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Abstract: Tree mortality in Sierra Nevada’s 2012–2015 drought was unexpectedly excessive: ~152 mil-
lion trees died. The relative performance of five drought indices (DIs: SPEI, AI, PDSI, scPDSI, and
PHDI) was evaluated in the complex, upland terrain which supports the forest and supplies 60% of
Californian water use. We tested the relative performance of DIs parameterized with on-site and
modeled (PRISM) meteorology using streamflow (linear correlation), and modeled forest stand NDVI
and tree basal area increment (BAI) with current and lagged year DI. For BAI, additional co-variates
that could modify tree response to the environment were included (crown vigor, point-in-time rate
of bole growth, and tree to tree competition). On-site and modeled parameterizations of DIs were
strongly correlated (0.9), but modeled parameterizations overestimated water availability. Current
year DIs were well correlated (0.7–0.9) with streamflow, with physics-based DIs performing better
than pedologically-based DIs. DIs were poorly correlated (0.2–0.3) to forest stand NDVI in these
variable-density, pine-dominated forests. Current and prior year DIs were significant covariates in
the model for BAI but accounted for little of the variation in the model. In this ecosystem where trees
shift seasonally between near-surface to regolithic water, DIs were poorly suited for anticipating the
observed tree decline.

Keywords: hydrologic drought; tree drought stress; streamflow; NDVI; BAI; Jeffrey pine

1. Introduction

Over the last two decades, droughts have been more extreme, extended, and hotter in
the Pacific and Southwestern U.S. [1–5], challenging our current understanding of drought
and its effects on forests and humans alike. Massive tree die-offs in the Sierra Nevada
of California [6,7] and surprise at its magnitude [8,9] have drawn world-wide attention.
Linking the level, duration, and scale of drought to impacts on hydrological and biological
resources is a critical step in anticipating future forest resource response and loss [10].

Water availability is a demonstrably vulnerable source of water for these forested
ecosystems, which rely on, buffer, and supply water for human use. The Sierra Nevada
provides ~60% of Californian water resources utilized by humans [11]. Water resources
are evaluated via drought indices (DIs), and these are used to assign the level of drought
severity and help communicate and allocate near-term water resources for direct human
consumption, agriculture, and industrial uses. Accurate estimates of water resources and
their effects on biological responses are also needed (ecological drought) [12]. Modeled
meteorological data (PRISM, or Parameter-elevation Relationships on Independent Slopes
Model) [13,14] are broadly used for a range of applications, and in particular to calculate
DIs. The performance of PRISM in the foothills of the Appalachian Mountains was tested
and the model performed well [15]. On the eastern slope of the Sierra Nevada, PRISM
temperature was greater than that measured on-site and there were seasonal differences
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in error [16,17]. Here, we tested point- (on-site) vs. pixel-based (4 km2) meteorological
parameterizations of commonly used DIs in complex, mid-elevation terrain (~2100 m)
on the western slope of the Sierra Nevada. The indices chosen were SPEI (Standardized
Precipitation and Evaporation Index) [18], AI (Aridity Index) [19,20], PDSI and PHDI
(Palmer Drought Severity Index, Palmer Hydrological Drought Index) [21], and scPDSI
(self-calibrating PDSI) [22].

DIs rely on a combination of meteorological (precipitation and temperature), locational
(slope, aspect, elevation, and latitude as a proxy for radiatively-driven evapotranspiration
(ET)), and pedological measures (ET, soil runoff, soil moisture loss, and recharge). Although
PDSI and derivatives provide default values for soil available water content (AWC), both
this and depth to water table are unknown and possibly unknowable for much of the mid-
to high-elevation forests on the western slope of the southern Sierra Nevada. In terms of
vegetation in this ecosystem, Jeffrey pine (Pinus jeffreyi Grev. & Balf.) rely on moisture and
nutrients in patches of soil and or pockets of soil in bedrock interstices [23–25] that are either
large enough to support that tree or fed by ephemeral, surficial, or underground seeps.

DIs have been tested against hydrological [26,27] and biological metrics, including
NDVI (Normalized Difference Vegetation Index) [28–31] and wood production [32], but
few studies tested more than one validation metric concurrently [33,34]. In this study on
the western slope of the southern Sierra Nevada, we asked how closely aligned point-
and pixel-based parameterizations were within a DI, and among the DIs, within the same
parameterization using the strength of the correlation coefficients. Did the DIs with on-site
or modeled parameterizations predict short term (7 yr) local streamflow, or stand NDVI
(20 yr) equally well? How effective were DIs in predicting wood production (here basal area
increment, BAI) of Jeffrey pine, as a decline in BAI can lead to tree mortality [35]? To test
the degree to which DIs could be used to anticipate tree decline in multi-year hydrologic
droughts, we developed a model to predict BAI using current year and temporally lagged
DIs as the primary drivers [36,37], with statistically selected biological covariates expected
to modify (amplify or degrade) tree response to the environmental drivers, here crown vigor,
tree bole growth rates at a mid-point in the analysis [38,39], and tree to tree competition of
the target tree [40].

2. Materials and Methods
2.1. Study Site Description

In 1998, a project was initiated at the sites used in the study reported here to test
whether nitrogen amendment mitigated symptoms of ozone stress in mature Jeffrey pine
on the western slope of the southern Sierra Nevada. Nitrogen-amended trees were not eval-
uated in the current study. The vegetation type was pine-dominated, Sierran mixed conifer
forest [41], and three sites were chosen in woodland to open forested areas dominated by
Jeffrey pine, with occasional white fir (Abies concolor (G&G) Lindl.), California black oak
(Quercus kelloggii Newb.), and willow (Salix, spp.) along streams and seeps.

Two sites were located in Sequoia National Park (‘MF,’ 28 ha; 36.6027, −188.7342,
2077 m; ‘HM,’ 29 ha; 36.5525, −118.7525, 2043 m) and one in Sequoia National Monument
(‘SC,’ 18 ha; 36.6707, −118.8312, 1983 m) (Figure 1). In MF, mature Jeffrey pine in mesic
(MFm; 141 ± 18 mature trees per hectare (TPH)) and xeric (MFx; 27 ± 4 TPH) microsites
were distributed across a south-facing slope. At HM and SC, trees were selected only in
mesic microsites (45 ± 5 TPH; 64 ± 15 TPH, respectively). Trees at MF were identified
as mesic or xeric by their topographical position in the landscape. Riparian trees (mesic)
were all in one topographic position, but seep (mesic) and rocky outcrop (xeric) trees were
sometimes intermingled across the slope. Mesic microsite trees were acclimated to reliable
(or sufficient) water sources trapped in bedrock interstices [23,24] or provided by springs,
streams, or rivers. Xeric microsite trees presumably experienced less-reliable underground
seeps, pockets of water trapped in bedrock interstices, or stored in rock [42,43]. Overall,
the Jeffrey pine investigated here averaged 32 ± 7 cm in bole diameter at DBH (1.37 m),
104 ± 36 yr old at DBH, and 17 ± 5 m in height. At each site (and subsite at MF), the initial
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number of trees selected was 32 in 1998; about 10% of the trees were lost over time to
successful bark beetle attack and/or drought. The level of physiological drought stress
for each tree at MFm and MFx was well-characterized in 1999 [44], 2007 (Grulke, unpubl.
data), and in 2013 from thermal imagery [45]. All trees used in this analysis were alive in
September 2017 at MF and HM, and in September 2019 at SC.
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Figure 1. Location of study sites (triangles) and meteorological stations (stars) in Sequoia National
Park (Marble Fork, MF; Huckleberry Meadow, HM) and Monument (Stoney Creek, SC).

2.2. Work Flow

The procedure of this work was as follows. Monthly on-site meteorological data were
compiled from different sources and missing data were imputed by rule-based methods.
Monthly on-site and modeled (PRISM) meteorological data were compared and modeled
data were examined for discrepancies at each site. Five commonly used DIs were pa-
rameterized with on-site and PRISM meteorological data. For PDSI-based DIs requiring
unknown pedological values, both suggested default values were tested (152 mm and
100 mm). For each site and DI, sources of meteorological data were compared using linear
correlation coefficients. We tested the relative performance of DIs parameterized with
on-site and modeled meteorology using streamflow (linear correlation), and modeled forest
stand NDVI and tree basal area increment (BAI) with current- and lagged-year DI. For
predicting BAI, current and lagged DIs were placed within the context of tree vigor and
competition metrics using a random effects model. The role of DI’s in predicting BAI was
evaluated using the fitted models.

2.3. Collating Meteological Data

Meteorological data were extracted from existing records of daily precipitation, and
minimum and maximum air temperature extracted from October 1933 to September 2020
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for HM and MF and from October 1939 to September 2020 for SC. The data were obtained
from the National Oceanic Atmospheric Administration National Center for Environmental
Information Database (NOAA NCEI, [46]), Sequoia National Park archives (obtained
from E. Meyer, Research Division, Sequoia-Kings Canyon National Parks), the Western
Regional Climate Center (WRCC, [47]), and the National Atmospheric Deposition Program
(NADP, [48]). The meteorological data (monthly precipitation sum, average mean air
temperature), sources, rule-based methods for accommodating missing data, and metadata
have been published [49]. Calculations of potential evapotranspiration (PET, [50]) and
parameterizations of the five drought indices (see next section) at the three sites are also
contained in posted data. Data were drawn from three meteorological stations: just west of
Sunset Rock in Giant Forest, Sequoia National Park (36.5595, −118.7762; 1926 m), 2.03 km
W of HM site in a similar topographic position, and 5.76 km SSW of MF site; Lodgepole
Village (36.6025, −118.7293, 2043 m), 0.5 km E of the midpoint of the MF site; and Grant
Grove Village, Kings Canyon National Park (36.338, −188.9582; 2010 m), 5.5 km WNW
of SC.

The following 4 km2 pixels were used to extract modeled meteorological data (PRISM, [14])
for HM (36.5961, −118.7435, 2136 m), MF (36.6203, −118.7488, 2376 m), and SC (36.6673,
−118.8325, 2109 m). The mean and range in elevation for each pixel was 2136 m for HM
(1775–2650 m); 2109 m for MF (2075–2750 m); and 2275 m for SC (2500–2850 m). PRISM
meteorological data was summarized as for the on-site data in [49]. The 800 m pixel data
was not available for these sites.

2.4. Parameterization of Drought Indices

All DIs were parameterized with on-site and PRISM meteorological data and reported
on an annual (“12”) and hydrologic year (“h,” 10/1 prior yr to 9/30 reported yr) basis,
hence “SPEI12h.” All five of the DIs evaluated required calculation of PET. We used the
Thornthwaite [50] equation here because it requires only temperature and latitude. The
Penman-Monteith calculation is preferred in more moist environments [51,52]. For each of
the three sites, the two parameterizations of DIs were tested through the strength of the
correlation coefficient. The five DIs were similarly tested among themselves using on-site
and then PRISM parameterization.

SPEI was parameterized with summed monthly precipitation, averaged monthly
mean air temperature, and location on Earth (latitude as a constraint on radiant energy
driving evaporation) to calculate potential evapotranspiration (PET). PET was subtracted
from precipitation to quantify deficits and expressed as a distribution-based computation
for the convenience of all positive numbers when modeling (log)BAI. Aridity Index (AI)
used the same data to calculate the ratio between summed precipitation and mean air
temperature [20].

PDSI was developed to quantify drought intensities for crop production and thus
considered not only gain and loss of water, but also moisture stored in the soil [21], which
SPEI and AI do not. PHDI is a modified version of PDSI and accounts for both development
of and recovery from drought [53], with the primary modification of assessing drought
termination. PHDI captures the impact of long-term droughts on hydrological balance.
While the end of drought is marked by the ratio of PET to precipitation exceeding 0% for
PDSI, this ratio is set to 100% in PHDI. scPDSI is another variant of PDSI introduced to
improve consistency across regions [22]. For PDSI and derivatives (scPDSI, PHDI; [21,22]),
we calculated a monthly drought measurement, the Palmer Z index, which was then
summed annually. Because soil available water content (AWC) was not available for our
sites, we used the two recommended default values for each PDSI and its derivations,
100 mm and 152 mm. The R package ‘scPDSI’ was used for these calculations [54].
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2.5. Independent Tests of DI Effectiveness
2.5.1. Streamflow

The relative performance of current- or prior-year DIs was assessed with the strength
of the correlation coefficient, parameterized with on-site or PRISM meteorological data,
with a 7 yr hydrologic record (2014 through 2020) of the second-order portion of the Marble
Fork Kaweah River. This was the only gauged river immediately associated with our sites,
located 0.5 km upstream from the midpoint of the MF site. Streamflow data was recorded
every 5 min, extracted from the United States Geological Survey (USGS), National Water
Information System [55], and summed monthly.

2.5.2. NDVI

Normalized Difference Vegetation Index (NDVI) is a measure of vegetation response
to environmental and meteorological conditions, (NIR−RED)/(NIR + RED), where NIR
is near-infrared wavelengths and RED is visible red wavelengths. NDVI was extracted
from 18 February 2000 to 29 September 2020 from the NASA Moderate Resolution Imaging
Spectroradiometer (MODIS aboard Terra and Aqua satellites). The MOD13Q1 product
was corrected for atmospheric and illumination effects and was produced using 16 d
composite periods. NDVI values during snowy and cloudy conditions were removed, and
the response was smoothed using the cloud computing platform Google Earth Engine [56].
For each site, the maximum number of 250 m × 250 m MODIS pixels (HM, n = 3; MFm, 5;
MFx, 3; SC, 5) contained within the polygon of the site were extracted and averaged for
the two sample dates in August reflecting the maximum effect of drought on vegetation
or summed over the growing season at each site. The growing season length was defined
by start-of-season mean air temperature >7 ◦C to end-of-season mean air temperature
<0 ◦C, resulting in site-specific and sub-site (MFm and MFx) annual values (temperature
choices influenced by [57–59]. Similar to the approach taken for streamflow, the relative
performance of current or prior year DIs was assessed with the fitted linear model R2,
parameterized with on-site and PRISM meteorological data, with mean August, or summed
NDVI over the growing season.

2.5.3. BAI

Based on a previous analysis of a closely related species (Pinus ponderosa Dougl. ex
Laws) also evaluated in dry pine-dominated woodlands to forests, an approach to modeling
annual BAI was developed [60] testing current yr and up to 3 yrs prior, and 2 through
4 yr running averages of the DI chosen, as well as a number of crown vigor attributes
(see below), insect and disease incidence, and tree-to-tree competition metrics. In the
current analysis, we retested current, lagged, and running averages of DIs and biological co-
variates for significant explanatories that explained the greatest proportion of the variance
in predicting BAI of Jeffrey pine. HM trees were last cored in 2006, and a number of trees
had heart rot or resinous centers, so a shorter evaluation period was available (1980–2005).
Trees at HM were analyzed separately from the other sites (1980–2005). We modeled BAI of
15 trees at HM using a 25 yr BAI record. MF (MFm, MFx) and SC trees were last cored in
2017 and the BAI chronology was evaluated from 1955 to 2016. We modeled BAI of MFm
(n = 17), MFx (n = 16), and SC (n = 20) using a 61 yr BAI record. Because SPEI and AI are
highly correlated, and the PDSI variants are highly correlated, we chose only SPEI12h and
PDSI12h152 for this analysis. Significance of SPEI or PDSI metrics and the proportion of
variance explained in the full model were used to evaluate the two DIs parameterized with
on-site and PRISM parameterizations.

Ring width in a cross section of a tree bole is a precise measurement, from which
BAI was calculated [61]. Cores were taken within 10 cm of diameter at breast height
(DBH, 1.37 m) above the average soil surface to tree center in early to late October, avoid-
ing irregular bark or bole imperfections. Cores were mounted on blocks and sanded to
400 grit. Annual ring widths (early + late wood) were measured to 0.001 mm (Velmex,
Inc., Bloomfield, NY, USA) using program J2x, Voor Tech Consulting (2008) and checked
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for missing rings [62] based on cross-correlation with a regional chronology (Merschel,
unpubl. data). Dating accuracy was evaluated using the software program COFECHA
(version 6.06P; [63,64]. Potential dating errors identified were visually checked, re-dated,
re-measured, or re-collected as necessary. For cores that did not intersect the pith, we
estimated the number of rings to the pith geometrically [65] for not more than 4 yrs. BAI
for tree i was calculated from radial growth expressed on bole area in the year t minus bole
area in year t − 1:

BAIi,t = πr2
t − πr2

t−1 (1)

where rt is bole radius at time t.
Tree vigor can affect the capacity of the tree to respond to the environment. ‘RANK’

is a qualitative metric, comprised of several qualitative and quantitative measures (visual
assessment of needle color, length, and retention (number of needle ages; retention within
a needle age class), branchlet length and diameter), and tree crown structure described
and developed for ponderosa pine [38] and applied to Jeffrey pine previously in MFm
and MFx [66]. DBH/tree age, here referred to as ‘bole vigor:’ [barkless tree diameter in
1980]/[tree age in 1980 at DBH], a point-in-time measure, roughly a mid-point of this
analysis. Competitive zone density (CZD) is a measure of the tree-to-tree competition
of each target tree. In each of the four aspects (NE, SE, SW, and NW) to 20 m around
the target tree, the DBH of the nearest conspecific tree (>10 cm DBH) divided by the
distance from target to neighbor, center to center was measured, and the four measures
(DBH/distance) were averaged [40]. This metric was superior to all others tested (variable
radius plots; resilience capacity; trees per ha; basal area per ha; and number of trees
per cluster [60]) in assessing individual tree response to conspecific competition in its
immediate neighborhood.

3. Results
3.1. On-Site vs. PRISM Meteorology

The correlation coefficient between on-site and PRISM precipitation and tempera-
ture was 0.98–0.99, respectively, for all three sites. The comparisons are given for MF in
Figure 2, and those for HM and SC given in Appendices A and B. Although monthly
PRISM precipitation and temperature data appeared to be well matched to on-site data,
seasonal discrepancies were apparent. PRISM temperature data was higher than on-site
measurements early in the hydrologic year (November to January) and lower from April
to June. An extreme cold event was not predicted by PRISM. There was greater than a
6 ◦C discrepancy between modeled and on-site temperature during the third week of
December 1992 and the first and second weeks of January 1993, which decreased these
monthly averages of mean daily air temperature [67].

The discrepancy between on-site and PRISM precipitation was greatest during the
period of greatest precipitation, December through April (Figure 2c), when 80% of the
annual precipitation is received. Extreme precipitation events (1/1969, 1/1980, 2/1986, and
1/2017) were well outside of the 5% error, and PRISM averaged total annual precipitation
for HM, MF, and SC was greater (113 cm, 119 cm, and 115 cm, respectively) than that of
on-site data (110 cm, 114 cm, and 106 cm, respectively).
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3.2. On-Site vs. PRISM Parameterization of Drought Indices

All DIs generally tracked known high and low precipitation years (MF: Figure 3,
HM, SC: Appendices C and D). Linear correlation coefficients between on-site vs. PRISM
meteorological parameterizations of DIs were very high for those evaluated, ranging
from 0.87 to 0.99 (Table 1). Although PET and precipitation are components of the DIs
investigated, SPEI12h and AI12h were dependent on precipitation to a greater extent than
PDSI and its derivatives. SPEI12h had the highest correlation coefficients, and scPDSI
had the lowest with 100 mm AWC was slightly lower than that at 152 mm. PDSI and
derivatives require additional calculations above those needed for SPEI and AI. We suggest
that scPDSI may have the lowest correlation coefficient because it is the most modified from
the underlying meteorology (precipitation and temperature) and may be less suited to the
hydrology of these sites. Despite strong correlations between the two parameterizations of
DIs, PRISM parameterizations reflected the November through June temporal discordance
in precipitation (Figure 3). The findings for precipitation at MF also held for HM and SC
(Appendices C and D).

Table 1. Correlation coefficients between on-site vs. PRISM meteorologically parameterized drought
indices at each site (MF, HM, and SC). PET and all drought indices were calculated on an annual
basis over the hydrologic year (10/1 through 9/30).

INDEX MF HM SC

PET12h 0.99 0.99 1.00
SPEI12h 0.98 0.98 0.97
AI12h 0.97 0.97 0.97
PDSI12h152 0.96 0.95 0.95
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Table 1. Cont.

INDEX MF HM SC

PDSI12Hh100 0.95 0.94 0.94
scPDSI12h152 0.91 0.88 0.88
scPDSI12h100 0.87 0.90 0.92
PHDI12h152 0.95 0.95 0.91
PHDI12h100 0.95 0.94 0.90
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3.3. Correlation among Drought Indices

Linear correlation coefficients between paired DIs within a parameterization (on-
site or PRISM) are summarized in Table 2. The correlation coefficients were high and
ranged from 0.7 to nearly 1.0. SPEI12h, and AI12h had high correlation coefficients in
both on-site and PRISM parameterizations (0.98). Each of the Palmer indices had small
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differences in correlation coefficients when comparing the two AWC default values. The
correlation coefficients were higher between PDSI derivatives at the same AWC level
(PDSI152, scPDSI152) and between DIs parameterized with PRISM meteorology, except
for PHDI12h where the highest coefficient was obtained with the 100 mm AWC default
value (0.989).

Table 2. Correlation coefficients between drought indices as parameterized by on-site and PRISM (in
parentheses).

SPEI12h AI12h PDSI12h152 PDSI12h100 scPDSI12h152 scPDSI12h100 PHDI12h152

AI12h 0.98 (0.98)
PDSI12h152 0.81 (0.85) 0.81 (0.85)
PDSI12h100 0.81 (0.85) 0.81 (0.86) 0.99 (0.99)

scPDFI12h152 0.71 (0.82) 0.70 (0.82) 0.90 (0.98) 0.88 (0.97)
scPDFI12h100 0.72 (0.81) 0.72 (0.80) 0.91 (0.95) 0.91 (0.95) 0.93 (0.97)
PHDI12h152 0.75 (0.77) 0.75 (0.77) 0.90 (0.91) 0.88 (0.90) 0.89 (0.91) 0.88 (0.88)
PHDI12h100 0.75 (0.78) 0.75 (0.78) 0.89 (0.91) 0.89 (0.91) 0.88 (0.90) 0.88 (0.89) 0.99 (0.99)

3.4. Drought Index Performance Relative to Short-Term Streamflow

The relative performance of the DIs was tested using the strength of the correlation
coefficients between current year SPEI at MF and current year streamflow of the Marble
Fork Kaweah River over a 7 yr period. SPEI12h and AI2h had the highest correlation
coefficients (R > 0.98), using on-site parameterization (Table 3). PDSI and derivatives
performed better with PRISM than on-site meteorology perhaps because of a similar spatial
scale. Among the PDSI derivatives, PDSI12h performed the best, with slightly improved
correlation coefficients using the default AWC of 152 mm. Temporally lagged streamflow
(1 yr) was not significantly correlated with precipitation (R = 0.30).

Table 3. Correlations between on-site and PRISM-parameterized drought indices and local streamflow.

SPEI12h AI12h PDSI12h152 PDSI12h100 scPDSI12h152 scPDSI12h100 PHDI12h152 PHDI12h100

On-site 1.00 0.98 0.80 0.74 0.78 0.72 0.82 0.81
PRISM 0.99 0.98 0.88 0.88 0.87 0.74 0.85 0.84

3.5. Drought Index Performance Predicting Site NDVI

Using a model to predict NDVI, the relative performance of the DIs was tested,
parameterized with either on-site or PRISM meteorology. A given DI is denoted by Dt with
the specified parameterization in year t. We compared the mean August NDVI at HM, SC,
and the sub-site MFx against the reference site, MFm. Letting Ys,t be the average August
NDVI at site s in year t, we fit the linear model:

Ys,t = β0 + βMFx Is=MFx + βSC Is=SC + βHM Is=HM + βD,0Dt + βD,1Dt−1 + βD,2Dt−2 + βD,3Dt−3 + βYEARt + εs,t (2)

Here, {εs,t} centered at zero as independent and identically distributed (i.i.d), Gaussian
error terms. Is=S is the 0–1 indicator that the observation was at site S. Each DI was
standardized (each variable was centered with unit standard deviation) which permitted
comparison of coefficients across indices. We also standardized the year variable. Figure 4
shows the data together with the predicted average August NDVI as a function of SPEI,
holding all other variables in Equation (2) at their mean values 0.
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Figure 4. Predicted site average August NDVI for the three sites (MF, HM, and SC) and two subsites
(MFmesic and MFxeric).

The estimates and t-tests of the coefficients in Equation (2), fit with DIs parameterized
with both on-site and PRISM meteorology, are shown in Table 4. The significance of the DI
coefficients varied among the fitted models, and the 1 yr lagged DI was significant for SPEI
and AI but not for PDSI152 or PDSI100. Across the DIs and AWC levels tested, and the source
of the meteorological data, the model could not differentiate MFm- or MFx-dominated
subsites, the latter with quantified differences in tree physiological drought stress between
them [44,45]. Only SPEI and AI with on-site parameterizations differentiated SC from MFm.
HM was not statistically distinguished from MFm in any of the models. Nonetheless, the
overall fit of the model among the indices is similar. The R2 of the models ranged from 0.22
to 0.32. All models designed to predict NDVI with drought indices were similar to one
another and of low predictive effectiveness. There was no predictive capacity of the DIs
and site-specific, average August, or summed growing season NDVI.

Table 4. Fitted models predicting NDVI from on-site or PRISM parameterized drought indices.

Estimate S. E. t Value Pr(>|t|) Estimate S. E. t Value Pr(>|t|)

SPEI/ON-SITE PDSI152/ON-SITE
(Intercept) 0.5268 0.0031 168.83 0.00 (Intercept) 0.5296 0.0033 160.66 0.00
site_typeMFxeric −0.0061 0.0043 −1.41 0.16 site_typeMFxeric −0.0061 0.0046 −1.30 0.20
site_typeHM −0.0002 0.0045 −0.04 0.96 site_typeHM −0.0060 0.0047 −1.28 0.20
site_typeSC 0.0084 0.0046 1.82 0.07 site_typeSC 0.0029 0.0047 0.62 0.53
scale(SPEI12h_nolag) 0.0047 0.0017 2.81 0.01 scale(SPEI12h_nolag) 0.0058 0.0019 3.00 0.00
scale(SPEI12h_lag1) 0.0064 0.0016 4.03 0.00 scale(SPEI12h_lag1) 0.0022 0.0018 1.24 0.22
scale(SPEI12h_lag2) 0.0028 0.0016 1.81 0.08 scale(SPEI12h_lag2) 0.0011 0.0018 0.06 0.55
scale(SPEI12h_lag3) 0.0042 0.0017 2.46 0.02 scale(SPEI12h_lag3) 0.0037 0.0020 1.84 0.07
scale(YEAR) 0.0034 0.0016 2.19 0.03 scale(YEAR) 0.0044 0.0018 2.43 0.02
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Table 4. Cont.

Estimate S. E. t Value Pr(>|t|) Estimate S. E. t Value Pr(>|t|)

SPEI/PRISM PDSI152/PRISM
(Intercept) 0.5282 0.0031 169.33 0.00 (Intercept) 0.5300 0.0032 163.34 0.00
site_typeMFxeric −0.0061 0.0044 −1.39 0.17 site_typeMFxeric −0.0061 0.0046 −1.32 0.19
site_typeHM −0.0021 0.0045 −0.46 0.64 site_typeHM −0.0068 0.0046 −1.48 0.14
site_typeSC 0.0045 0.0044 1.01 0.32 site_typeSC 0.0021 0.0046 0.45 0.65
scale(SPEI12h_nolag) 0.0047 0.0017 2.78 0.01 scale(SPEI12h_nolag) 0.0059 0.0019 3.06 0.00
scale(SPEI12h_lag1) 0.0061 0.0016 3.85 0.00 scale(SPEI12h_lag1) 0.0027 0.0018 1.55 0.13
scale(SPEI12h_lag2) 0.0014 0.0016 0.87 0.39 scale(SPEI12h_lag2) 0.0000 0.0019 −0.02 0.98
scale(SPEI12h_lag3) 0.0035 0.0018 1.98 0.05 scale(SPEI12h_lag3) 0.0036 0.0021 1.70 0.09
scale(YEAR) 0.0047 0.0017 2.74 0.01 scale(YEAR) 0.0058 0.0021 2.80 0.01

AI/ON-SITE PDSI100/ON-SITE
(Intercept) 0.5257 0.0032 163.13 0.00 (Intercept) 0.5292 0.0033 162.55 0.00
site_typeMFxeric −0.0061 0.0043 −1.40 0.17 site_typeMFxeric −0.0061 0.0046 −1.32 0.19
site_typeHM 0.0024 0.0048 0.50 0.62 site_typeHM −0.0054 0.0046 −1.17 0.25
site_typeSC 0.0101 0.0048 2.10 0.04 site_typeSC 0.0040 0.0047 0.85 0.40
scale(SPEI12h_nolag) 0.0050 0.0017 2.93 0.00 scale(SPEI12h_nolag) 0.0061 0.0019 3.24 0.00
scale(SPEI12h_lag1) 0.0067 0.0016 4.09 0.00 scale(SPEI12h_lag1) 0.0026 0.0017 1.55 0.13
scale(SPEI12h_lag2) 0.0022 0.0016 1.37 0.18 scale(SPEI12h_lag2) 0.0012 0.0018 0.69 0.49
scale(SPEI12h_lag3) 0.0034 0.0017 1.98 0.15 scale(SPEI12h_lag3) 0.0039 0.0019 2.05 0.04
scale(YEAR) 0.0036 0.0016 2.20 0.03 scale(YEAR) 0.0043 0.0018 2.44 0.02

AI/PRISM PDSI100/PRISM
(Intercept) 0.5276 0.0032 165.45 0.00 (Intercept) 0.5301 0.0032 164.10 0.00
site_typeMFxeric −0.0061 0.0044 −1.38 0.17 site_typeMFxeric −0.0061 0.0046 −1.33 0.19
site_typeHM −0.0006 0.0047 −0.14 0.89 site_typeHM −0.0070 0.0046 −1.53 0.13
site_typeSC 0.0053 0.0046 1.17 0.25 site_typeSC 0.0017 0.0046 0.36 0.72
scale(SPEI12h_nolag) 0.0048 0.0017 2.83 0.01 scale(SPEI12h_nolag) 0.0058 0.0018 3.12 0.00
scale(SPEI12h_lag1) 0.0061 0.0016 3.77 0.00 scale(SPEI12h_lag1) 0.0030 0.0017 1.77 0.08
scale(SPEI12h_lag2) 0.0006 0.0017 0.37 0.71 scale(SPEI12h_lag2) −0.0005 0.0019 −0.25 0.81
scale(SPEI12h_lag3) 0.0028 0.0018 1.55 0.13 scale(SPEI12h_lag3) 0.0032 0.0020 1.61 0.11
scale(YEAR) 0.0045 0.0018 2.53 0.01 scale(YEAR) 0.0053 0.0020 2.63 0.01

3.6. Drought Index Performance Predicting Site BAI
3.6.1. Predicting BAI at HM

To accommodate one tree with no measurable ring width in one year, 0.01 was added
to enable a non-zero log transformation of BAI (log(BAI)) shown in Figure 5. Most HM
trees were linearly increasing in BAI early in the chronology shown. Four trees had a
different growth pattern from the others, with a peak between 1994 and 1997, suggesting
reliance on a water source different from the others at the site. Of the four trees, two were
growing out of a rock outcrop and two were in a swale, in deep soil. Adjacent trees in these
two settings did not have the same growth pattern. Current year and temporally lagged
DI were included in the model and were denoted by Dt, D(t−1), D(t−2), D(t−3) in (3) below.
Through a preliminary and exploratory leave-one-out multiple regression, we identified
additional factors that modified tree response to the DIs: RANK (with variable R, and the
coefficient βR), DBH/AGE (H, βH), and CZD (C, βC). Temporal change in BAI that was not
attributable to the above variables was incorporated in a linear term, YEAR. This variable
was scaled to avoid computational issues. A tree random effect was also included to model
tree to tree variability. Our model for tree i in year t was:

log (BAI + 0.01)i,t = βCCi + βRRi + βH Hi + βD,0Dt + βD,1Dt−1 + βD,2Dt−2 + βD,3Dt−3
+(β0 + B0,i) + (βYEAR + B1,i)t + εi,t

(3)

where B0,i and B1,i are i.i.d. centered Gaussian variables. Thus, there was a per-tree
random effect accounting for between-tree variability of size and its growth trend. We
fit a linear mixed model to the data at HM using SPEI then PDSI, in onsite and PRISM
parameterizations. There was no difference in overall fit between the two indices with the
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same parameterization, and within a DI, the two parameterizations; the marginal R2’s were
the same: 0.24.
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To assess the role of DI in the model, we compared the full model (3) to one omitting
the 4 terms consisting of the DI and its time lags:

log (BAI + 0.01)i,t = βCCi + βRRi + βH Hi + (β0 + B0,i) + (βYEAR + B1,i)t + εi,t (4)

The likelihood ratio test comparing Equation (4) to Equation (3) for the two DIs
and two parameterizations suggested that there was insufficient evidence to reject the
model omitting the DI variables (Table 5). Moreover, the reduced model omitting all DI
variables had smaller AIC and BIC in all cases, suggesting the DI variables did not enhance
predictions in Equation (4) using only tree attributes. Removing the four trees with different
patterns of growth did not change the statistics appreciably, nor our interpretation. Perhaps
because different trees may have been relying on different water sources, including the
pixel-based meteorological parameterization (PRISM) created a more effective model.

Table 5. Fitted models predicting BAI at HM using on-site or PRISM parameterizations of SPEI or
PDSI152. The number of parameters for the submodel was nine; that for the full model was 13. The
degrees of freedom numbered four in all cases.

SPEI/ON-SITE AIC BIC logLik Deviance Chisq Pr(>Chisq)

submodel 1953.53 1995.49 −967.77 1935.53
full model 1954.58 2015.19 −964.29 1928.58 6.95 0.14
SPEI/PRISM
submodel 1953.53 1995.49 −967.77 1935.53
full model 1954.08 2014.68 −964.04 1928.08 7.45 0.11
PDSI152/ON-SITE
submodel 1953.53 1995.49 −967.77 1935.53
full model 1957.87 2018.47 −964.94 1931.87 3.66 0.45
PDSI152/PRISM
submodel 1953.53 1995.49 −967.77 1935.53
full model 1956.15 2016.75 −964.08 1930.15 5.38 0.25
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Finally, we evaluated model performance using just DI and temporal lags to predict
BAI. We fit the following simple mixed linear model:

log (BAI + 0.01)i,t = βD,0Dt + βD,1Dt−1 + βD,2Dt−2 + βD,3Dt−3 + (β0 + B0,i) + εi,t (5)

The marginal R2 for this model (Equation (5)) suggested little difference between
indices (SPEI and PDSI on-site, marginal R2 = 0.03, 0.05, respectively; and SPEI and
PDSI PRISM, marginal R2 = 0.04 for both) and demonstrated that the indices alone were
inadequate for predicting BAI at HM.

3.6.2. Predicting BAI at MF and SC:

On average, MFm trees had slightly higher BAI (log(BAI)) than MFx; MFx and SC
BAI were similar (Figure 6). For many trees at SC, BAI appeared to be independent of
known years of limited precipitation. The following years had <80% of long-term average
precipitation: 1959–1961, 1964, 1966, 1968, 1970–1972, 1976–1977, 1981, 1987–1992, 1994,
1999, 2004, 2007, and 2012–2015. At SC, two trees had markedly different BAI growth
patterns, one within the annual flood plain of Stoney Creek, and the other on a convex,
dry slope. When these trees were removed from the model, there was little change in
significance or in our interpretation of the model. The response of log(BAI + 0.01) graphed
against SPEI12h or PDSI12h was similar (Figure 6).
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and PDSI152 (right).

In the model below, we concurrently predicted BAI of MF and SC, including a factor
for site and MF subsites. Let j(i) denote the site of tree i. The model for tree i at time t was:

log (BAI + 0.01)i,t= βCCi + βRRi + βH Hi + βD,0Dt + βD,1Dt−1 + βD,2Dt−2 + βD,3Dt−3

+βMFx I{j(i) = MFx}+ βSC I{j(i) = SC}+ (β0 + B0,i) +
[
sj(i)(t) + B1,it

]
+ εi,t

(6)

The terms IA are dummy variables with the value of 1 or 0 corresponding to whether
or not condition A was met. The smoothing terms sMFx(t), sMFm(t), and sSC(t) are functions
of (t), and B0,i and B1,i are tree-dependent, centered, random Gaussian terms. Each DI
was standardized to have mean 0 and unit standard deviation, enabling comparison of
coefficients between indices.
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Fitted models with site-specific parameterization for each DI are presented in Table 6.
Current and 1 yr lagged DI were significant predictors for the on-site parameterizations,
although the effect size was very low. Plots of the predicted log(BAI) as a function of SPEI
and PDSI, fixing all other variables to their mean values are presented in Figure 7. Over the
dynamic range of SPEI and PDSI, predicted log(BAI) did not increase substantially. For
example, considering the PDSI at SC (Figure 7, lower right), the expected log (BAI) increased
from a minimum of ~2.75 to a maximum of ~2.9 while holding all other variables at their
mean values. Tree-to-tree competition was significant for both DIs and parameterizations.
Due to the variation among trees, differences among sites and subsites were not significant.
All models had similar fits; the marginal R2 for both DIs and parameterizations had the
same value: 0.62. Thus, both SPEI and PDSI, parameterized with either on-site or PRISM
meteorology performed similarly, and moderately well in predicting BAI at MF and SC.
Leaving out ‘bole vigor’ from the otherwise full model reduced the predictive capacity of
the model (marginal R2 = 0.23).

To assess the effectiveness of SPEI and PDSI152 alone in predicting BAI with on-
site or PRISM parameterization without additional biological covariates, we fit an addi-
tional model:

log (BAI + 0.01)i,t= βD,0Dt + βD,1Dt−1 + βD,2Dt−2 + βD,3Dt−3

+βMFx I{j(i) = MFx}+ βSC I{j(i) = SC}+ (β0 + B0,i) +
[
sj(i)(t) + B1,it

]
+ εi,t

(7)

Table 6. Fitted coefficients for the full models predicting BAI for on-site and PRISM parameterizations
of SPEI and PDSI152 at MFm (primary site), MFx, and SC sites.

SPEI/ON-SITE Value S.E. t p PDSI152/ON-SITE Value S.E. t p

(intercept) 1.05 0.24 4.36 0.00 (intercept) 1.05 0.24 4.37 0.00
scale(SPEI12h_nolag) 0.02 0.01 3.15 0.00 scale(SPEI12h_nolag) 0.03 0.01 4.61 0.00
scale(SPEI12h_lag1) 0.02 0.01 3.48 0.00 scale(SPEI12h_lag1) 0.03 0.01 5.17 0.00
scale(SPEI12h)_lag2) −0.01 0.01 −1.10 0.27 scale(SPEI12h)_lag2) −0.02 0.01 −2.91 0.00
scale(SPEI12h_lag3) −0.01 0.01 −1.03 0.30 scale(SPEI12h_lag3) 0.00 0.01 −0.27 0.79
typeMFxeric 0.12 0.15 0.79 0.43 typeMFxeric 0.12 0.15 0.79 0.43
typeSC 0.05 0.13 0.35 0.73 typeSC 0.04 0.13 0.29 0.77
DBH_AGE 3.21 0.26 12.36 0.00 DBH_AGE 3.21 0.26 12.36 0.00
RANK 0.06 0.08 0.81 0.42 RANK 0.06 0.08 0.81 0.42
CZD −0.01 0.01 −2.72 0.01 CZD −0.01 0.01 −2.72 0.01
s(YEAR):typeMFmesicFx1 0.18 0.10 1.80 0.07 s(YEAR):typeMFmesicFx1 0.18 0.10 1.74 0.08
s(YEAR):typeMFxericFx1 0.12 0.10 1.21 0.22 s(YEAR):typeMFxericFx1 0.11 0.11 1.08 0.28
s(YEAR):typeSCFx1 0.54 0.18 3.02 0.00 s(YEAR):typeSCFx1 0.53 0.18 2.99 0.00

SPEI/PRISM PDSI152/PRISM

(intercept) 1.05 0.24 4.37 0.00 (intercept) 1.05 0.24 4.38 0.00
scale(SPEI12h_nolag) 0.03 0.01 3.64 0.00 scale(SPEI12h_nolag) 0.03 0.01 4.66 0.00
scale(SPEI12h_lag1) 0.03 0.01 3.96 0.00 scale(SPEI12h_lag1) 0.03 0.01 4.41 0.00
scale(SPEI12h)_lag2) −0.01 0.01 −1.58 0.11 scale(SPEI12h)_lag2) −0.02 0.01 −2.80 0.01
scale(SPEI12h_lag3) −0.01 0.01 −1.20 0.23 scale(SPEI12h_lag3) 0.00 0.01 −0.28 0.78
typeMFxeric 0.12 0.15 0.79 0.43 typeMFxeric 0.12 0.15 0.79 0.43
typeSC 0.04 0.13 0.31 0.76 typeSC 0.04 0.13 0.27 0.79
DBH_AGE 3.21 0.26 12.36 0.00 DBH_AGE 3.21 0.26 12.36 0.00
RANK 0.06 0.08 0.81 0.42 RANK 0.06 0.08 0.81 0.42
CZD −0.01 0.01 −2.72 0.01 CZD −0.01 0.01 −2.72 0.01
s(YEAR):typeMFmesicFx1 0.19 0.10 1.85 0.06 s(YEAR):typeMFmesicFx1 0.20 0.11 1.87 0.06
s(YEAR):typeMFxericFx1 0.13 0.11 1.20 0.23 s(YEAR):typeMFxericFx1 0.12 0.11 1.13 0.26
s(YEAR):typeSCFx1 0.55 0.18 3.07 0.00 s(YEAR):typeSCFx1 0.54 0.18 3.07 0.00
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Figure 7. Predicted log(BAI + 0.01) as a function of on-site and PRISM parameterizations of SPEI and
PDSI152. Other variables included in the model (Equation (6)) are fixed at their mean values (tree
crown vigor, bole growth vigor, and tree competition).

This model exhibited poor performance, with the marginal R2 low (0.14) for both
DIs and parameterizations. For the on-site parameterization of SPEI, the estimate of the
standard deviation of the random effect (B0,i) was 0.73. This was large relative to the
residual error, which had an estimated standard deviation of 0.50. Other indices and
parameterizations had similar estimated standard deviations.
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4. Discussion

Two types of DIs were evaluated, one based on meteorological and physics-based
inputs (SPEI and AI), and the other on meteorological-, physics-, and pedogenic-based
inputs (PDSI and derivatives scPDSI and PHDI) in mid-elevation, complex terrain. Rel-
atively few comparisons have been made between on-site and modeled meteorology in
these landscapes. While on-site and PRISM monthly mean temperature and summed
precipitation were highly correlated, periodic discrepancies in temperature were identified
at our sites on the western slope of the Sierra Nevada. PRISM mean temperature was higher
than that observed from November to January, and lower for April, May, and June. Higher
temperatures in the winter increase ET but would have a low impact on vegetation. Lower
temperatures in late spring would decrease calculated DIs and underestimate the level of
drought severity when it occurs. In another study across a mid- to high elevation basin
on the eastern slope of the Sierra Nevada [16], PRISM maximum temperatures were lower
relative to on-site values in early spring (March, April), and mid-summer (July, August). Of
interest is that there was an overlap but not an identical match of underestimated monthly
temperature between the western (this study) and eastern slopes [16] of the Sierra Nevada,
and that the impact of the temperature discrepency would be greater in the latter study
as water deficits increase through the summer. During the period of highest precipitation,
from November to March, the estimated error variance of PRISM precipitation was high in
our study. Extremes, both higher and lower than received, in on-site precipitation exceeded
5% of that estimated by PRISM. Overall, the annual precipitation estimated by PRISM was
3% to 8% greater than received across the three sites. The temperature and precipitation dis-
crepancies of PRISM relative to on-site meteorology both contribute to an underestimation
of DI severity during the growing season.

An extreme cold event was not predicted by PRISM (>5 ◦C discrepancy between
modeled and on-site temperature) in December 1992 and January 1993 [67]. Extremely low
temperatures on the western slope of the Sierra Nevada are rare but can occur with strong
equatorial warming and broadening and deepening of the now permanent year-round lobe
of the “winter” arctic jet stream. In December 1992, ‘frigid’ arctic air was reported as far
south as southern California, as were exceptionally low minimum temperatures for the first
and second weeks of January 1993 [67]. One of the effects of variability in the winter jet
stream is that aberrant storm tracks are driven further south along the Pacific coastline [68].
The arctic air mass could have come in over the top of the lower elevation marine air,
moving the cold air further up the mountain, as the adjacent, lower elevation Central Valley
just east of Visalia had typical daily minimum air temperatures during those events around
0 ◦C (PRISM daily data for 36.3815, −119.0839, 132 m; explanation suggested by R. Neilson,
pers. comm.). An approach to better predicting extreme atmospheric conditions has been
proposed [69].

The Marble Fork Kaweah River record was short but included years of low precipita-
tion (<60% of the long-term average) and two of the highest precipitation years of the 90 yr
record (>150% of average). Current year DIs were significantly correlated to streamflow.
The physics-based DIs, SPEI, and AI, had the highest correlation coefficients (>0.98). PDSI
and derived indices had moderate correlation coefficients (0.72 to 0.87), with default AWC
values of 152 mm performing better than 100 mm. Prior year DI, regardless of parame-
terization or type, was not correlated to current year streamflow perhaps because of the
short distance between the headwaters and the measurement location, reducing residence
and response time [70]. In this environment with highly pulsed precipitation (90% of the
annual precipitation is received between November and April) and unknown residence
time, forecasts of annual streamflow can be expected to be elusive, although advances in
seasonal forecasting have been made [71].

We developed a simple model using current and 1 yr lagged DIs to test their per-
formance in predicting NDVI in the three sites. NDVI is commonly used as a proxy for
vegetation productivity, a sensitive indicator of hydrologic drought [72], and an indica-
tor of vegetative degradation from other sources of disturbance [73,74]. NDVI may be
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particularly applicable to sites dominated by a single species, as investigated here. MODIS-
derived NDVI was available for 20 yrs and, except for the 1977 drought year, contained
the lowest and all but the highest precipitation year (1969) in the 86 yr precipitation record
constructed [49]. In our study, current and lagged year SPEI and PDSI152 were significant
explanatories (p ≤ 0.01) of site NDVI, but the linear models had low R2, whether NDVI
was represented as a monthly average during period of greatest drawn-down of site water
availability (August), or as an integration of site-specific, summed growing season NDVI.
All indices and parameterizations performed similarly in tests of predicting NDVI (e.g.,
low R2). Precipitation five months prior to the growing season (January, coinciding with
the period of highest Sierra Nevada precipitation) was significantly correlated with NDVI
(also MODIS-derived) [75]. The authors suggested that a long growing season and greater
carbon gain in the prior year could have also influenced gross net primary production. In
another study, NDVI of individual tree crowns from a fixed-wing platform was one of a
number of significant metrics in differentiating low vigor from ‘not low’ vigor crowns in a
closely related pine [76]. However, the standard deviation of crown NDVI explained more
of the variation than mean crown NDVI (1st vs. 7th most important variable; Random
Forest; [76]).

Jeffrey pine in mesic (MFm) and xeric microsites (MFx) could not be differentiated
with MODIS-derived NDVI. Morphological crown response to drought (~30% loss of
needles mid-crown in the 2007 drought; Grulke, unpubl. data at MF), physiological
drought stress [44], elevated foliar oxidative stress [66], and as detected with thermal aerial
imagery in 2013 ([45]) clearly differentiated trees in the two subsites at MF. NDVI has been
successfully used to validate the use of DIs in vastly different ecosystems (agricultural [77];
chaparral, [78]; forest [79]; and the African continent [80], but in the Californian mixed
conifer zone with discontinuous woodlands and forest cover, neither mean August NDVI
nor site-specific NDVI summed over the growing season could be used as a validation
metric for DI parameterization (however, see [77]).

We then evaluated the role of DIs and the source of their parameterizations in pre-
dicting Jeffrey pine BAI. The HM site had a shorter tree ring chronology than MF and SC
and was analyzed separately. At HM, none of the five DIs, with either parameterization,
at either of the AWC default values, were significant explanatories of BAI. The HM site
was downslope (<0.5 km) from Crescent Meadow, which may have acted as a reservoir to
buffer annual precipitation inputs, or lack thereof. It is possible that the 1987–1992 drought
may not have been long or extreme enough, nor was the single drought year 2002 extreme
enough, to reduce the putative supply from the meadow that might have been reflected in
BAI. Proximity (distance) to a meadow accounted for 8% of the total variability in canopy
water content (using Random Forest, [81]) of giant sequoia (Sequoiadendron giganteum Lind.
& Buch.), a species that occurs adjacent to the HM site. In the same area, the underlying
geology, and proximity to a stream were significant predictors of crown water content of
both giant sequoia and Jeffrey pine in 2015 and 2016 [82]. However, based on isotopic
analysis [83], several deciduous desert tree species did not appear to utilize water from an
adjacent stream. The trees sampled and presented here were all alive in 2019, 14 yrs after
end of the tree ring record analyzed at this site. Patterns of tree BAI at HM were variable,
but not more variable than at the other two sites. BAI of four HM trees had a different
growth pattern suggesting reliance on a different water source than others in the stand.

A more complex model was developed for MF and SC to predict BAI from current
and temporally lagged DIs (SPEI and PDSI152) and biological co-variates (tree crown vigor,
bole growth vigor, and tree-to-tree competition). The co-variates tested for Jeffrey pine
were selected from an exhaustive analysis of a closely related species, ponderosa pine [60],
and were all re-tested in this analysis of Jeffrey pine. Four of the five explanatories were
significant using either DI, and the model R2 was moderate (0.62). The fifth explanatory,
tree crown vigor, was not significant with either DI or parameterization source, possibly
explaining why although DIs were significantly correlated to NDVI, they explained little of
the variation. Temporal lags in precipitation were also found to be significant explanatories
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in a model forecasting the likelihood of tree mortality due to drought and insects (bark
beetle, wood borers) in the Sierra Nevada province [84], as well as for temporally lagged
SPEI for pine ring width in another summer-dry forest (for Scots pine, (Pinus sylvestris L.),
and black pine (Pinus nigra Arn.), in Spain; [85]). Black pine was sensitive to short term
drought, but at higher elevation was less so [86]. Jeffrey pine is known to be more drought
tolerant than closely related ponderosa pine [87], and perhaps is less sensitive to short term
drought as in stone pine (Pinus cembra L.) in the same study [86]. Despite the possibility
of long vs. short term drought sensitivities, within-growing season drought significantly
affected ring width (index) in black pine. Wood properties, rather than the ring width
analyzed in this study, have also been shown to be more responsive than ring widths to
climate signals [88], applicable to non-treeline locations.

The hydrology of mid-elevation sites on the western slope of the Sierra Nevada is
complex. Jeffrey pine accesses moisture in shallow soil in the spring, but when near-surface
horizons dry out, it likely relies on soil pockets in bedrock interstices, trapped moisture un-
der cobbles and boulders, bedrock itself [42,43], surficial and underground seeps, streams,
and rivers (however, see [83]). Uphill meadows may also provide a water supply that
buffers the impact of droughts [81], as may be the case at our HM site. Individual trees in
the same stand may access different water sources, which may vary with residence time,
flow or percolation rates, and as well as a possibly unknowable amount of storage in soils
and regolith (Cr) [25]. Adjacent trees did not necessarily have the same pattern of growth.
The converse was also true: trees in very different microsites (swales with deep soils vs.
trees emerging from exposed, cracked bedrock) exhibited similar patterns of BAI. In the
central Sierra Nevada, no relationship between Jeffrey pine basal area and soil thickness
(A + C, nor Cr) was found [88]. These observations suggest that trees access different
sources of water and or there are temporal lags in tree response to similar sources of water.

Considering the complex hydrology and largely unknown or unknowable pedology
of these sites suggests that SPEI or AI would be more appropriate indices. However, for
predicting BAI in our sites, there was no detectable difference between SPEI and PDSI152
as they exhibited the same correlation coefficient with BAI. In this study, DIs alone (e.g.,
no biological co-variates), whether parameterized with on-site or modeled meteorological
data, were not effective in predicting BAI (R2 = 0.14), and thus in anticipating tree mortality.
Surprisingly, despite the different scales of source meteorological data (microsite, point to
landscape, and pixel), there was little to no statistical difference in model performance [89].

The Sierra Nevada and Eastern Nevada Province [84] had very high tree mortality in
the 2012–2015 drought, an ‘unprecedented drought’ [90]. Although giant sequoia grows in
moist sites with deeper soils [82,91], and Jeffrey (and ponderosa) pine grows in thin soils
overlying weathered bedrock [24], not all trees sampled of either species responded to the
drought [81]. In giant sequoia, lower canopy water content occurred on the margins of
groves, at lower elevations further from streams, or in areas of high stand density [81]. Scots
pine was more susceptible to drought-induced decline and mortality on forest edges [92]. In
our study, we observed high within-site variability BAI in the investigated sites. Adjacent
trees in apparently similar microsites had differing BAI patterns, and trees with similar BAI
growth patterns occurred in disparate microsites (streamside, dry convex slope). Similar
to giant sequoia, some Jeffrey pine were not responsive to drought and others exhibited
increased growth regardless of calculated drought severity (e.g., resilience to drought; [93]).
In this study, SPEI and PDSI152 with on-site or modeled meteorological parameterizations,
performed similarly (R2 = 0.62, MF/SC combined) in predicting BAI only when biological
covariates were included in the model. Point-in-time bole growth rates and tree-to-tree
competition were significant covariates. Point-in-time bole growth rate, here barkless DBH
as a function of tree age at a mid-point in the analysis, was a significant co-variate. In a
much larger analysis, larger trees had a disproportionate competitive advantage in mixed
age conifer forests [39], and trees with higher bole growth rates were less likely to respond
to drought defined by PDSI. The important role of stand- and tree-level competition in bole
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growth rates has long been established [94,95], and ‘neighborhood’ competition (CZD) was
also a significant co-variate in our model.

Trees may succumb quickly or at length to a physical or biological assault. Man-
ion’s [35] ‘death spiral’ suggests mortality in 5 to 8 yrs with multiple insults in long-lived
trees. In south central Oregon, ponderosa pine was found to take 40 yrs to succumb after
an inciting drought, based on steadily declining BAI to nil (Grulke and Mershel, unpubl.
data). Jeffrey pines died in the same year on the eastern edge of the Transverse Range in
1999, the first year of a multi-year drought (1999–2002) (Grulke, pers. obs.). In that range,
25% to 75% tree mortality occurred in stands with greater than 50% tree cover [96]. In the
Sierra Nevada, the ‘background’ tree mortality from 2010 to 2014 was 2.7 million trees
annually, preceded by a decade of already lower precipitation and higher temperatures
than long term records. The 2013, 2014, and 2015 mortality rates were 29, 62, and 27 million
trees, respectively, dropping to 19 million trees in 2018 [6], and still elevated 3 to 6 yrs after
prolonged ‘hot’ drought as ground water deficits lag precipitation deficits [36].

We can monitor declining canopy water content [97] and pre-emptively anticipate
physiological tree drought stress by gaging within-crown thermal differences [45] or ox-
idative stress (PRI, xanthophyll cycle [98]), but the analysis presented here suggests that
biological co-variates, bole growth vigor and tree-to-tree competition, aid in predicting
declining BAI. Only the latter co-variate can be assessed remotely. Continuity of mature tree
canopies (e.g., greater cover) may be assessed with LiDAR, which is increasingly monitored
and available over forested regions. At the California state-wide level [79], a change metric
was successfully identified using NDVI that was associated with increased tree mortality
6 to 19 months later [99]. Crown vigor was correlated to ‘bole vigor’ in an analysis of
ponderosa pine [60] but was not a significant variant in our model predicting BAI, whether
or not bole vigor was also included. The predictive capacity of our model dropped from
moderate to poor when bole vigor was not concurrently considered.

Anticipating the meteorological conditions that will lead to extensive tree die-offs
in mid- to upper elevations is needed, as loss of vegetation cover will lead to lower
on-site water retention and ‘flashier’ downslope flows. DIs alone do not appear to be
particularly effective in predicting tree bole growth, an attribute that declines as trees
succumb. Conditions and thresholds have been defined that lead to hydraulic failure in
trees [100], but the approach may not be scalable in mid to upper elevation forests that
rely on regolithic water in the last third to half of the growing season. Estimating the
rate of decline, year over year in NDVI [79,100], oxidative stress [99], and or crown or
sub-crown thermal imagery [45] could be used as a harbinger of tree decline and mortality,
and perhaps with sufficient lead time, for mitigation. We can anticipate loss of water
resources with DIs, but at present we only monitor the degradation of mid elevation, open
forest Sierran ecosystems with lower water availability and higher temperatures.

5. Conclusions

An 86 yr meteorological record was constructed for mid-elevation sites in the Sierra
Nevada, useful for hydrologists, meteorologists, and biologists in future investigations.
Correlations between on-site and modeled environmental data within a single DI were high,
suggesting that modeled data, ubiquitously used today, can be reliably and interchangeably
utilized in research applications in complex terrain. However, periodic discrepancies were
discovered in the monthly mean temperature, and the estimated error variance of monthly
summed PRISM precipitation exhibited heterogeneity. A similar study on the eastern slope
of the Sierra Nevada also observed discrepancies in monthly temperatures, but for different
time periods. Correlations among meteorological- and physics-based drought indices (SPEI
and AI) and meteorological-, physics-, and pedologically-based drought indices (PDSI and
derivatives) were high, suggesting that a similar outcome could be expected from the use
of any one of these indices. Correlations of these indices with local streamflow were high,
with the highest correlation provided by SPEI and AI. All current year DIs evaluated in
this study were unable to predict NDVI in three sites with variable tree densities across



Climate 2022, 10, 72 20 of 27

this landscape. Drought indices (SPEI or PDSI) accompanied by biological covariates (bole
growth vigor, tree-to-tree competition) were moderately predictive of BAI. Although DIs
were significant, their effect sizes were low. DIs alone were poor predictors of BAI. This
conclusion is robust without regard to which index or parameterization was used. A
threshold of some level of meteorological- and physics-based DI such as SPEI or AI may aid
predicting biological responses to multiple years of extreme drought but may not permit
time for management to mitigate its effects at scale. Rates of change of remotely-detectable
tree drought stress, crown vigor, and stand density (canopy continuity) may be a means of
identifying high risk locations as well as providing lead time for management.
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Appendix C. Comparison of On-Site and PRISM Parameterization of PET and the Five
Drought Indices at HM
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Appendix D. Comparison of On-Site and PRISM Parameterization of PET and the Five
Drought Indices at SC
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