Frequency of Winter Coupled North Pacific/North America Circulation Regimes
Abstract
:1. Introduction
2. Methods: Previous Cluster Analyses
3. Results: Frequency Analysis for Winter (November–February)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Francis, J.A.; Vavrus, S.J. Evidence for a wavier jet stream in response to rapid Arctic warming. Environ. Res. Lett. 2015, 10, 014005. [Google Scholar] [CrossRef]
- Overland, J.E.; Wang, M. Impact of the winter polar vortex on greater North America. Int. J. Climatol. 2019, 39, 5815–5821. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.H.; Furtado, J.C.; Charlton-Perez, A.J. Wintertime North American weather regimes and the Arctic stratospheric polar vortex. Geophys. Res. Lett. 2019, 46, 14892–14900. [Google Scholar] [CrossRef]
- Singh, D.; Swain, D.L.; Mankin, J.S.; Horton, D.E.; Thomas, L.N.; Rajaratnam, B.; Diffenbaugh, N.S. Recent amplification of the North American winter temperature dipole. J. Geophys. Res. Atmos. 2016, 121, 9911–9928. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J.; Pfeiffer, K.; Francis, J.A. Warm Arctic episodes linked with increased frequency of extreme winter weather in the United States. Nat. Commun. 2018, 9, 869. [Google Scholar] [CrossRef]
- Swain, D.L.; Horton, D.E.; Singh, D.; Diffenbaugh, N.S. Trends in atmospheric patterns conducive to seasonal precipitation and temperature extremes in California. Sci. Adv. 2016, 2, e1501344. [Google Scholar] [CrossRef] [Green Version]
- Woollings, T.; Barriopedro, D.; Methven, J.; Son, S.-W.; Martius, O.; Harvey, B.; Sillmann, J.; Lupo, A.R.; Seneviratne, S. Blocking and its response to climate change. Curr. Clim. Chang. Rep. 2018, 4, 287–300. [Google Scholar] [CrossRef] [Green Version]
- Croci-Maspoli, M.; Schwierz, C.; Davies, H.C. Atmospheric blocking–space-time links to the NAO and PNA. Clim. Dyn. 2007, 29, 713–725. [Google Scholar] [CrossRef] [Green Version]
- Michelangeli, P.; Vautard, R.; Legras, B. Weather regimes: Recurrence and quasi stationarity. J. Atmos. Sci. 1995, 52, 1237–1256. [Google Scholar] [CrossRef]
- Robertson, A.W.; Vigaud, N.; Yuan, J.; Tippett, M.K. Toward identifying subseasonal forecasts of opportunity using North American weather regimes. Mon. Weather Rev. 2020, 148, 1861–1875. [Google Scholar] [CrossRef] [Green Version]
- Kug, J.-S.; Jeong, J.-H.; Jang, Y.-S.; Kim, B.-M.; Folland, C.K.; Min, S.-K.; Son, S.-W. Two distinct influences of Arctic warming on cold winters over North America and East Asia. Nat. Geosci. 2015, 8, 759–762. [Google Scholar] [CrossRef]
- Amini, S.; Straus, D. Control of storminess over the Pacific and North America by circulation regimes. Clim. Dyn. 2019, 52, 4749–4770. [Google Scholar] [CrossRef]
- Kalnay, E. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteor. Soc. 1996, 77, 437–472. [Google Scholar] [CrossRef] [Green Version]
- Wallace, J.M.; Gutzler, D.S. Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Weather Rev. 1981, 109, 784–812. [Google Scholar] [CrossRef]
- Barnston, A.G.; Livezey, R.E. Classification, Seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Weather Rev. 1987, 115, 1083–1126. [Google Scholar] [CrossRef]
- Straus, D.M.; Corti, S.; Molteni, F. Circulation regimes: Chaotic variability versus SST-forced predictability. J. Clim. 2007, 20, 2251–2272. [Google Scholar] [CrossRef]
- Vigaud, N.; Robertson, A.W.; Tippett, M.K. Predictability of recurrent weather regimes over North America during winter from submonthly reforecasts. Mon. Weather Rev. 2018, 146, 2559–2577. [Google Scholar] [CrossRef]
- Riddle, E.E.; Stone, M.B.; Johnson, N.C.; L’Heureux, M.L.; Collins, D.C.; Feldstein, S.B. The impact of the MJO on clusters of wintertime circulation anomalies over the North American region. Clim. Dyn. 2013, 40, 1741–1766. [Google Scholar] [CrossRef] [Green Version]
- Yu, B.; Lin, H.; Wu, Z.W.; Merryfield, W.J. Relationship between North American winter temperature and large-scale atmospheric circulation anomalies and its decadal variation. Environ. Res. Lett. 2016, 11, 074001. [Google Scholar] [CrossRef] [Green Version]
- Henderson, S.A.; Maloney, E.D.; Barnes, E.A. The influence of the Madden–Julian oscillation on Northern Hemisphere winter blocking. J. Clim. 2016, 29, 4597–4616. [Google Scholar] [CrossRef]
- Erb, M.; Emile-Geay, J.; Hakim, G.J.; Steiger, N.; Steig, E.J. Atmospheric dynamics drive most interannual U.S. droughts over the last millennium. Sci. Adv. 2020, 6, eaay7268. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Overland, J.E.; Wang, M. Frequency of Winter Coupled North Pacific/North America Circulation Regimes. Climate 2022, 10, 54. https://doi.org/10.3390/cli10040054
Overland JE, Wang M. Frequency of Winter Coupled North Pacific/North America Circulation Regimes. Climate. 2022; 10(4):54. https://doi.org/10.3390/cli10040054
Chicago/Turabian StyleOverland, James E., and Muyin Wang. 2022. "Frequency of Winter Coupled North Pacific/North America Circulation Regimes" Climate 10, no. 4: 54. https://doi.org/10.3390/cli10040054
APA StyleOverland, J. E., & Wang, M. (2022). Frequency of Winter Coupled North Pacific/North America Circulation Regimes. Climate, 10(4), 54. https://doi.org/10.3390/cli10040054