Exploring AMOC Regime Change over the Past Four Decades through Ocean Reanalyses
Abstract
:1. Introduction
2. Data
2.1. Ocean Reanalysis by ECMWF (ORAS5)
2.2. Global Reanalysis Multi-Model Ensemble Product (GREP) from CMEMS
- CGLORSv05: NEMO v. 3.4 + LIM2, surface forcing given by nudging of SST, SSS, SIC (sea ice concentration), 7 day assimilation window of model mid-dynamic topography (MDT), Reynolds SST, and EN4 data.
- FOAM GLOSEAv13: NEMO v. 3.4 + CICE v. 4.1, surface forcing given by nudging of SST, SSS, 1 day assimilation scheme of EN4 data.
- GLOYRS2V4: NEMO v. 3.1 + LIM2, surface forcing given by precipitation, flux correction climatological runoff and ice shelf and iceberg melting, with no surface nudging, 7 day assimilation window of Reynolds SST and CORA (Coriolis Ocean database for ReAnalysis) data, Merge MDT (model + observation).
- We excluded (by simply discarding its 1993–2017 time series from the datasets) ORAS5 from GREP because its ensemble average was already included in the 1979–2018 time series.
2.3. Simple Ocean Data Assimilation (SODA)
2.4. Ocean Reanalysis Analysis System 4 (ORAS4)
2.5. RAPID In Situ Measurements
2.6. SAMBA In Situ Measurements
3. Methods and Results
3.1. The AMOC Variability
3.2. EOF Modes for SST, OHC, and Wind Stress
3.3. The Gulf Stream Path Variations
3.4. Correlation with NAO
3.5. Labrador Sea Deep Water Formation Processes
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
3D-FGAT | 3D First Guess at Appropriate Time |
AABW | Abyssal Antarctic Bottom Water |
AMOC | Atlantic Meridional Overturning Circulation |
C3S | Copernicus Climate Change Service |
CDS | Climate Data Store |
CICE | Community Ice CodE, ice model from Los Alamos |
CGLORS | CMCC GLobal Ocean Reanalysis System |
CMEMS | Copernicus Marine Environmental Monitoring Service |
CTD | Conductivity, Temperature, and Depth |
DWF | Deep Water Formation |
ECMWF | European Center for Medium Weather Forecast |
ECV | Essential Climate Variable |
EOF | Empirical Orthogonal Function |
ERSSTv5 | Extended Reconstructed Sea Surface Temperature version 5 |
FOAM | Forecast Ocean Assimilation Model |
GCM | General Circulation Model |
GIN | Greenland-Iceland-Norwegian |
GLORYS | GLobal Ocean ReanalYsis and Simulation |
GPE | Gravitational Potential Energy |
GREP | Global Reanalysis multi-model Ensemble Product |
GS | Gulf Stream |
GSI | Gulf Stream Index |
ICDC | Integrated Climate Data Center |
IPCC | Intergovernamental Panel on Climate Change |
LIM2 | Louvain-la-nueve Ice Model version 2 |
MBT | Mechanical BathyTermographs |
MDT | Mean Dynamic Topography |
MLD | Mixed Layer Depth |
NADW | North Atlantic Deep Water |
NAO | North Atlantic Oscillation |
NCEP/NCAR | National Centers for Environmental Prediction/ |
National Center for Atmospheric Research | |
NEMO | Nucleus European for the Modeling of the Ocean |
NEMOVAR | NEMO VARiational data assimilation scheme |
OHC | Ocean Heat Content |
ORAS4 | Ocean Reanalysis Analysis System 4 |
ORAS5 | Ocean Reanalysis Analysis System 5 |
PC | Principal Component |
RAPID-MOCHA | Rapid Climate Change- |
Meridional Overturning Circulation and Heatflux Array | |
SAMBA | South Atlantic MOC Basin-wide Array |
SIC | Sea Ice Concentration |
SODA | Simple Ocean Data Assimilation |
SPG | Sub Polar Gyre |
SSS | Sea Surface Salinity |
SST | Sea Surface Temperature |
STG | Sub Tropical Gyre |
XBT | eXpendable BathyTermographs |
Appendix A
Appendix B. SVD Decomposition for Determining EOF Patterns and PCs
References
- Stommel, H. Thermohaline convection with two stable regimes of flow. Tellus 1961, 13, 224–230. [Google Scholar] [CrossRef] [Green Version]
- Rooth, C. Hydrology and ocean circulation. Prog. Oceanogr. 1982, 11, 131–149. [Google Scholar] [CrossRef]
- Rahmstorf, S. On the freshwater forcing and transport of the Atlantic thermohaline circulation. Clim. Dyn. 1996, 12, 799–811. [Google Scholar] [CrossRef]
- Wood, R.A.; Rodríguez, J.M.; Smith, R.S.; Jackson, L.C.; Hawkins, E. Observable, low-order dynamical controls on thresholds of the Atlantic Meridional Overturning Circulation. Clim. Dyn. 2019, 53, 6815–6834. [Google Scholar] [CrossRef]
- Alkhayuon, H.; Ashwin, P.; Jackson, L.C.; Quinn, C.; Wood, R.A. Basin bifurcations, oscillatory instability and rate-induced thresholds for Atlantic meridional overturning circulation in a global oceanic box model. Proc. R. Soc. A 2019, 475, 20190051. [Google Scholar] [CrossRef] [Green Version]
- Greatbatch, R.J.; Fanning, A.F.; Goulding, A.D.; Levitus, S. A diagnosis of interpentadal circulation changes in the North Atlantic. J. Geophys. Res. Ocean. 1991, 96, 22009–22023. [Google Scholar] [CrossRef]
- Talley, L.D. Descriptive Physical Oceanography: An Introduction; Academic Press: Cambridge, MA, USA, 2011. [Google Scholar]
- Robson, J.; Sutton, R.; Lohmann, K.; Smith, D.; Palmer, M.D. Causes of the rapid warming of the North Atlantic Ocean in the mid-1990s. J. Clim. 2012, 25, 4116–4134. [Google Scholar] [CrossRef]
- Robson, J.; Ortega, P.; Sutton, R. A reversal of climatic trends in the North Atlantic since 2005. Nat. Geosci. 2016, 9, 513–517. [Google Scholar] [CrossRef]
- Karspeck, A.; Stammer, D.; Köhl, A.; Danabasoglu, G.; Balmaseda, M.; Smith, D.; Fujii, Y.; Zhang, S.; Giese, B.; Tsujino, H.; et al. Comparison of the Atlantic meridional overturning circulation between 1960 and 2007 in six ocean reanalysis products. Clim. Dyn. 2017, 49, 957–982. [Google Scholar] [CrossRef]
- Palmer, M.; Roberts, C.; Balmaseda, M.; Chang, Y.S.; Chepurin, G.; Ferry, N.; Fujii, Y.; Good, S.; Guinehut, S.; Haines, K.; et al. Ocean heat content variability and change in an ensemble of ocean reanalyses. Clim. Dyn. 2017, 49, 909–930. [Google Scholar] [CrossRef] [Green Version]
- Jackson, L.; Dubois, C.; Forget, G.; Haines, K.; Harrison, M.; Iovino, D.; Köhl, A.; Mignac, D.; Masina, S.; Peterson, K.; et al. The mean state and variability of the North Atlantic circulation: A perspective from ocean reanalyses. J. Geophys. Res. Ocean. 2019, 124, 9141–9170. [Google Scholar] [CrossRef]
- Pohlmann, H.; Smith, D.M.; Balmaseda, M.A.; Keenlyside, N.S.; Masina, S.; Matei, D.; Müller, W.A.; Rogel, P. Predictability of the mid-latitude Atlantic meridional overturning circulation in a multi-model system. Clim. Dyn. 2013, 41, 775–785. [Google Scholar] [CrossRef]
- Zuo, H.; Balmaseda, M.A.; Mogensen, K.; Tietsche, S. OCEAN5: The ECMWF Ocean Reanalysis System and Its Real-Time Analysis Component; European Centre for Medium-Range Weather Forecasts: Reading, UK, 2018. [Google Scholar]
- Zuo, H.; Balmaseda, M.A.; Tietsche, S.; Mogensen, K.; Mayer, M. The ECMWF operational ensemble reanalysis–analysis system for ocean and sea ice: A description of the system and assessment. Ocean Sci. 2019, 15, 779–808. [Google Scholar] [CrossRef] [Green Version]
- Tietsche, S.; Balmaseda, M.; Zuo, H.; Roberts, C.; Mayer, M.; Ferranti, L. The importance of North Atlantic Ocean transports for seasonal forecasts. Clim. Dyn. 2020, 55, 1995–2011. [Google Scholar] [CrossRef]
- Carton, J.A.; Penny, S.G.; Kalnay, E. Temperature and salinity variability in the SODA3, ECCO4r3, and ORAS5 ocean reanalyses, 1993–2015. J. Clim. 2019, 32, 2277–2293. [Google Scholar] [CrossRef]
- Balmaseda, M.A.; Mogensen, K.; Weaver, A.T. Evaluation of the ECMWF ocean reanalysis system ORAS4. Q. J. R. Meteorol. Soc. 2013, 139, 1132–1161. [Google Scholar] [CrossRef]
- Buckley, M.W.; Marshall, J. Observations, inferences, and mechanisms of the Atlantic Meridional Overturning Circulation: A review. Rev. Geophys. 2016, 54, 5–63. [Google Scholar] [CrossRef] [Green Version]
- Balan Sarojini, B.; Gregory, J.; Tailleux, R.; Bigg, G.; Blaker, A.; Cameron, D.; Edwards, N.; Megann, A.; Shaffrey, L.; Sinha, B. High frequency variability of the Atlantic meridional overturning circulation. Ocean Sci. 2011, 7, 471–486. [Google Scholar] [CrossRef]
- Moat, B.I.; Smeed, D.A.; Frajka-Williams, E.; Desbruyères, D.G.; Beaulieu, C.; Johns, W.E.; Rayner, D.; Sanchez-Franks, A.; Baringer, M.O.; Volkov, D.; et al. Pending recovery in the strength of the meridional overturning circulation at 26° N. Ocean Sci. 2020, 16, 863–874. [Google Scholar] [CrossRef]
- Chidichimo, M.; Piola, A.; Meinen, C.; Perez, R.; Campos, E.; Dong, S.; Lumpkin, R.; Garzoli, S. Brazil Current Volume Transport Variability During 2009–2015 From a Long-Term Moored Array at 34.5° S. J. Geophys. Res. Ocean. 2021, 126, e2020JC017146. [Google Scholar] [CrossRef]
- Kanzow, T.; Cunningham, S.; Johns, W.E.; Hirschi, J.J.; Marotzke, J.; Baringer, M.; Meinen, C.; Chidichimo, M.; Atkinson, C.; Beal, L.; et al. Seasonal variability of the Atlantic meridional overturning circulation at 26.5 N. J. Clim. 2010, 23, 5678–5698. [Google Scholar] [CrossRef] [Green Version]
- Polo, I.; Robson, J.; Sutton, R.; Balmaseda, M.A. The importance of wind and buoyancy forcing for the boundary density variations and the geostrophic component of the AMOC at 26° N. J. Phys. Oceanogr. 2014, 44, 2387–2408. [Google Scholar] [CrossRef]
- Biastoch, A.; Böning, C.W.; Getzlaff, J.; Molines, J.M.; Madec, G. Causes of interannual–decadal variability in the meridional overturning circulation of the midlatitude North Atlantic Ocean. J. Clim. 2008, 21, 6599–6615. [Google Scholar] [CrossRef]
- Wang, Z.; Brickman, D.; Greenan, B.J. Characteristic evolution of the Atlantic Meridional Overturning Circulation from 1990 to 2015: An eddy-resolving ocean model study. Deep Sea Res. Part I Oceanogr. Res. Pap. 2019, 149, 103056. [Google Scholar] [CrossRef]
- Jung, O.; Sung, M.K.; Sato, K.; Lim, Y.K.; Kim, S.J.; Baek, E.H.; Jeong, J.H.; Kim, B.M. How does the SST variability over the western North Atlantic Ocean control Arctic warming over the Barents–Kara Seas? Environ. Res. Lett. 2017, 12, 034021. [Google Scholar] [CrossRef]
- Fontela, M.; García-Ibáñez, M.I.; Hansell, D.A.; Mercier, H.; Pérez, F.F. Dissolved organic carbon in the North Atlantic meridional overturning circulation. Sci. Rep. 2016, 6, 26931. [Google Scholar] [CrossRef] [Green Version]
- Stendardo, I.; Rhein, M.; Hollmann, R. A high resolution salinity time series 1993–2012 in the North Atlantic from Argo and Altimeter data. J. Geophys. Res. Ocean. 2016, 121, 2523–2551. [Google Scholar] [CrossRef] [Green Version]
- Luo, D.; Zhu, Z.; Ren, R.; Zhong, L.; Wang, C. Spatial pattern and zonal shift of the North Atlantic Oscillation. Part I: A dynamical interpretation. J. Atmos. Sci. 2010, 67, 2805–2826. [Google Scholar] [CrossRef]
- Häkkinen, S.; Rhines, P.B.; Worthen, D.L. Warm and saline events embedded in the meridional circulation of the northern North Atlantic. J. Geophys. Res. Ocean. 2011, 116. [Google Scholar] [CrossRef]
- Yang, C.; Masina, S.; Bellucci, A.; Storto, A. The rapid warming of the North Atlantic Ocean in the Mid-1990s in an eddy-permitting ocean reanalysis (1982–2013). J. Clim. 2016, 29, 5417–5430. [Google Scholar] [CrossRef]
- De Coetlogon, G.; Frankignoul, C.; Bentsen, M.; Delon, C.; Haak, H.; Masina, S.; Pardaens, A. Gulf Stream variability in five oceanic general circulation models. J. Phys. Oceanogr. 2006, 36, 2119–2135. [Google Scholar] [CrossRef] [Green Version]
- Joyce, T.M.; Zhang, R. On the path of the Gulf Stream and the Atlantic meridional overturning circulation. J. Clim. 2010, 23, 3146–3154. [Google Scholar] [CrossRef]
- Lozier, M.S.; Stewart, N.M. On the temporally varying northward penetration of Mediterranean Overflow Water and eastward penetration of Labrador Sea Water. J. Phys. Oceanogr. 2008, 38, 2097–2103. [Google Scholar] [CrossRef] [Green Version]
- Weijer, W.; Cheng, W.; Drijfhout, S.S.; Fedorov, A.V.; Hu, A.; Jackson, L.C.; Liu, W.; McDonagh, E.; Mecking, J.; Zhang, J. Stability of the Atlantic Meridional Overturning Circulation: A review and synthesis. J. Geophys. Res. Ocean. 2019, 124, 5336–5375. [Google Scholar] [CrossRef] [Green Version]
- Oldenburg, D.C.S.; Wills, R.C.; Armour, K.; Thompson, L. AMOC and water-mass transformation in high-and low-resolution models: Climatology and variability. J. Geophys. Res. Ocean. 2021. [Google Scholar] [CrossRef]
- Delworth, T.L.; Zeng, F. The impact of the North Atlantic Oscillation on climate through its influence on the Atlantic meridional overturning circulation. J. Clim. 2016, 29, 941–962. [Google Scholar] [CrossRef]
- Johnson, H.L.; Cessi, P.; Marshall, D.P.; Schloesser, F.; Spall, M.A. Recent contributions of theory to our understanding of the Atlantic meridional overturning circulation. J. Geophys. Res. Ocean. 2019, 124, 5376–5399. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Lozier, M.S.; Bacon, S.; Bower, A.; Cunningham, S.; de Jong, M.; Deyoung, B.; Fraser, N.; Fried, N.; Han, G.; et al. Subpolar North Atlantic western boundary density anomalies and the Meridional Overturning Circulation. Nat. Commun. 2021, 12, 3002. [Google Scholar] [CrossRef]
- Yashayaev, I. Hydrographic changes in the Labrador Sea, 1960–2005. Prog. Oceanogr. 2007, 73, 242–276. [Google Scholar] [CrossRef]
- Yashayaev, I.; Loder, J.W. Further intensification of deep convection in the Labrador Sea in 2016. Geophys. Res. Lett. 2017, 44, 1429–1438. [Google Scholar] [CrossRef]
- Huang, B.; Xue, Y.; Kumar, A.; Behringer, D.W. AMOC variations in 1979–2008 simulated by NCEP operational ocean data assimilation system. Clim. Dyn. 2012, 38, 513–525. [Google Scholar] [CrossRef]
- Kuhlbrodt, T.; Griesel, A.; Montoya, M.; Levermann, A.; Hofmann, M.; Rahmstorf, S. On the driving processes of the Atlantic meridional overturning circulation. Rev. Geophys. 2007, 45. [Google Scholar] [CrossRef] [Green Version]
- Lohmann, K.; Drange, H.; Bentsen, M. A possible mechanism for the strong weakening of the North Atlantic subpolar gyre in the mid-1990s. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef] [Green Version]
- Straneo, F. On the connection between dense water formation, overturning, and poleward heat transport in a convective basin. J. Phys. Oceanogr. 2006, 36, 1822–1840. [Google Scholar] [CrossRef] [Green Version]
- Gulev, S.K.; Latif, M.; Keenlyside, N.; Park, W.; Koltermann, K.P. North Atlantic Ocean control on surface heat flux on multidecadal timescales. Nature 2013, 499, 464–467. [Google Scholar] [CrossRef]
- Frankignoul, C.; Gastineau, G.; Kwon, Y.O. Wintertime atmospheric response to North Atlantic ocean circulation variability in a climate model. J. Clim. 2015, 28, 7659–7677. [Google Scholar] [CrossRef] [Green Version]
- Artale, V.; Calmanti, S.; Sutera, A. Thermohaline circulation sensitivity to intermediate-level anomalies. Tellus A Dyn. Meteorol. Oceanogr. 2002, 54, 159–174. [Google Scholar] [CrossRef]
- Artale, V.; Calmanti, S.; Malanotte-Rizzoli, P.; Pisacane, G.; Rupolo, V.; Tsimplis, M. The Atlantic and Mediterranean Sea as connected systems. In Developments in Earth and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2006; Volume 4, pp. 283–323. [Google Scholar]
- Calmanti, S.; Artale, V.; Sutera, A. North Atlantic MOC variability and the Mediterranean Outflow: A box-model study. Tellus A Dyn. Meteorol. Oceanogr. 2006, 58, 416–423. [Google Scholar] [CrossRef]
- Keeley, S.; Sutton, R.; Shaffrey, L. The impact of North Atlantic sea surface temperature errors on the simulation of North Atlantic European region climate. Q. J. R. Meteorol. Soc. 2012, 138, 1774–1783. [Google Scholar] [CrossRef] [Green Version]
- Yang, J. Local and remote wind stress forcing of the seasonal variability of the Atlantic Meridional Overturning Circulation (AMOC) transport at 26.5 N. J. Geophys. Res. Ocean. 2015, 120, 2488–2503. [Google Scholar] [CrossRef] [Green Version]
- Preisendorfer, R.W.; Mobley, C.D. Principal component analysis in meteorology and oceanography. Dev. Atmos. Sci. 1988, 17, 425. [Google Scholar]
- Jolliffe, I. Principal component analysis. Technometrics 2003, 45, 276. [Google Scholar]
Data Name | Horiz. Resol. | Vert. Resol. | Temp. Resol. | Oce-Ice Model | Atmospheric Forcing |
---|---|---|---|---|---|
0.25° | 75 lev. | mon | NEMO3.4 | ERA | |
ORAS5 | × | 1 m | 1979 | + | 3DVAR - |
0.25° | 204 m | 2018 | LIM2 | Interim | |
1° | 42 lev. | mon | ERA | ||
ORAS4 | × | 10 m | 1979 | NEMO3.0 | - |
1° | 300 m | 2017 | 40/Interim | ||
0.5° | 50 lev. | mon | MOM5.1 | ERA | |
SODA | × | 10 m | 1980 | + | - |
0.5° | 210 m | 2017 | SIS | Interim | |
0.25° | 75 lev. | mon | NEMO3.4 | ERA | |
CGLO | × | 1 m | 1993 | + | - |
0.25° | 204 m | 2018 | LIM2 | Interim | |
0.25° | 75 lev. | mon | NEMO3.4 | ERA | |
FOAM | × | 1 m | 1993 | + | - |
0.25° | 204 m | 2018 | CICE4.1 | Interim | |
0.25° | 75 lev. | mon | NEMO3.1 | ERA | |
GLOR | × | 1 m | 1993 | + | - |
0.25° | 204 m | 2018 | LIM2 | Interim |
Variables | SST | ||||||
---|---|---|---|---|---|---|---|
Pearson R | 0.840 | 0.840 | 0.907 | 0.937 | 0.941 | −0.141 | −0.126 |
p-Value | 0.999 | 0.999 | 0.999 | 1.0 | 1.0 | 0.616 | 0.562 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Toma, V.; Artale, V.; Yang, C. Exploring AMOC Regime Change over the Past Four Decades through Ocean Reanalyses. Climate 2022, 10, 59. https://doi.org/10.3390/cli10040059
de Toma V, Artale V, Yang C. Exploring AMOC Regime Change over the Past Four Decades through Ocean Reanalyses. Climate. 2022; 10(4):59. https://doi.org/10.3390/cli10040059
Chicago/Turabian Stylede Toma, Vincenzo, Vincenzo Artale, and Chunxue Yang. 2022. "Exploring AMOC Regime Change over the Past Four Decades through Ocean Reanalyses" Climate 10, no. 4: 59. https://doi.org/10.3390/cli10040059
APA Stylede Toma, V., Artale, V., & Yang, C. (2022). Exploring AMOC Regime Change over the Past Four Decades through Ocean Reanalyses. Climate, 10(4), 59. https://doi.org/10.3390/cli10040059