Quantifying Interactive Cooling Effects of Morphological Parameters and Vegetation-Related Landscape Features during an Extreme Heat Event
Abstract
:1. Introduction
- RQ.1
- Which physical and vegetation parameters cause the largest variations in thermal conditions?
- RQ.2
- What is the effect magnitude of those parameters on changing thermal comfort indices (such as temperature and relative humidity) during different hours of a day?
- RQ.3
- What is the interactive effect of morphological and vegetation-related landscape features in changing thermal comfort levels during an extreme heat event?
- RQ.4
- What is the cooling performance of different vegetation scenarios in various street canyon layouts, and how might they affect the duration of thermal stress and exposure to extreme heat?
2. Materials and Methods
2.1. Model Setup and Scenario Development
2.2. ENVI-met Output Post-Processing and Statistical Analysis
2.2.1. RQ.1: UTCI Level Sensitivity Analysis
2.2.2. RQ.2: Temporal Analysis
2.2.3. RQ.3: Exploration of Parameter’s Interactive Effect
2.2.4. RQ.4: Scenario Analysis
3. Results and Discussion
3.1. UTCI Level Sensitivity Analysis
3.2. Temporal Analysis
3.3. Parameter Interactive Effects
3.4. Scenario Analysis
4. Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Study | Case Study | Summary of Study Purpose | Model | Simulated Variables | Scenarios |
---|---|---|---|---|---|
[56] | Chongqing, China | Study the cooling effect of 4.5 ha urban forest park under different wind directions, wind speeds | ENVI-met | Wind direction, wind speed, building height (aspect ratio) | 12 |
[25] | Hong Kong | Study the effect of different greening strategies under different building heights on ambient air temperature at pedestrian level | ENVI-met | Green coverage ratio, vegetation type, building type, building height (aspect ratio) | 33 |
[24] | Hong Kong | Investigate the effect of two types of shading (vegetation and buildings) on pedestrian thermal comfort | ENVI-met | Vegetation type, building type, building height, street width (aspect ratio) | 46 |
[67] | Bilbao, Spain | Study the effect of different vegetation types on thermal conditions in urban environments under various compactness levels (compact, low rise, compact mid-rise, open set high rise) | ENVI-met | Vegetation type, compactness (aspect ratio) | 21 |
[68] | Beijing, China | Investigate the effect of urban green spaces within 18 sub-areas of a belt-shaped park in Beijing to determine how different types of green coverage can modify thermal comfort. | ENVI-met | Vegetation type, building ratio percentage | 18 |
[33] | Phoenix, Arizona, US | Study how tree quantity and layout can change thermal condition in an existing neighborhood in Phoenix | ENVI-met | Vegetation density (number of trees), vegetation layout | 9 |
[69] | Netherland | Study the impact of different urban forms (singular East-West and North-South, linear East-West and North-South, and a courtyard form) on thermal comfort | ENVI-met | Building configuration (compactness and direction) | 5 |
[70] | Worcester, Massachusetts, US | Study the impact of urban geometry on the microclimate of open spaces | ENVI-met | Aspect ratio, surface materials, street canyon orientation | 4 |
[71] | NA | Study the impact of tree planting patterns in street canyons with different aspect ratios | ENVI-met | Aspect ratio, vegetation density (tree aspect ratio and tree covered area), planting pattern, wind direction | 12 |
[72] | Manchester, UK | Study the effect of green spaces on reducing surface and air temperature | ENVI-met | Vegetation type, vegetation density | 7 |
[73] | Wuhan, China | Study the impact of vegetation type and layout | ENVI-met | Vegetation type, vegetation distribution (ART: aspect ratio of trees) | 3 |
[32] | Toronto, Canada | How cool surfaces (roofs and pavements materials and vegetation) can control the duration of direct sun and mean radiant temperature | ENVI-met | Land surface cover (vegetation and surface material percentages), average building heights | 15 (5 models for each of three locations) |
[23] | Phoenix, Arizona, US | Study the impact of urban form and landscape types on mid-afternoon temperature. Investigating effective urban form and design strategies for ameliorating the adverse effect of extreme heat in Phoenix, Arizona | ENVI-met | Sky view factor, mean building height, building surface fraction, impervious surface fraction, surface albedo | 13 |
[74] | Mendoza, Argentina | Study the thermal behavior and energy consumption of three low-density social housing neighborhoods | ENVI-met | Street widths, layout grids, street orientations | 48 |
[21] | Ghardaia, Algeria | Study the impact of aspect ratio and solar orientation on the pedestrian-level thermal comfort | ENVI-met | Aspect ratio, solar orientation | 16 |
[75] | Tehran, Iran | Evaluating different strategies for daytime thermal comfort | ENVI-met | Roof and surface vegetation cover, surface albedo, building orientations | 6 |
[76] | Mashhad, Iran | Proposing a new approach for city zoning based on the thermal comfort criteria | ENVI-met | Aspect ratio, tree canopy cover, canyon orientation, building surface material | NA (not mentioned) |
[77] | Panama | Study the effectiveness of strategies based on biomimicry for mitigating the urban heat island effect | ENVI-met | Vegetation cover, roof, and pavement material | 3 |
[78] | Erzurum, Turkey | Providing winter thermal comfort through design strategies | ENVI-met | Presence of hard pavement material, presence of site-specific plants, street top coverage, presence of ornamental pool | 5 |
[66] | Toronto, Canada | Comparing the effect of greenery enhancement on both microscale and mesoscale | WRF and ENVI-met | Greenery density | 2 |
[79] | Shenzhen, China | Simulating thermal comfort within a complex district of a low carbon city | an Urban Energy Balance model (UDC) | Land use and land cover | NA |
[80] | Delhi, India | Study the impact of urbanization related changes on thermal comfort and urban heat island intensity using different types of land use/land cover data | WRF (Weather Research and Forecasting) | Land use and land cover | 4 |
[81] | Mexico City, Mexico | Simulating the urban heat island effect based on the physical, urban, climatic characteristics of the site and its effect on indoor temperature | Energy Plus | Reflective materials, shading vegetation, urban convection, and radiation coefficient (height of buildings) | 3 |
[82] | Kuala Lumpur, Malaysia | Study the efficiency of Road Pavement Solar Collector (RPSC) in mitigating urban heat island effect | ANSYS Fluent | RPSC setting, aspect ratio (H/W), L/W | 12 |
[83] | Klang Valley, Malaysia | Evaluating the contribution of urbanization on urban climate and thermal comfort in Klang Valley (Greater Kuala Lumpur) | WRF/UCM (Urban Canopy Model) | Urban/vegetation fraction | 4 |
[84] | London, UK | Assessing how the urban heat island effect influences the summertime adaptive capacity of traditional residential buildings | UWG (Urban Weather Generator) | Cooling load | 5 |
[85] | Melbourne, Australia | Evaluating the contribution of urban greenery to human thermal comfort | VTUF-3D (Vegetated Temperatures of Urban Facets) | Vegetation variety and mix | 5 |
[86] | Tehran, Iran | Evaluating various green scenarios on mitigating the urban heat island effect and improving the thermal comfort level | WRF/SLUCM (Single-Layer Urban Canopy Model) | Surface vegetation, green roof | 6 |
[87] | Singapore | Predicting solar irradiance reaching urban surfaces due to urbanization and assessing thermal comfort | RADIANCE | Building orientation, pavement, vegetation | 4 |
[88] | Beirut, Lebanon | Study the effect of building density, artificial surfaces, and vegetation on urban heat island effect | TEB (Town Energy Balance model) | Building, road, and vegetation area fraction | 6 |
References
- Theoharatos, G.; Pantavou, K.; Mavrakis, A.; Spanou, A.; Katavoutas, G.; Efstathiou, P.; Mpekas, P.; Asimakopoulos, D. Heat Waves Observed in 2007 in Athens, Greece: Synoptic Conditions, Bioclimatological Assessment, Air Quality Levels and Health Effects. Environ. Res. 2010, 110, 152–161. [Google Scholar] [CrossRef] [PubMed]
- Vaidyanathan, A. Heat-Related Deaths—United States, 2004–2018. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 729. [Google Scholar] [CrossRef] [PubMed]
- Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change; Field, C.B.; Barros, V.; Stocker, T.F.; Dahe, Q. (Eds.) Cambridge University Press: Cambridge, UK, 2012; ISBN 978-1-139-17724-5. [Google Scholar]
- Alexander, L.V.; Arblaster, J.M. Assessing Trends in Observed and Modelled Climate Extremes over Australia in Relation to Future Projections. Int. J. Climatol. 2009, 29, 417–435. [Google Scholar] [CrossRef]
- Grundstein, A.J.; Williams, C.A. Heat Exposure and the General Public: Health Impacts, Risk Communication, and Mitigation Measures. In Human Health and Physical Activity during Heat Exposure; Hosokawa, Y., Ed.; SpringerBriefs in Medical Earth Sciences; Springer International Publishing: Cham, Germany, 2018; pp. 29–43. ISBN 978-3-319-75889-3. [Google Scholar]
- Li, D.; Bou-Zeid, E. Synergistic Interactions between Urban Heat Islands and Heat Waves: The Impact in Cities Is Larger than the Sum of Its Parts*. J. Appl. Meteorol. Climatol. 2013, 52, 2051–2064. [Google Scholar] [CrossRef] [Green Version]
- Klinenberg, E. Heat Wave: A Social Autopsy of Disaster in Chicago; University of Chicago Press: Chicago, IL, USA, 2002. [Google Scholar] [CrossRef]
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global Change and the Ecology of Cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef] [Green Version]
- Landsberg, H.E. Man-Made Climatic Changes: Man’s Activities Have Altered the Climate of Urbanized Areas and May Affect Global Climate in the Future. Science 1970, 170, 1265–1274. [Google Scholar] [CrossRef]
- Oke, T.R. Climatic Impacts of Urbanization. In Interactions of Energy and Climate, Proceedings of an International Workshop Held in Münster, Germany, March 3–6, 1980; Bach, W., Pankrath, J., Williams, J., Eds.; Springer: Dordrecht, The Netherlands, 1980; pp. 339–361. ISBN 978-94-009-9111-8. [Google Scholar]
- Highfield, W.E.; Peacock, W.G.; Van Zandt, S. Mitigation Planning: Why Hazard Exposure, Structural Vulnerability, and Social Vulnerability Matter. J. Plan. Educ. Res. 2014, 34, 287–300. [Google Scholar] [CrossRef]
- Yoo, S. Investigating Important Urban Characteristics in the Formation of Urban Heat Islands: A Machine Learning Approach. J. Big Data 2018, 5, 2. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Murray, A.T.; Turner, B.L. Optimizing Green Space Locations to Reduce Daytime and Nighttime Urban Heat Island Effects in Phoenix, Arizona. Landsc. Urban Plan. 2017, 165, 162–171. [Google Scholar] [CrossRef]
- Erell, E.; Pearlmutter, D.; Boneh, D.; Kutiel, P.B. Effect of High-Albedo Materials on Pedestrian Heat Stress in Urban Street Canyons. Urban Clim. 2014, 10, 367–386. [Google Scholar] [CrossRef]
- Grimmond, S. Urbanization and Global Environmental Change: Local Effects of Urban Warming. Geogr. J. 2007, 173, 83–88. [Google Scholar] [CrossRef]
- Sini, J.-F.; Anquetin, S.; Mestayer, P.G. Pollutant Dispersion and Thermal Effects in Urban Street Canyons. Atmos. Environ. 1996, 30, 2659–2677. [Google Scholar] [CrossRef]
- Arnfield, A.J. Two Decades of Urban Climate Research: A Review of Turbulence, Exchanges of Energy and Water, and the Urban Heat Island. Int. J. Climatol. 2003, 23, 1–26. [Google Scholar] [CrossRef]
- Fahmy, M.; Sharples, S. On the Development of an Urban Passive Thermal Comfort System in Cairo, Egypt. Build. Environ. 2009, 44, 1907–1916. [Google Scholar] [CrossRef]
- Montávez, J.P.; Jiménez, J.I.; Sarsa, A. A Monte Carlo Model Of The Nocturnal Surface Temperatures In Urban Canyons. Bound. -Layer Meteorol. 2000, 96, 433–452. [Google Scholar] [CrossRef] [Green Version]
- Achour-Younsi, S.; Kharrat, F. Outdoor Thermal Comfort: Impact of the Geometry of an Urban Street Canyon in a Mediterranean Subtropical Climate—Case Study Tunis, Tunisia. Procedia-Soc. Behav. Sci. 2016, 216, 689–700. [Google Scholar] [CrossRef] [Green Version]
- Ali-Toudert, F.; Mayer, H. Numerical Study on the Effects of Aspect Ratio and Orientation of an Urban Street Canyon on Outdoor Thermal Comfort in Hot and Dry Climate. Build. Environ. 2006, 41, 94–108. [Google Scholar] [CrossRef]
- Pearlmutter, D.; Berliner, P.; Shaviv, E. Integrated Modeling of Pedestrian Energy Exchange and Thermal Comfort in Urban Street Canyons. Build. Environ. 2007, 42, 2396–2409. [Google Scholar] [CrossRef]
- Middel, A.; Häb, K.; Brazel, A.J.; Martin, C.A.; Guhathakurta, S. Impact of Urban Form and Design on Mid-Afternoon Microclimate in Phoenix Local Climate Zones. Landsc. Urban Plan. 2014, 122, 16–28. [Google Scholar] [CrossRef]
- Morakinyo, T.E.; Kong, L.; Lau, K.K.-L.; Yuan, C.; Ng, E. A Study on the Impact of Shadow-Cast and Tree Species on in-Canyon and Neighborhood’s Thermal Comfort. Build. Environ. 2017, 115, 1–17. [Google Scholar] [CrossRef]
- Ng, E.; Chen, L.; Wang, Y.; Yuan, C. A Study on the Cooling Effects of Greening in a High-Density City: An Experience from Hong Kong. Build. Environ. 2012, 47, 256–271. [Google Scholar] [CrossRef]
- Bretz, S.; Akbari, H.; Rosenfeld, A. Practical Issues for Using Solar-Reflective Materials to Mitigate Urban Heat Islands. Atmos. Environ. 1998, 32, 95–101. [Google Scholar] [CrossRef] [Green Version]
- Santamouris, M. Using Cool Pavements as a Mitigation Strategy to Fight Urban Heat Island—A Review of the Actual Developments. Renew. Sustain. Energy Rev. 2013, 26, 224–240. [Google Scholar] [CrossRef]
- Santamouris, M.; Synnefa, A.; Karlessi, T. Using Advanced Cool Materials in the Urban Built Environment to Mitigate Heat Islands and Improve Thermal Comfort Conditions. Sol. Energy 2011, 85, 3085–3102. [Google Scholar] [CrossRef]
- Oke, T.R. The Energetic Basis of the Urban Heat Island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Middel, A.; Lukasczyk, J.; Zakrzewski, S.; Arnold, M.; Maciejewski, R. Urban Form and Composition of Street Canyons: A Human-Centric Big Data and Deep Learning Approach. Landsc. Urban Plan. 2019, 183, 122–132. [Google Scholar] [CrossRef]
- Nazarian, N.; Kleissl, J. CFD Simulation of an Idealized Urban Environment: Thermal Effects of Geometrical Characteristics and Surface Materials. Urban Clim. 2015, 12, 141–159. [Google Scholar] [CrossRef]
- Wang, Y.; Berardi, U.; Akbari, H. Comparing the Effects of Urban Heat Island Mitigation Strategies for Toronto, Canada. Energy Build. 2016, 114, 2–19. [Google Scholar] [CrossRef]
- Zhao, Q.; Sailor, D.J.; Wentz, E.A. Impact of Tree Locations and Arrangements on Outdoor Microclimates and Human Thermal Comfort in an Urban Residential Environment. Urban For. Urban Green. 2018, 32, 81–91. [Google Scholar] [CrossRef] [Green Version]
- Perini, K.; Magliocco, A. Effects of Vegetation, Urban Density, Building Height, and Atmospheric Conditions on Local Temperatures and Thermal Comfort. Urban For. Urban Green. 2014, 13, 495–506. [Google Scholar] [CrossRef]
- Ali-Toudert, F.; Mayer, H. Effects of Asymmetry, Galleries, Overhanging Façades and Vegetation on Thermal Comfort in Urban Street Canyons. Sol. Energy 2007, 81, 742–754. [Google Scholar] [CrossRef]
- Coutts, A.M.; Harris, R.J.; Phan, T.; Livesley, S.J.; Williams, N.S.G.; Tapper, N.J. Thermal Infrared Remote Sensing of Urban Heat: Hotspots, Vegetation, and an Assessment of Techniques for Use in Urban Planning. Remote Sens. Environ. 2016, 186, 637–651. [Google Scholar] [CrossRef]
- Niachou, K.; Livada, I.; Santamouris, M. Experimental Study of Temperature and Airflow Distribution inside an Urban Street Canyon during Hot Summer Weather Conditions. Part II: Airflow Analysis. Build. Environ. 2008, 43, 1393–1403. [Google Scholar] [CrossRef]
- Shashua-Bar, L.; Hoffman, M.E. Vegetation as a Climatic Component in the Design of an Urban Street: An Empirical Model for Predicting the Cooling Effect of Urban Green Areas with Trees. Energy Build. 2000, 31, 221–235. [Google Scholar] [CrossRef]
- Weng, Q.; Lu, D.; Schubring, J. Estimation of Land Surface Temperature-Vegetation Abundance Relationship for Urban Heat Island Studies. Remote Sens. Environ. 2004, 89, 467–483. [Google Scholar] [CrossRef]
- Bruse, M.; Fleer, H. Simulating Surface-Plant-Air Interactions inside Urban Environments with a Three Dimensional Numerical Model. Environ. Model. Softw. 1998, 13, 373–384. [Google Scholar] [CrossRef]
- ENVI-Met Intro:Modelconept [A Holistic Microclimate Model]. Available online: https://envi-met.info/doku.php?id=intro:modelconept (accessed on 1 February 2022).
- Heris, M.P. Do Planning and Design Policies and Procedures Matter in Microclimate Management and Urban Heat Mitigation? Doctoral Dissertation, University of Colorado at Denver, Denver, CO, USA, 2018; p. 231. [Google Scholar]
- Ayyad, Y.N.; Sharples, S. Envi-MET Validation and Sensitivity Analysis Using Field Measurements in a Hot Arid Climate. IOP Conf. Ser. Earth Environ. Sci. 2019, 329, 012040. [Google Scholar] [CrossRef] [Green Version]
- Bande, L.; Afshari, A.; Al Masri, D.; Jha, M.; Norford, L.; Tsoupos, A.; Marpu, P.; Pasha, Y.; Armstrong, P. Validation of UWG and ENVI-Met Models in an Abu Dhabi District, Based on Site Measurements. Sustainability 2019, 11, 4378. [Google Scholar] [CrossRef] [Green Version]
- Lai, D.; Liu, W.; Gan, T.; Liu, K.; Chen, Q. A Review of Mitigating Strategies to Improve the Thermal Environment and Thermal Comfort in Urban Outdoor Spaces. Sci. Total Environ. 2019, 661, 337–353. [Google Scholar] [CrossRef]
- NOAA Local Climatological Data Station Details: Chicago Ohare International Airport, IL USA, WBAN:94846, Climate Data Online (CDO), National Climatic Data Center (NCDC). Available online: https://www.ncdc.noaa.gov/cdo-web/datasets/LCD/stations/WBAN:94846/detail (accessed on 22 February 2022).
- ENVI-Met Manual ENVI-Met 3.1 Manual Contents. Available online: https://envi-met.info/documents/onlinehelpv3/cnt.htm (accessed on 22 February 2022).
- Beven, K. Prophecy, Reality and Uncertainty in Distributed Hydrological Modelling. Adv. Water Resour. 1993, 16, 41–51. [Google Scholar] [CrossRef]
- Tartarini, F. Pythermalcomfort: Package to Calculate Several Thermal Comfort Indices (e.g. PMV, PPD, SET, Adaptive) and Convert Physical Variables. Please Cite Us If You Use This Package: Tartarini, F., Schiavon, S. Pythermalcomfort: A Python Package for Thermal Comfort Research. SoftwareX 2020, 12, 100578. [Google Scholar] [CrossRef]
- Gagge, A.P. A New Physiological Variable Associated with Sensible and Insensible Perspiration. Am. J. Physiol.-Leg. Content 1937, 120, 277–287. [Google Scholar] [CrossRef]
- Fanger, P.O. Thermal comfort: Analysis and applications in environmental engineering; Danish Technical Press: Copenhagen, Denmark, 1970. [Google Scholar]
- Staiger, H.; Bucher, K.; Jendritzky, G. The Apparent Temperature—The Physiologically Correct Estimation of Heat and Cold Stress in the Open Air in Degrees Celsius. Ann. Meteorol. 1997, 33, 100–107. [Google Scholar]
- Pickup, J.; Dear, R. de An Outdoor Thermal Comfort Index (OUT_SET*)—Part I—The Model and Its Assumptions. In Biometeorology and Urban Climatology at the Turn of the Millennium; World Meteorological Organization: Geneva, Switzerland, 2000; pp. 279–283. [Google Scholar]
- Höppe, P. The Physiological Equivalent Temperature—A Universal Index for the Biometeorological Assessment of the Thermal Environment. Int. J. Biometeorol. 1999, 43, 71–75. [Google Scholar] [CrossRef]
- Jendritzky, G.; de Dear, R.; Havenith, G. UTCI—Why Another Thermal Index? Int. J. Biometeorol. 2012, 56, 421–428. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Li, Q.; Zeng, L.; Chen, J.; Liu, G.; Li, Y.; Li, W.; Huang, K. A Micro-Climatic Study on Cooling Effect of an Urban Park in a Hot and Humid Climate. Sustain. Cities Soc. 2017, 32, 513–522. [Google Scholar] [CrossRef]
- Kuang, W. Seasonal Variation in Air Temperature and Relative Humidity on Building Areas and in Green Spaces in Beijing, China. Chin. Geogr. Sci. 2020, 30, 75–88. [Google Scholar] [CrossRef] [Green Version]
- Yang, P.; Ren, G.; Hou, W. Temporal-Spatial Patterns of Relative Humidity and the Urban Dryness Island Effect in Beijing City. J. Appl. Meteorol. Climatol. 2017, 56, 2221–2237. [Google Scholar] [CrossRef]
- Tsoka, S. Investigating the Relationship Between Urban Spaces Morphology and Local Microclimate: A Study for Thessaloniki. Procedia Environ. Sci. 2017, 38, 674–681. [Google Scholar] [CrossRef]
- Tsoka, S.; Tsikaloudaki, A.; Theodosiou, T. Analyzing the ENVI-Met Microclimate Model’s Performance and Assessing Cool Materials and Urban Vegetation Applications—A Review. Sustain. Cities Soc. 2018, 43, 55–76. [Google Scholar] [CrossRef]
- Yuan, J.; Emura, K.; Farnham, C. Is Urban Albedo or Urban Green Covering More Effective for Urban Microclimate Improvement? A Simulation for Osaka. Sustain. Cities Soc. 2017, 32, 78–86. [Google Scholar] [CrossRef]
- Li, J.; Zheng, B.; Ouyang, X.; Chen, X.; Bedra, K.B. Does Shrub Benefit the Thermal Comfort at Pedestrian Height in Singapore? Sustain. Cities Soc. 2021, 75, 103333. [Google Scholar] [CrossRef]
- Rui, L.; Buccolieri, R.; Gao, Z.; Gatto, E.; Ding, W. Study of the Effect of Green Quantity and Structure on Thermal Comfort and Air Quality in an Urban-like Residential District by ENVI-Met Modelling. Build. Simul. 2019, 12, 183–194. [Google Scholar] [CrossRef]
- Dimoudi, A.; Nikolopoulou, M. Vegetation in the Urban Environment: Microclimatic Analysis and Benefits. Energy Build. 2003, 35, 69–76. [Google Scholar] [CrossRef] [Green Version]
- Taha, H. Urban Climates and Heat Islands: Albedo, Evapotranspiration, and Anthropogenic Heat. Energy Build. 1997, 25, 99–103. [Google Scholar] [CrossRef] [Green Version]
- Berardi, U.; Jandaghian, Z.; Graham, J. Effects of Greenery Enhancements for the Resilience to Heat Waves: A Comparison of Analysis Performed through Mesoscale (WRF) and Microscale (Envi-Met) Modeling. Sci. Total Environ. 2020, 747, 141300. [Google Scholar] [CrossRef]
- Lobaccaro, G.; Acero, J.A. Comparative Analysis of Green Actions to Improve Outdoor Thermal Comfort inside Typical Urban Street Canyons. Urban Clim. 2015, 14, 251–267. [Google Scholar] [CrossRef]
- Sun, S.; Xu, X.; Lao, Z.; Liu, W.; Li, Z.; Higueras García, E.; He, L.; Zhu, J. Evaluating the Impact of Urban Green Space and Landscape Design Parameters on Thermal Comfort in Hot Summer by Numerical Simulation. Build. Environ. 2017, 123, 277–288. [Google Scholar] [CrossRef]
- Taleghani, M.; Kleerekoper, L.; Tenpierik, M.; van den Dobbelsteen, A. Outdoor Thermal Comfort within Five Different Urban Forms in the Netherlands. Build. Environ. 2015, 83, 65–78. [Google Scholar] [CrossRef]
- Targhi, M.Z.; Van Dessel, S. Potential Contribution of Urban Developments to Outdoor Thermal Comfort Conditions: The Influence of Urban Geometry and Form in Worcester, Massachusetts, USA. Procedia Eng. 2015, 118, 1153–1161. [Google Scholar] [CrossRef] [Green Version]
- Morakinyo, T.E.; Lam, Y.F. Simulation Study on the Impact of Tree-Configuration, Planting Pattern and Wind Condition on Street-Canyon’s Micro-Climate and Thermal Comfort. Build. Environ. 2016, 103, 262–275. [Google Scholar] [CrossRef]
- Skelhorn, C.; Lindley, S.; Levermore, G. The Impact of Vegetation Types on Air and Surface Temperatures in a Temperate City: A Fine Scale Assessment in Manchester, UK. Landsc. Urban Plan. 2014, 121, 129–140. [Google Scholar] [CrossRef]
- Zhang, L.; Zhan, Q.; Lan, Y. Effects of the Tree Distribution and Species on Outdoor Environment Conditions in a Hot Summer and Cold Winter Zone: A Case Study in Wuhan Residential Quarters. Build. Environ. 2018, 130, 27–39. [Google Scholar] [CrossRef]
- Sosa, M.B.; Correa, E.N.; Cantón, M.A. Neighborhood Designs for Low-Density Social Housing Energy Efficiency: Case Study of an Arid City in Argentina. Energy Build. 2018, 168, 137–146. [Google Scholar] [CrossRef]
- Farhadi, H.; Faizi, M.; Sanaieian, H. Mitigating the Urban Heat Island in a Residential Area in Tehran: Investigating the Role of Vegetation, Materials, and Orientation of Buildings. Sustain. Cities Soc. 2019, 46, 101448. [Google Scholar] [CrossRef]
- Sanagar Darbani, E.; Monsefi Parapari, D.; Boland, J.; Sharifi, E. Impacts of Urban Form and Urban Heat Island on the Outdoor Thermal Comfort: A Pilot Study on Mashhad. Int. J. Biometeorol. 2021, 65, 1101–1117. [Google Scholar] [CrossRef]
- Araque, K.; Palacios, P.; Mora, D.; Chen Austin, M. Biomimicry-Based Strategies for Urban Heat Island Mitigation: A Numerical Case Study under Tropical Climate. Biomimetics 2021, 6, 48. [Google Scholar] [CrossRef]
- Yilmaz, S.; Külekçi, E.A.; Mutlu, B.E.; Sezen, I. Analysis of Winter Thermal Comfort Conditions: Street Scenarios Using ENVI-Met Model. Environ. Sci. Pollut. Res. 2021, 28, 63837–63859. [Google Scholar] [CrossRef]
- Liu, L.; Lin, Y.; Wang, D.; Liu, J. Dynamic Spatial-Temporal Evaluations of Urban Heat Islands and Thermal Comfort of a Complex Urban District Using an Urban Canopy Model. J. Asian Archit. Build. Eng. 2016, 15, 627–634. [Google Scholar] [CrossRef] [Green Version]
- Bhati, S.; Mohan, M. WRF-Urban Canopy Model Evaluation for the Assessment of Heat Island and Thermal Comfort over an Urban Airshed in India under Varying Land Use/Land Cover Conditions. Geosci. Lett. 2018, 5, 27. [Google Scholar] [CrossRef] [Green Version]
- Oropeza-Perez, I. Simplified Numerical Model for Analyzing the Effects of the Urban Heat Island upon Low-Rise Buildings by Using a Free-License Thermal Simulation Program. Urban Sci. 2020, 4, 30. [Google Scholar] [CrossRef]
- Nasir, D.S.; Pantua, C.A.J.; Zhou, B.; Vital, B.; Calautit, J.; Hughes, B. Numerical Analysis of an Urban Road Pavement Solar Collector (U-RPSC) for Heat Island Mitigation: Impact on the Urban Environment. Renew. Energy 2021, 164, 618–641. [Google Scholar] [CrossRef]
- Morris, K.I.; Chan, A.; Morris, K.J.K.; Ooi, M.C.G.; Oozeer, M.Y.; Abakr, Y.A.; Nadzir, M.S.M.; Mohammed, I.Y.; Al-Qrimli, H.F. Impact of Urbanization Level on the Interactions of Urban Area, the Urban Climate, and Human Thermal Comfort. Appl. Geogr. 2017, 79, 50–72. [Google Scholar] [CrossRef]
- Gunawardena, K.; Steemers, K. Adaptive Comfort Assessments in Urban Neighbourhoods: Simulations of a Residential Case Study from London. Energy Build. 2019, 202, 109322. [Google Scholar] [CrossRef]
- Nice, K.A.; Coutts, A.M.; Tapper, N.J. Development of the VTUF-3D v1.0 Urban Micro-Climate Model to Support Assessment of Urban Vegetation Influences on Human Thermal Comfort. Urban Clim. 2018, 24, 1052–1076. [Google Scholar] [CrossRef] [Green Version]
- Arghavani, S.; Malakooti, H.; Ali Akbari Bidokhti, A.-A. Numerical Assessment of the Urban Green Space Scenarios on Urban Heat Island and Thermal Comfort Level in Tehran Metropolis. J. Clean. Prod. 2020, 261, 121183. [Google Scholar] [CrossRef]
- Wang, B.; Png, C.E. Solar Irradiance Simulation for Evaluating Thermal Comfort in Urban Environment. Archit. Sci. Rev. 2019, 62, 14–25. [Google Scholar] [CrossRef]
- Kaloustian, N.; Bitar, H.; Diab, Y. Urban Heat Island and Urban Planning in Beirut. Procedia Eng. 2016, 169, 72–79. [Google Scholar] [CrossRef]
Input Parameters | Simulation’s Information | Parameters/Variables | Input Value |
Start time | 10:00 a.m. | ||
Duration of simulation | 12 h | ||
Latitude and longitude | 41.8781° N, 87.6298° W | ||
Domain size (x, y, z) | 50 × 50 × 40 | ||
Grid size (x, y, z) | 2 m × 2 m × 2 m | ||
Meteorological Condition | Minimum air temperature | 27 °C (at 5:00) | |
Maximum air temperature | 41 °C (at 15:00) | ||
Minimum relative humidity | 40% (at 15:00) | ||
Maximum relative humidity | 82% (at 5:00) | ||
Wind speed at 10 m | 2.5 m/s | ||
Roughness length | 0.01 | ||
Simulation Variables | Physical layout | Road material | Asphalt, Concrete |
Aspect ratio | 1, 1.5, 3 | ||
Building heights | 20 m, 30 m, 60 m | ||
Street canyon width | 20 m | ||
Street canyon length | 80 m | ||
Street canyon orientation (toward the prevalent wind) | Perpendicular (270°), Parallel (180°), Oblique (225°) | ||
Vegetation | Type | Deciduous, Evergreen | |
Density | No vegetation, Sparse, Dense, Very dense | ||
Position in the canyon | Linear in both sidewalks |
Simulation Hour | p-Values | ||||
---|---|---|---|---|---|
Asp_Ratio | Canyon_ Orientation | Surf_ Material | Green_ Type | Green_Density | |
12:00 | <0.0001 * | <0.0001 * | <0.0001 * | 0.0029 * | 0.3142 |
13:00 | <0.0001 * | <0.0001 * | <0.0001 * | 0.0592 | 0.4276 |
14:00 | <0.0001 * | <0.0001 * | <0.0001 * | 0.5693 | 0.2043 |
15:00 | <0.0001 * | <0.0001 * | 0.0057 * | 0.2932 | 0.2326 |
16:00 | <0.0001 * | <0.0001 * | 0.0091 * | 0.2123 | 0.2443 |
17:00 | <0.0001 * | <0.0001 * | 0.0095 * | 0.7036 | 0.2492 |
18:00 | <0.0001 * | <0.0001 * | 0.0054 * | 0.0008 * | 0.1709 |
19:00 | 0.4389 | 0.0005 * | 0.0204 * | <0.0001 * | 0.1085 |
20:00 | <0.0001 * | 0.0247 * | 0.0209 * | <0.0001 * | 0.1014 |
21:00 | <0.0001 * | 0.3722 | 0.0133 * | <0.0001 * | 0.1199 |
22:00 | <0.0001 * | 0.0002 * | 0.0098 * | <0.0001 * | 0.1846 |
Scenario Index | Green Type | Green Density |
---|---|---|
S0 | No vegetation | No vegetation |
S1 | Deciduous | Sparse |
S2 | Deciduous | Dense |
S3 | Deciduous | Very dense |
S4 | Evergreen | Sparse |
S5 | Evergreen | Dense |
S6 | Evergreen | Very dense |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kianmehr, A.; Lim, T.C. Quantifying Interactive Cooling Effects of Morphological Parameters and Vegetation-Related Landscape Features during an Extreme Heat Event. Climate 2022, 10, 60. https://doi.org/10.3390/cli10040060
Kianmehr A, Lim TC. Quantifying Interactive Cooling Effects of Morphological Parameters and Vegetation-Related Landscape Features during an Extreme Heat Event. Climate. 2022; 10(4):60. https://doi.org/10.3390/cli10040060
Chicago/Turabian StyleKianmehr, Ayda, and Theodore C. Lim. 2022. "Quantifying Interactive Cooling Effects of Morphological Parameters and Vegetation-Related Landscape Features during an Extreme Heat Event" Climate 10, no. 4: 60. https://doi.org/10.3390/cli10040060
APA StyleKianmehr, A., & Lim, T. C. (2022). Quantifying Interactive Cooling Effects of Morphological Parameters and Vegetation-Related Landscape Features during an Extreme Heat Event. Climate, 10(4), 60. https://doi.org/10.3390/cli10040060