]
- Saadi, S.; Todorovic, M.; Tanasijevic, L.; Pereira, L.S.; Pizzigalli, C.; Lionello, P. Climate change and Mediterranean agriculture: Impacts on winter wheat and tomato crop evapotranspiration, irrigation requirements and yield. Agric. Water Manag. 2015, 147, 103–115. [Google Scholar] [CrossRef]
- Tao, F.; Zhang, Z. Climate change, wheat productivity and water use in the North China Plain: A new super-ensemble-based probabilistic projection. Agric. For. Meteorol. 2013, 170, 146–165. [Google Scholar] [CrossRef]
- Liu, H.; Li, Y.; Josef, T.; Zhang, R.; Huang, G. Quantitative estimation of climate change effects on potential evapotranspiration in Beijing during 1951–2010. J. Geogr. Sci. 2013, 24, 93–112. [Google Scholar] [CrossRef]
- Acharjee, T.K.; Ludwig, F.; van Halsema, G.; Hellegers, P.; Iwan, S. Future changes in water requirements of Boro rice in the face of climate change in North–West Bangladesh. Agric. Water Manag. 2017, 194, 172–183. [Google Scholar] [CrossRef]
- Ainsworth, E.A.; Rogers, A. The response of photosynthesis and stomatal conductance to rising (CO2): Mechanisms and environmental interactions. Plant Cell Environ. 2007, 30, 258–270. [Google Scholar] [CrossRef] [PubMed]
- Taub, D. Effects of Rising Atmospheric Concentrations of Carbon Dioxide on Plants. Nat. Educ. Knowl. 2010, 3, 21. [Google Scholar]
- Moriondo, M.; Bindi, M.; Brilli, L.; Costafreda-Aumedes, S.; Dibari, C.; Leolini, L.; Padovan, G.; Trombi, G.; Karali, A.; Varotsos, K.V.; et al. Assessing climate change impacts on crops by adopting a set of crop performance indicators. Euro-Mediterr. J. Environ. Integr. 2021, 6, 45. [Google Scholar] [CrossRef]
- Yang, C.; Fraga, H.; van Ieperen, W.; Trindade, H.; Santos, J.A. Effects of climate change and adaptation options on winter wheat yield under rainfed Mediterranean conditions in southern Portugal. Clim. Chang. 2019, 154, 159–178. [Google Scholar] [CrossRef] [Green Version]
- Demelash, T.; Amou, M.; Gyilbag, A.; Tesfay, G.; Xu, Y. Adaptation Potential of Current Wheat Cultivars and Planting Dates under the Changing Climate in Ethiopia. Agronomy 2022, 12, 37. [Google Scholar] [CrossRef]
Station | Latitude (°C) | Longitude (°C) | Altitude (m) |
---|---|---|---|
BBA | 36.06° N | 4.66° E | 957 |
Setif | 36.16° N | 5.31° E | 1015 |
Non-Conservative Crop Parameters | Value |
---|---|
Length to emergence (day) | 10 |
Reference harvest index (HI) (%) | 57 |
Length to building up HI (day) | 37 |
Duration of flowering (day) | 29 |
Length to max cc (day) | 70 |
Length max root depth (day) | 49 |
Length to flowering (day) | 61 |
Length to start canopy senescence (day) | 82 |
Length to maturity (day) | 106 |
Initial canopy cover (%) | 4.5 |
Maximum canopy cover (%) | 90 |
Plant density (plant/m2) | 300 |
Canopy decline coefficient at senescence | 0.405% GDD |
Canopy growth coefficient | 0.669% GDD |
Max effective root depth (m) | 1 |
Crop transpiration coefficient | 0.98 |
Water productivity (kg/m3) | 1.35 |
SWDT for canopy expansion, upper limit | 0.2 TASW |
SWDT for canopy expansion, lower limit | 0.6 TASW |
SWDT for stomatal closure, upper limit | 0.6 TASW |
SWDT for canopy senescence, upper limit | 0.7 TASW |
Shape factor of canopy expansion | 5 |
Shape factor of stomatal closure | 2.5 |
Shape factor early senescence | 2.5 |
Base temperature (°C) | 0 |
Max temperature (°C) | 26 |
Future Simulation Scenario | TS | TS Change (°C) | PS | PS Change | NrS | NrS Change | ||
---|---|---|---|---|---|---|---|---|
(mm) | (%) | (M J m−2) | (M J m−2) | (%) | ||||
Setif | ||||||||
BP | 10.3 | 263 | 1059.1 | |||||
Sc1 | 13.8 | 3.5 | 244 | −18.8 | −7.1 | 712.1 | −347 | −32.8 |
Sc2 | 10 | −0.3 | 329 | 65.6 | 24.9 | 922.3 | −136.8 | −12.9 |
BBA | ||||||||
BP | 10.7 | 220 | 1058.9 | |||||
Sc1 | 15.2 | 4.5 | 153 | −67.1 | −31 | 468.7 | −590.2 | −55.7 |
Sc2 | 10.5 | −0.1 | 285 | 64.3 | 29.2 | 1016.5 | −42.4 | −4 |
Statistical Indices | RMSE | NRMSE | Willmott Agreement Index (d) | |||
---|---|---|---|---|---|---|
Yield (tha−1) | Biomass (tha−1) | Yield (%) | Biomass (%) | Yield | Biomass | |
Three years average | 0.41 | 2.25 | 8.81 | 21.65 | 0.80 | 0.54 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kourat, T.; Smadhi, D.; Madani, A. Modeling the Impact of Future Climate Change Impacts on Rainfed Durum Wheat Production in Algeria. Climate 2022, 10, 50. https://doi.org/10.3390/cli10040050
Kourat T, Smadhi D, Madani A. Modeling the Impact of Future Climate Change Impacts on Rainfed Durum Wheat Production in Algeria. Climate. 2022; 10(4):50. https://doi.org/10.3390/cli10040050
Chicago/Turabian StyleKourat, Tassadit, Dalila Smadhi, and Azzeddine Madani. 2022. "Modeling the Impact of Future Climate Change Impacts on Rainfed Durum Wheat Production in Algeria" Climate 10, no. 4: 50. https://doi.org/10.3390/cli10040050
APA StyleKourat, T., Smadhi, D., & Madani, A. (2022). Modeling the Impact of Future Climate Change Impacts on Rainfed Durum Wheat Production in Algeria. Climate, 10(4), 50. https://doi.org/10.3390/cli10040050