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Abstract: Systematic changes, since the beginning of the 20th century, in average and extreme
Australian rainfall and temperatures indicate that Southern Australian climate has undergone regime
transitions into a drier and warmer state. South-west Western Australia (SWWA) experienced the
most dramatic drying trend with average streamflow into Perth dams, in the last decade, just 20% of
that before the 1960s and extreme, decile 10, rainfall reduced to near zero. In south-eastern Australia
(SEA) systematic decreases in average and extreme cool season rainfall became evident in the late
1990s with a halving of the area experiencing average decile 10 rainfall in the early 21st century
compared with that for the 20th century. The shift in annual surface temperatures over SWWA and
SEA, and indeed for Australia as a whole, has occurred primarily over the last 20 years with the
percentage area experiencing extreme maximum temperatures in decile 10 increasing to an average
of more than 45% since the start of the 21st century compared with less than 3% for the 20th century
mean. Average maximum temperatures have also increased by circa 1 ◦C for SWWA and SEA over
the last 20 years. The climate changes in rainfall an d temperatures are associated with atmospheric
circulation shifts.

Keywords: Australian climate; extremes; rainfall; temperatures; tipping points; regime transitions;
circulation; storms; climate change

1. Introduction

Over the last seventy years, since the middle of the 20th century, aspects of Australian
climate, particularly rainfall and temperatures, have undergone significant changes [1–5].
The notable rainfall deficits in southern Australia have been linked to declines in extra-
tropical storminess and the intensity of explosive storms [1,6–14]. Some of those changes
have been quasi-cyclical due, for example, to variability associated with the El Niño-
Southern Oscillation, the Interdecadal Pacific Oscillation, the Walker and Hadley Cir-
culations, or the Indian Ocean Dipole [1,15–22]. On the other hand, there is also com-
pelling evidence for systematic climate shifts in both hemispheres due to global warm-
ing [1–3,8,12,23–29].

Frederiksen, et al. [29], Figure 7, consider the systematic or secular trends in Southern
Hemisphere winter baroclinicity over the second half of the 20th century based on reanalysis
data and the interannual and decadal variability about the trend. Frederiksen, et al. [12]
made similar determinations for each season and studied the roles of externally forced
and internal covariability of rainfall and baroclinicity in a suite of 12 comprehensive
coupled ocean atmosphere climate models. These models were chosen on their ability to
produce similar trends in baroclinicity over the second half of the 20th century as found
in reanalysis data. They also examined these model trends for the second half of the 21st
century under conditions of strong radiative forcing by increasing carbon dioxide with
no stabilization and, as well, with stabilization. In this study, and in a similar study by
Frederiksen and Grainger [24] on the covariability of rainfall and 500 hPa geopotential
height, it was concluded that the secular trends, in rainfall and circulation over the second
half of the 20th century by the ensembles of skilful models, which are similar to those
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from reanalyses, are closely reproduced by the externally forced modes of covariability.
Moreover, the continuing similar secular trends into the 21st century are conditional on
the continuing increasing trend in equivalent carbon dioxide without stabilization. The
attribution study of Franzke, et al. [23] led to their conclusion that anthropogenic carbon
dioxide is the dominant cause of secular changes in the Southern Hemisphere circulation
in recent decades with a lesser contribution from stratospheric ozone depletion. They also
noted the consistency with the model-based study of Freitas, et al. [27].

Our particular interest in this article is whether the changes that have occurred in
Australian climate and climate extremes over the last seventy years are indicative of regime
transitions in a noisy environment. There has been a long history of studies examining the
possibility of regime transitions in various aspects of the climate system. The early simple
energy balance models (EBMs) of the earth’s climate [30–35] exhibited thermodynamical
regime transitions in the mean temperature between several states as the order parameter,
the solar constant, is varied. Indeed, as shown in Figures 1 and 3 of Frederiksen [35], the
number of stable states and the number of bifurcation points (or critical or tipping points)
may vary depending on the form of the thermodynamical functions, such as the effective
albedo, and lead to the possibility of closely spaced tipping points.

Charney and Devore [36] and Wiin-Nielsen [37] studied low order dynamical models
of the atmospheric circulation and found multiple equilibrium states dominated by either
strong zonal flow and weak wave structure or weak zonal flow and strong wave structure
that they interpreted as a blocking state. Charney and Devore [36] found that regime transi-
tions between the zonal and blocking states occurred as the order parameter, the height of
the topography, varied through the bifurcation point. Similar regime transitions were also
found in baroclinic models by Charney and Straus [38]. Frederiksen and Frederiksen [39]
reviewed subsequent developments in the theory of multiple equilibria and the role of
topographic instability in regime transitions.

Frederiksen [40,41] examined regime transitions of inviscid barotropic and baroclinic
zonal flows over topography in high dimensional systems using methods of equilibrium
statistical mechanics. The critical points for barotropic flow and critical lines and triple
points for baroclinic flows were determined and the similarities and differences with
magnetic phase transitions [42,43] were examined. Zidikheri, et al. [44] studied the in-
teraction of barotropic zonal flows with topography in high resolution forced dissipative
numerical simulations and established the phase diagram (their Figure 2) for regime tran-
sitions. They found hysteresis effects in transitions between strong and weak zonal flow
states with qualitative similarities to those for magnetic phase transitions (e.g., Figure 3 of
Saghayezhian, et al. [45] and references therein). The regime transitions between strong
zonal states and blocking found in simple models have also been found in comprehensive
weather prediction models (e.g., Frederiksen, et al. [46]) and associated with observed
climate shifts by O’Kane, et al. [26].

Further developments in the role of regime transitions and tipping points in various
aspects of the climate system, including under global warming, have been considered by
Franzke, et al. [23], Freitas, et al. [27], Dijkstra [47], Kypke, et al. [48], Lenton, et al. [49],
Yan, et al. [50], Fabiano, et al. [51], Jones and Ricketts [52] and Australian Academy of
Science [53]. It is clear from all the studies mentioned in this Introduction that there are
dynamical and thermodynamical processes of the climate system that can result in regime
transitions. However, the methodologies for analysing components and simplifications of
the climate system are not easily applied to the full system given its complex equations
and interactions over vast scales. This is clearly the case for the analytical and semi-
analytical bifurcation methods, including singularity theory [54], for analysing low order
systems [55] and for the equilibrium statistical mechanics methods [40,41]. Renormalization
group methods [56–58] and renormalized perturbation theory [56,59] are more generally
applicable to the statistical dynamics of phase transitions of high dimensional systems.
However, they are most suited to systems described by a few mathematically elegant
equations such as the Navier–Stokes equations or quasigeostrophic equations [59]. The
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complex equations, some of which include discontinuous processes such as convection,
and vastly different time scales of interactions, of the climate system again make these
approaches unfeasible for computational as well as theoretical reasons. In this study
we therefore take an approach based on the general characteristics of phase transitions
which involve a discontinuity in the dependent variable (first order phase transition) or its
derivative (second order phase transition) as the order parameter transits through a critical
point [45,60].

The paper is structured as follows. Section 2 outlines the data and sources as well
as the methodology for their analysis used in this study. The mean and extreme rainfall,
streamflow into Perth dams, the mean and extreme surface temperature data sets, and
the reanalysis data determining atmospheric flow fields, are described in this Section.
In Section 2, the calculation of decile data including for extreme rainfall and surface
temperatures is also described as is the method for establishing the critical times of the
changes in the trends in the data. Section 3 examines changes in SWWA mean and extreme
rainfall and streamflow since the beginning of the 20th century and relates the changes to
those of the atmospheric circulation in the surrounding regions. There, systematic shifts
in these variables and their trends or gradients over different time periods are examined
and are related to regime transitions. In Section 4, a corresponding analysis is performed
for mean and extreme rainfall for SEA and in Section 5 results for Northern Australia
are presented. The changing nature of SWWA average and extreme maximum surface
temperatures are examined in Section 6 and the shifts in temperatures and trends are
again related to transitions between regimes. Section 7 presents an analysis of temperature
trends in SEA, and for states and regions fully or partially within this area, while Section 8
summarizes corresponding results for Australia as a whole. The implications of our
findings and our conclusions are discussed in Section 9. In Appendix A, we consider
the relationship between reanalysis data sets and observations in the Australian region,
including during the pre-satellite era. The utility and application of decile data, as described
in our Methods subsection, is further discussed in Appendix B. Appendix C summarizes
regression methods for trends and critical points and their application.

2. Material and Methods
2.1. Rainfall, Temperature and Streamflow Data Sets

The average and extreme—decile 10—rainfall and temperature data used in this paper
have been obtained from the Bureau of Meteorology [61] website. In this study we focus
on various regions such as SWWA, SEA, Northern Australia, and Australian states, shown
in Figure 1. These Bureau of Meteorology (BoM) data sets are based on averages of station
data and are of higher quality than earlier BoM data sets [62,63]. The density of observation
sites is particularly high for SWWA and SEA and the starting dates at the beginning of
the 20th century have been chosen to ensure high quality [62,63]. For example, Figure
1 of Jones, et al. [63] shows how the number of stations contributing to the rainfall and
temperature analyses vary from 1900 and 1910, respectively. Their Figure 2 shows the
corresponding networks of stations. The data for streamflow into Perth dams has been
obtained from the Water Corporation [64] of Western Australia.
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Figure 1. Map of Australian regions showing South-western (SWWA), South-eastern (SEA—with a 
box around Tasmania), Eastern (EA), Southern (SNA), Northern (NA) and Murray Darling Basin 
(MBD) areas for averaged rainfall and temperature data. 

2.2. Reanalysis Data Sets 
The investigation of the changes in atmospheric circulation in our study uses the re-

analysis data set of the National Centers for Environmental Prediction (NCEP) and the 
National Centre for Atmospheric Research (NCAR), [65]. It will be referred to as the NNR 
data set. The NNR data set is available for the whole period from 1948 to the present and 
has been one of the most studied reanalysis data set incorporating the pre-satellite period. 
We focus here on changes in the Southern Hemisphere zonal jet in the Australian region 
and their strong relationships to rainfall changes in Southern Australia. In Appendix A, 
we summarize the results of studies of the comparison of the NNR data set in the Austral-
ian region with other reanalysis data sets and with observations. 

2.3. Methods 
Next, we summarize the method of determining decile data from the BoM station 

data and our method for establishing the changing trends and critical points in data sets. 

2.3.1. Determination of Decile Data 
Gibbs and Maher [66] developed a decile-based methodology for characterizing me-

teorological drought and presented Australian maps of the distribution of decile ranges 
of annual rainfall for the years 1885 to 1965. This method of determining decile data from 
station rainfall data [63] and temperature data [62] is detailed on the websites of the Bu-
reau of Meteorology [67,68]. Briefly, deciles are a convenient way of coarse-graining the 
frequency distribution of a variable into ten bands each with 10% of the values. Decile 1 
corresponds to the lowest 10%, decile 5 gives the median and decile 10 the highest 10% of 
the data which is generally monthly, seasonal, multi-month or annual data. The method 
makes no assumption about the distribution—it is nonparametric—and is based on all the 
data for a given time span. In practice, for a given time span, gridded data in each grid 

Figure 1. Map of Australian regions showing South-western (SWWA), South-eastern (SEA—with
a box around Tasmania), Eastern (EA), Southern (SNA), Northern (NA) and Murray Darling Basin
(MBD) areas for averaged rainfall and temperature data.

2.2. Reanalysis Data Sets

The investigation of the changes in atmospheric circulation in our study uses the
reanalysis data set of the National Centers for Environmental Prediction (NCEP) and the
National Centre for Atmospheric Research (NCAR), [65]. It will be referred to as the NNR
data set. The NNR data set is available for the whole period from 1948 to the present and
has been one of the most studied reanalysis data set incorporating the pre-satellite period.
We focus here on changes in the Southern Hemisphere zonal jet in the Australian region
and their strong relationships to rainfall changes in Southern Australia. In Appendix A, we
summarize the results of studies of the comparison of the NNR data set in the Australian
region with other reanalysis data sets and with observations.

2.3. Methods

Next, we summarize the method of determining decile data from the BoM station data
and our method for establishing the changing trends and critical points in data sets.

2.3.1. Determination of Decile Data

Gibbs and Maher [66] developed a decile-based methodology for characterizing me-
teorological drought and presented Australian maps of the distribution of decile ranges
of annual rainfall for the years 1885 to 1965. This method of determining decile data
from station rainfall data [63] and temperature data [62] is detailed on the websites of the
Bureau of Meteorology [67,68]. Briefly, deciles are a convenient way of coarse-graining the
frequency distribution of a variable into ten bands each with 10% of the values. Decile 1
corresponds to the lowest 10%, decile 5 gives the median and decile 10 the highest 10% of
the data which is generally monthly, seasonal, multi-month or annual data. The method
makes no assumption about the distribution—it is nonparametric—and is based on all the
data for a given time span. In practice, for a given time span, gridded data in each grid box,



Climate 2022, 10, 73 5 of 27

are sorted from lowest value to highest value and placed into ten equal bands, labelled
decile 1 to 10, so that any value in a lower decile is smaller than those in the next decile.
The percentage of grid boxes (percentage area) with values in a given decile and year and
in a particular geographical region are then calculated based on all the grid boxes, which
may be as small as circa 5 km by 5 km (0.05 degrees by 0.05 degrees) for regional rainfall
and temperatures [63].

The utility and applications of decile data is further described in Appendix B.

2.3.2. Determination of Changes in Trends and Critical Points

The critical times of large and sustained changes in the trends of the rainfall, streamflow
and temperature data considered in this study have been determined as follows. The data
have been low-pass filtered by applying a 10-year running mean to reduce noise due to the
interannual variability. Graphs of the filtered data indicate time periods when these trends
change significantly. Regression of the filtered data against time over each time periods
incorporating these trend changes are then used to focus in on the critical times. Firstly,
regression is applied against a quadratic function of time which highlights the critical
time of gradient change. Then, regressions against linear functions of time are performed
between the beginning and first critical time, between the last critical time and the end
of the timeseries and between any two adjacent intermediary critical points. This then
determines the large changes in linear trends we find that are sustained for 15 to 20 years
or longer. Averages of the unfiltered data are calculated for the associated time periods.

Appendix C summarizes regression methods for determining trends and critical points
and details an example of the application to climate data.

3. South-West Western Australian Rainfall, Rainfall Extremes and
Atmospheric Circulation

In this section, we analyse rainfall over SWWA and streamflow into Perth dams
since the early 1900s. There was a notable deficit in Southern Wet Season (SWS), April to
November, rainfall in SWWA and an even larger relative reduction in annual streamflow
into Perth dams in the 1960s and 1970s. This has been documented in numerous studies,
starting with the articles by Pittock [69] and Sadler, et al. [70], and further analysed and
reviewed by Osbrough and Frederiksen [1]. Frederiksen and Frederiksen [6,7] noted that
there was an associated 17% reduction in the peak upper troposphere winter jet-stream
and a 20% drop in the 300–700 hPa baroclinicity in the region of SWWA between 1949–1968
and 1975–1994. They showed through instability model calculations, with the respective
observed climate states for the above two 20-year periods, that there was a circa 30%
reduction in the growth rate of leading storm track modes crossing SWWA and a poleward
deflection of some storms. Osbrough and Frederiksen [1] have recently confirmed, through
a detailed data driven study, that the cause of the SWWA winter rainfall decrease over the
last 50 years is in fact the reduction in the intensity of the fast-growing storms associated
with changes in the basic state.

Our aim here is to present evidence that both SWS rainfall over SWWA and Perth
annual streamflow have undergone regime transitions with qualitative similarities to
the phase transitions discussed in the Introduction. Our methodology, as described in
Section 2.3.2 is to calculate the critical times of significant changes in the trend of the
low-pass filtered mean and decile 10 rainfall and streamflow time series, to calculate these
trends, relate them to each other and to changes in the zonal flow around SWWA.

3.1. SWWA Rainfall, Rainfall Extremes and Streamflow

We start by examining the time series of SWS rainfall over SWWA and annual stream-
flow into Perth dams between January to December. The SWWA region is shown in Figure 1
which also displays other regions of Australia that we consider in this study. Figure 2
shows the time series since the early 1900s of SWWA rainfall in SWS, the Percentage Area
with Rainfall in Decile 10 (PARD10) for SWWA in SWS and the January to December Perth
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streamflow. We note that the three graphs show a general decline with time. This is per-
haps most easily seen from Table 1 where averages of these quantities are displayed for
different time spans. These time spans have been chosen to capture significant changes
in the variables and their trends, discussed in the Methods subsection and below. For
each time interval shown the rainfall, streamflow and PARD10 decrease systematically. The
reductions shown there are quite profound for streamflow and extreme rainfall. We note
that Perth streamflow decreased from an annual average of 414 giga litres for 1911–1958
to 389 giga litres for 1959–1978 to 183 giga litres for 1979–2018 and to as little as 88 giga
litres for 2009–2018. Thus, in the last decade Perth streamflow has reduced to just 21% of
the historical annual average inflow into dams. Extreme rainfall, represented by PARD10 in
Table 1, followed a similar dramatic decrease. By these two measures the climate of SWWA
has transited into a completely different regime. Somewhat lesser declines in streamflow
have also occurred in other drainage divisions across southern and eastern Australia [2].
For SWWA rainfall (Figure 1a) the broad decreases with time follow a similar pattern to
streamflow (Figure 1c) but with the magnitudes of the reductions being considerably less,
at circa 20%, since the 1970s.
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Table 1. The yearly mean SWWA rainfall in SWS, January to December streamflow into Perth dams
and percentage area of SWWA with SWS rainfall in decile 10 (PARD10) for different time periods.

Time Period

Rainfall and Streamflow 1900–1958 1911–1958 1959–1978 1979–2018 2009–2018

SWWA Rainfall SWS (mm) 639 610 545 502
Perth Streamflow (gl) 414 389 183 88

SWWA % Area Rainfall Decile 10 SWS (%) 15.5 10.3 2.03 0.19

Table 2 shows correlations (and detrended correlations) for the period 1911–2018
of annual streamflow into Perth dams with SWWA rainfall and PARD10 for SWS. As
expected from Figure 2, the correlations are substantial and significant with confidence
levels CL > 99% in all cases. Correlations are even somewhat larger for the rainfall squared
and for a quadratic fit of rainfall with streamflow. Annual streamflow into Perth dams
is particularly well described by the quadratic fit with correlation r = 0.88 (detrended
r = 0.86). The fact that streamflow behaves like rainfall squared or through a quadratic fit
explains its more dramatic decline.

Table 2. Correlations (r) between SWWA rainfall, PARD10, streamflow into Perth dams (as in Table 1),
rainfall squared and a quadratic fit of rainfall to streamflow with detrended correlations in brackets.
The confidence levels (CL ) of the correlations are greater than 99% in all cases.

Correlation Field SWWA Rainfall SWS Perth Streamflow Jan–Dec

SWWA Rainfall SWS r = 1.0 (1.0) r = 0.84 (0.81)
Perth Streamflow Jan–Dec r = 0.84 (0.81) r = 1.0 (1.0)
% Area Rainfall Decile 10 r = 0.74 (0.73) r = 0.79 (0.78)

Rainfall Squared r = 0.99 (0.90) r = 0.87 (0.84)
Quadratic Fit r = 0.96 (0.95) r = 0.88 (0.86)

Next, we consider decadal variability of rainfall, streamflow and PARD10. Figure 3
shows time series of 10 year running means of these variables that make the systematic
decrease since the mid-1970s more evident than the noisier annual data in Figure 2. The
close covariability of the low-pass filtered SWWA rainfall and Perth streamflow is evident
and the correlations are even larger (r = 0.94 and detrended r = 0.83) than for interannual
variability (r = 0.84 and detrended r = 0.81). Perhaps most dramatic is the drop in PARD10
displayed in Figure 3b from before the 1970s to after. This illustrates an important point
that how evident a regime transition is depends on the variable of interest and its sensitivity
to the changes in the forcings or external environment (order parameters). Clearly extreme
rainfall is more sensitive to changes in the circulation that in turn affect the extratropical
storms and rainfall [1,7].

The nature of the regime transition can be further elucidated by examining the average
trend or gradient of the rainfall and streamflow data over relevant time spans. This is
summarized in Table 3 which show the trends up to 1958, between 1959 and 1978 and since
1979. For each of the data sets, there is a considerable decreasing trend in the twenty years
between 1959 and 1978 compared with in the periods before and after. Again, these results
support the proposition that SWWA rainfall and streamflow into Perth dams underwent
a regime transition from a relatively high rainfall state to a lower much drier state and that
this occurred over a period of about twenty years. As expected, the broad findings detailed
for SWS over SWWA apply equally to winter rainfall and Cool Season (April to October)
rainfall (not shown).
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Figure 3. As in Figure 2 for 10-year running means (RM) of (a) rainfall, (b) decile 10 rainfall and
(c) streamflow data.

Table 3. The average gradients or trends of 10-year RM of SWWA rainfall in SWS, January to
December streamflow into Perth dams and percentage area of SWWA with SWS rainfall in decile 10
(PARD10) for different time periods.

Time Period

Field Gradient 1900–1958 1911–1958 1959–1978 1979–2018

SWWA Rainfall SWS 10-year RM (mm year−1) −0.81 −4.0 −1.8
Perth Streamflow 10-year RM (gl year−1) 0.2 −11.1 −5.4

SWWA % Area Rainfall Decile 10 SWS 10-year RM (% year−1) −0.11 −0.76 −0.04

3.2. SH Atmospheric Circulation

As noted in Frederiksen and Frederiksen [7] and further analysed and reviewed by
Osbrough and Frederiksen [1], the July rainfall reduction in SWWA after the 1970s was
accompanied by significant decreases in the July upper tropospheric subtropical jet near
30◦ S over Australia. Here, we examine the time series of the SH jet stream changes
since the mid-20th century in more detail focusing on the SWS of April to November.
Figure 4 shows a latitude cross section of the (1975–1994) minus (1949–1968) zonal wind
difference in the region 90◦ S–90◦ N, 100◦ E–130◦ E. It has broadly similar structure to the
corresponding differences for July shown in Figure 1c of Frederiksen and Frederiksen [7]
and Figure 1d of Freitas, et al. [27]. In both cases there are significant wind decreases
in the upper troposphere near 35◦ S, with increases near 60◦ S and decreases again near
75◦ S. In Figure 4, the confidence levels CL > 95% where the magnitude of the plotted
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differences ≥ 2 ms−1; this corresponds closely with the results for July in Figure 1d of [27]
that are also statistically significant with CL > 95%, based on a Student t–test. As well
these findings are reflected in January to December annual average differences (not shown)
indicating the systematic nature of the changes.
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Heavy rainfall from rapid extratropical storm development ([1] and references therein)
depends on the baroclinicity of the atmosphere. Phillips [71] formulated a simple instability
criterion for storm development, based on the zonal wind U, which may be expressed as

Uupper − Ulower − Ucritical > 0

which is necessary for baroclinic instability. The superscripts denote the winds at appro-
priate upper and lower levels of the atmosphere and the critical value, Ucritical , depends
on the vertical temperature gradient and the Coriolis parameter. In spherical geometry
the expression for Ucritical is given, for example, by Frederiksen ([72], Equation (3.9)) and
in Equation (1) of Osbrough and Frederiksen [1] (and references therein). Frederiksen
and Frederiksen [7] and Frederiksen and Frederiksen [73] found that the primary deter-
minant of changes in the SH baroclinicity during the 20th century were changes in the
zonal wind shear with changes in the vertical temperature gradient, and thus in Ucritical ,
being relatively minor. Figure 5 shows the interannual variability of the April to November
(SWS) 150 hPa zonal wind (part a) and baroclinicity measured by the 300–700 hPa zonal
wind (part b) between 30◦ S and 35◦ S, 100◦ E and 130◦ E, and from 1948 to 2018 based on
NNR data. For both the peak upper tropospheric zonal wind and the baroclinicity there is
a general reduction from 1948 until the mid–1970s and thereafter there is a flattening of the
running mean curve until the end of the record. These changes are further quantified in
Tables 4 and 5. Table 4 show the systematic decrease in 150 hPa zonal wind and 300–700 hPa
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tropospheric baroclinicity for the time spans 1948–1958, 1959–1978 and 1979–2018. The
corresponding trends or gradients of these field for 1959–1978 and 1979–2018 are given in
Table 5. The gradients decrease rather steeply between 1959 and 1978 and thereafter the
trend is near zero. In these respects, the results in Table 5 mirror those for SWWA rainfall
and stream flow into Perth dams shown in Table 3. The flow field results are consistent
with a regime transition into a weaker zonal flow and baroclinicity state in the regions
upstream and over SWWA in the twenty-year period 1959–1978. Tables 4 and 5 also show
the corresponding changes in the mean values and gradients for the 700 hPa zonal wind in
the region 20◦ S–35◦ S, 110◦ E–130◦ E. We note that in the lower troposphere the relative
changes in the mean zonal wind values and particularly gradients are considerably weaker
than in the upper troposphere.
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Table 4. The mean April–November (SWS) 150 hPa zonal wind averaged between 30◦ S and 35◦ S,
100◦ E and 130◦ E, 300 hPa minus 700 hPa zonal wind shear averaged between 30◦ S and 35◦ S, 100◦ E
and 130◦ E, and 700 hPa zonal wind averaged between 20◦ S and 35◦ S, 110◦ E and 132.5◦ E, for
different time periods.

Time Period

Mean Zonal Wind 1948–1958 1959–1978 1979–2018

U150 30◦ S–35◦ S 100◦ E–130◦ E SWS (ms−1) 42.1 37.9 34.4
U300—U700 30◦ S–35◦ S 100◦ E–130◦ E SWS (ms−1) 24.0 21.4 20.1

U700 20◦ S–35◦ S 110◦ E–132.5◦ E SWS (ms−1) 6.76 6.12 5.92

Table 5. The average gradients or trends of SWS 150 hPa zonal wind averaged between 30◦ S and
35◦ S, 100◦ E and 130◦ E, 300 hPa minus 700 hPa zonal wind shear averaged between 30◦ S and 35◦ S,
100◦ E and 130◦ E and 700 hPa zonal wind averaged between 20◦ S and 35◦ S, 110◦ E and 132.5◦ E,
for different time periods.

Time Period

Mean Zonal Wind Gradient 1959–1978 1979–2018

U150 30◦ S–35◦ S 100◦ E–130◦ E SWS 10-year RM (ms−1 year−1) −0.33 −0.003
U300—U700 30◦ S–35◦ S 100◦ E–130◦ E SWS 10-year RM

(ms−1 year−1) −0.22 −0.015

U700 20◦ S–35◦ S 110◦ E–132.5◦ E SWS 10-year RM (ms−1 year−1) −0.018 −0.019
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Table 6 shows correlations between mid-tropospheric baroclinicity and characteristics
of SWWA rainfall for SWS and annual streamflow into Perth dams for the time span
1959–2018; similar results are obtained for 1948–2018 (not shown). Correlations with the
300–700 hPa zonal wind are as high as 0.58 except with PARD10 where they are lower. We
note however that somewhat larger correlations between baroclinicity and rainfall may
be obtained by optimizing the region and levels of the flow fields [1]. This is carried out
in the right-hand column of Table 6 where correlations (as high as 0.66) with the 700 hPa
zonal wind in the region 20◦ S–35◦ S, 100◦ E–132.5◦ E are shown for SWS. In all cases the
correlations are significant with confidence levels CL > 98%. As noted in [1], the strong
correlations of SWWA rainfall with the low-level flow suggests that surface cyclogenesis is
a major contributor to the rainfall and the variability of the 700 hPa zonal wind is a primary
determinant of variability in low-level baroclinicity. Their results for July are confirmed
here for the time span of April to November.

Table 6. Correlations (r), and detrended correlations in brackets, of SWWA rainfall, PARD10, stream-
flow into Perth dams, rainfall squared and a quadratic fit of rainfall to streamflow with SWS 300 hPa
minus 700 hPa zonal wind shear averaged between 30◦ S and 35◦ S, 100◦ E and 130◦ E and 700 hPa
zonal wind averaged between 20◦ S and 35◦ S, 110◦ E and 132.5◦ E. Confidence levels CL > 99%
apart from the detrended correlations with PARD10 for which CL > 98%.

Correlation Field U300–U700 30◦ S–35◦ S 100◦

E–130◦ E SWS
U700 20◦ S–35◦ S 100◦

E–132.5◦ E SWS

SWWA Rainfall SWS r = 0.58 (0.51) r = 0.66 (0.63)
Perth Streamflow Jan–Dec r = 0.56 (0.451) r = 0.57 (0.54)
Rainfall % Area Decile 10 r = 0.36 (0.29) r = 0.34 (0.29)

Rainfall Squared r = 0.58 (0.51) r = 0.64 (0.61)
Quadratic Fit r = 0.56 (0.49) r = 0.60 (0.57)

In summary, our findings in this Section 3 indicate that although the mean and decile
10 rainfall and streamflow since the early 1900s have exhibited interannual and interdecadal
variability, the longer time scale variability is characterized by three broad states. During
the period up until the end of the 1950s the average trends in these quantities (Table 3)
are relatively small compared with the sharp declines in the 1960s and 1970s followed by
lesser declining trends since the 1970s. During these three periods there are also systematic
decreases in rainfall and streamflow (Table 1) that also have notable correlations with
baroclinicity and zonal flows in the region around SWWA (Table 6). It is found that
correspondingly upper tropospheric zonal flows and mid tropospheric baroclinicity in the
region around SWWA also have significant declining average trends in the 1960s and 1970s
with only slight declines after the 1970s (Table 5).

4. South-East Australian Rainfall, Rainfall Extremes and Atmospheric Circulation

Next, we examine changes in SEA rainfall since the early 1900s with a particular
emphasis on indications of regime transitions as in Section 3 for SWWA rainfall; the
aims and approaches are as described there, presented more briefly for the SEA, but also
with analysis of variability between individual states within the region. We focus on the
Cool Season (CS), April to October, SEA rainfall which is most affected by extra-tropical
storms [1]. Perhaps the most dramatic period of rainfall reduction during the 20th and early
21st century was the Australian Millennium Drought (AMD) of 1997 to 2009. SEA rainfall
changes, particularly during the AMD, have been the focus of numerous diagnostic studies
including by Fawcett [74], Gallant, et al. [75] and Watkins and Trewin [76], and further
investigated and reviewed by Osbrough and Frederiksen [1], Dey, et al. [5], Risbey, et al. [11],
Cai, et al. [77]. These works have established the AMD as one of the most widespread
and devastating droughts of the last century. Frederiksen and Frederiksen [73] related the
changes in 1997–2006 rainfall over Southern Australia compared to the 1949–1968 base-line
period to changes in the large-scale circulation and changes in the growth of weather
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systems. Their theoretical primitive equation calculations showed that the growth rates
of leading extra-tropical storm track modes were reduced by more than 30% and onset-of
blocking modes by around 20% although there was some increase in the growth rate of
North-West Cloud Band modes (NWCBs) and intraseasonal oscillation modes. These
theoretical analyses of the causes of the AMD were also supported by the observational
study of Risbey, et al. [11], who found fewer fast growing and intense frontal storms and
cut-off lows during the AMD and again attributed this to the reduction in baroclinicity in
the Australian region. The data driven analysis in Osbrough and Frederiksen [1] confirmed
these findings and established that changes in the intensity of explosive storms were
primarily responsible for the reduced winter rainfall in Southern Australia during the
AMD. They also found that while the El Niños played a significant role in the SEA rainfall
reduction during the AMD the general drying of Southern Australia continued and is
evident during the longer period 1997–2016.

4.1. SEA Rainfall and Streamflow

Figure 6 shows the annual and 10 year running mean time series of SEA rainfall and
extreme rainfall characterized by PARD10 for the Cool Season (CS) of April to October;
results based on April to November (SWS) are broadly similar (not shown). The reduction
in SEA rainfall and PARD10 are most evident from the late 1990s as also see in from Table 7.
The SEA reductions in rainfall of about 10% and a halving of PARD10 since the late 1990s
are very significant as they affect the Murray Daring Basin (MDB; see Figure 1) which
is Australia’s main food bowl. Nevertheless, they are not yet as dramatic as the larger
reductions experienced by SWWA since the late 1950s discussed in Section 3. As one
would expect, many of the states and sub-regions making up, or overlapping with, SEA
experienced very similar Cool Season changes as those depicted for SEA. This is the case for
the states of Victoria (VIC) and New South Wales (NSW) and for the MDB region (Figure 1).
In fact, the variability of rainfall and PARD10 for VIC (the central part of SEA) appears to be
synchronous with that for SEA with CS rainfall (PARD10) correlation of 0.97 (0.94). Indeed,
the relationships between explosive storms and SEA rainfall established in Osbrough and
Frederiksen [1] apply equally to VIC rainfall.

Table 7. As in Table 1 for SEA and TAS Cool Season (CS) rainfall and PARD10 and NA Northern Wet
Season (NWS) rainfall and PARD10.

Time Period

Rainfall 1900–1998 1999–2019 1900–1978 1979–2019 1900–1968 1969–2019

SEA Rainfall CS (mm) 410 361
SEA % Area Rainfall Decile 10 CS (%) 11.0 5.15

TAS Rainfall CS (mm) 934 914
TAS % Area Rainfall Decile 10 CS (%) 12.5 5.15

NA Rainfall NWS (mm) 437 509
NA % Area Rainfall Decile 10 NWS (%) 5.45 16.2

The Tasmanian variability of CS rainfall and PARD10 are less representative of SEA
with correlations of 0.64 and 0.60, respectively. Interestingly, the changes in TAS rainfall
and PARD10 have some similarities to those for SWWA in that the noteworthy reductions
in total and extreme CS rainfall commenced in the late 1970s as shown in Figure 7 and in
Table 7. However, the Tasmanian rainfall reductions have been more typical of SEA than
the larger deficits for SWWA. The reductions in CS rainfall, and extreme rainfall, over the
state of South Australia (SA) (not shown) have some similarities with those over SWWA
(although not as large) and Tasmania in that they became evident in the late 1970s with
further reductions at the start of the 21st century.
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Figure 6. (a) SEA rainfall totals (mm) for April–October (CS), (b) percentage area (%) of SEA with
rainfall in decile 10 (PARD10) for CS (c) 10-year RM of SEA rainfall totals for CS and (d) 10-year RM
of SEA PARD10 for CS.

For CS total and decile 10 rainfall averages over the Southern Australian (SNA) and
Eastern Australian (EA) regions (Figure 1) the reductions became most evident at the start
of the 21st century (not shown); this is also the case for the state of Queensland (QLD) and
to a lesser extent even for the Northern Australian (NA) region (not shown).

In this study we shall not make an extensive analysis of the associated changes in
streamflow that occurred in SEA or other regions. As might be expected from the relative
changes in rainfall between SEA and SWWA the streamflow reductions into some drainage
divisions across SEA have been notable but less impactful than those into Perth dams as
discussed, for example, in Bureau of Meteorology and CSIRO [2].
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4.2. SH Atmospheric Circulation

The dynamical study of Frederiksen and Frederiksen [73] noted that the July rainfall
reductions during 1997 to 2006, in the AMD, (compared with the baseline 1949–1968
period) were associated with reductions as large as 6 ms−1 in the strength of the SH
upper tropospheric subtropical jet centred on 30◦ S between the longitudes of 110◦ E and
160◦ E. Similar increases in peak jet strength near 55◦ S were also noted. From Figure
2 of [73], it is evident that there was also a noteworthy reduction in the baroclinicity of
the SH mid-troposphere near 30S particularly in the Australian region. Osbrough and
Frederiksen [1] further discussed the changes in the SH circulation, as characterized by
several local, hemispheric, and globally important predictors or indices. In particular, they
found that July SEA rainfall variability was highly correlated with the 700 hPa zonal wind
in the region 20◦ S–35◦ S, 132.5◦ E–155◦ E. Table 8 shows that on average the correlations
between SEA and Tasmanian rainfall and this 700 hPa regional zonal wind are even larger
for the seven-month cool season of April to October than for July ([1], Table 4). These
correlations are significant with confidence levels CL > 99%.

In summary, beyond interdecadal variability, SEA has longer time variability charac-
terized by two broad states with the transition between them occurring in the late 1990s
(Table 7). This is considerably later than the late 1950s when the first transition of SWWA
rainfall occurred as discussed in Section 3. Regime transitions may be triggered by a
particular perturbation, or a combination of several, as is the case for extremes such as
flooding [16], since it is possible for regime transitions to exhibit hysteresis [44]. In the
case of the SEA regime transition we note that the Interdecadal Pacific Oscillation transited
from positive to negative phase in the late 1990s ([78], Figure 2) and could be a contributing
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trigger that is correlated with SEA rainfall [1]. Interestingly, for Tasmania, making up the
southern part of SEA, the transition occurred in the late 1970s between that for SWWA and
the central and northern SEA. Again, SEA and Tasmanian rainfall variability is strongly
correlated with regional zonal flow variations (Table 8).

Table 8. Correlations (r), and detrended correlations in brackets, of SEA and TAS Cool Season (CS)
and Southern Wet Season (SWS) rainfall with 700 hPa zonal wind averaged between 20◦ S and 35◦ S,
132.5◦ E and 155◦ E. All confidence levels CL > 99%.

Correlation Field U700 20◦ S–35◦ S 132.5◦ E–155◦ E

SEA Rainfall CS r = 0.73 (0.73)
SEA Rainfall SWS r = 0.72 (0.73)
TAS Rainfall CS r = 0.75 (0.74)

TAS Rainfall SWS r = 0.73 (0.73)

5. Northern Australian Rainfall and Rainfall Extremes

While Southern Australia has undergone noteworthy reductions in rainfall since
the 1970s, due largely to a reduction in storminess and, particularly, in the intensity of
fast-growing extratropical storms [1,6,7,9,11,12,73], Northern Australia (Figure 1) has seen
increased precipitation ([2,5,24] and references therein). Table 7 shows the increases in
Northern Wet Season (NWS), October to April, total rainfall (of circa 15%) and in extreme
precipitation measured by PARD10 (of a nearly three-fold increase) since the late 1960s.
These different changes in rainfall in Northern and Southern Australia are to be expected
from an expansion of the tropics in the Australian region as noted for example by Lu-
cas, et al. [79] and references therein; their Tables 1 and 2 show the close correspondence
between the 1979 to 2001 trends of their measure of tropical expansion from radiosondes
and the NNR data in the Australian-New Zealand region between 300 and 100 hPa. The
available radiosonde stations for the SH, including for Australia, is shown in Figure 1 of
Lucas, et al. [79]. While these increases in rainfall in Northern Australia are of importance,
they cannot make up for the decreases that have occurred in the population centres and
food bowls of Southern Australia which are our primary concern in this study.

6. South-West Western Australian Temperature and Temperature Extremes

Next, we examine the changes in Australian temperatures that have occurred pri-
marily in the latter part of the 20th century and in two decades of the 21st century. The
methodology is again as described in Section 2.3.2 and our aim is again to examine regime
transitions. Average Australian temperatures have increased by circa 0.9 ◦C since 1910 with
increases in the temperature extremes [3,62,80]. In this Section we start with an analysis
of temperatures and temperature extremes over SWWA. Figure 8 shows time series of
annual maximum temperatures and annual Percentage Area with Temperatures in Decile
10 (PATD10) for maximum temperatures between 1911 and 2019 for SWWA. Results are
presented for variability on the annual timescale as well as for 10 year running means
which again bring out the regime transitions. Despite the interannual variability, maximum
temperatures have increased considerably from the early 1990s and extreme maximum
temperatures from the start of the 21st century. From Table 9 we see that the increase in
maximum temperatures since the early 1990s is circa 0.9 ◦C while the average area experi-
encing extreme maximum temperatures has increased from a negligible percentage to 46%
of SWWA since the start of the 21st century. The average trends, or gradients, of the 10-year
running means of SWWA temperatures, shown in Figure 8c,d are presented in Table 10 for
the time spans relevant to the above regimes. We note that the gradient associated with
the maximum temperature increases by a factor of nearly 5 between the early and late
periods shown while the trend in maximum extreme temperatures (PATD10) changes from
negligible (1910–2001) to 4.8% year−1 (2002–2019). Indeed, the rate of increase in maximum
temperatures and PATD10 for the period 2002–2019 is higher than for any of the other major
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geographical regions considered next for which corresponding results are also shown in
Table 10.
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Figure 8. (a) SWWA annual maximum temperature variability (◦C), (b) SWWA percentage area
(%) with maximum annual temperatures in decile 10 (PATD10), (c) 10-year RM of SWWA annual
maximum temperatures and (d) 10-year RM of SWWA PATD10.

Table 9. The annual mean of maximum temperatures and percentage areas with maximum tempera-
tures in decile 10 (PATD10) for SWWA, SEA, NSW, MDB and TAS and Australian PATD10 for mean
and maximum temperatures, for different time periods.

Time Period

Mean Field 1910–1991 1992–2019 1910–2001 2002–2019

SWWA Max Temp Anomaly Annual (◦C) −0.21 0.67 −0.27 0.46
SWWA % Area with Max Temp Decile 10 Annual (%) 2.7 46

SEA Max Temp Anomaly Annual (◦C) −0.11 1.02
NSW Max Temp Anomaly Annual (◦C) −0.03 1.23
MDB Max Temp Anomaly Annual (◦C) −0.02 1.22
TAS Max Temp Anomaly Annual (◦C) −0.22 0.49

SEA % Area with Max Temp Decile 10 Ann (%) 2.7 47.2
NSW % Area with Max Temp Decile 10 Ann (%) 2.4 49.0
MDB % Area with Max Temp Decile 10 Ann (%) 2.4 49.1
TAS % Area with Max Temp Decile 10 Ann (%) 5.7 31.9

AUS % Area with Mean Temp Decile 10 Ann (%) 3.3 44.3
AUS % Area with Max Temp Decile 10 Ann (%) 2.8 46.6
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Table 10. As in Table 9 for the gradients or trends of 10-year RM of the temperatures and PATD10.

Time Period

Field Gradient 1910–1991 1992–2019 1910–2001 2002–2019

SWWA Max Temp Anomaly Annual 10-year RM (◦C year −1) 0.73 × 10−2 3.7 × 10−2 0.93 × 10−2 4.5 × 10−2

SWWA % Area with Max Temp Decile 10 Ann 10-year RM
(% year−1) 0.11 4.8

SEA Max Temp Anomaly Annual 10-year RM (◦C year−1) 0.45 × 10−2 3.0 × 10−2

NSW Max Temp Anomaly Annual 10-year RM (◦C year−1) 0.36 × 10−2 3.5 × 10−2

MDB Max Temp Anomaly Annual 10-year RM (◦C year−1) 0.33 × 10−2 3.2 × 10−2

TAS Max Temp Anomaly Annual 10-year RM (◦C year−1) 0.73 × 10−2 1.9 × 10−2

SEA % Area with Max Temp Decile 10 Ann 10-year RM (% year−1) 0.002 2.7
NSW % Area with Max Temp Decile 10 Ann 10-year RM (% year−1) 0.0002 2.2
MDB % Area with Max Temp Decile 10 Ann 10-year RM (% year−1) −0.02 2.2
TAS % Area with Max Temp Decile 10 Ann 10-year RM (% year−1) 0.02 2.0
AUS % Area with Mean Temp Decile 10 Ann 10-year RM (% year−1) 0.14 2.9
AUS % Area with Max Temp Decile 10 Ann 10-year RM (% year−1) 0.05 2.5

7. South-East Australian Temperature and Temperature Extremes

We now turn to regime transitions of south-east Australian temperatures that began
near the start of the 21st century with a focus on maximum temperatures including extreme
temperatures. Figure 9a shows the annual anomaly in maximum temperatures over SEA
with nearly identical results for VIC (correlation of 0.99) and quite similar results for
New South Wales (NSW) and the Murray Darling Basin (MDB) (not shown). The MDB
is Australia’s main food bowl which stretches inland between Victoria through NSW to
southern Queensland (Figure 1). We note from Figure 9a that while there is considerable
interannual variability in the graph it is evident that maximum temperatures have increased
considerably in the early 21st century compared with the 20th century. This change between
centuries is more dramatic when considering extreme temperatures. Figure 9b shows time
series of the annual Percentage Area with Temperatures in Decile 10 (PATD10) for SEA
maximum temperatures with again nearly identical results for VIC (correlation of 0.99).
Again, Figure 9c,d show the corresponding 10-year running mean results corresponding to
Figure 9a,b, respectively. It is clear from Figure 9 that during the circa 20 years of the early
21st century there were many occasions when extreme maximum temperatures in the decile
10 band covered large areas of SEA compared with earlier. Figure 10 shows corresponding
results for changes in annual maximum temperatures over Tasmania. We note that the
temperature increases started earlier than shown for the combined temperatures for SEA in
Figure 9.

The main deductions that can be made from the results in Figures 9 and 10 are
summarised in Table 9. We note that for the whole of the SEA region, and for NSW and
MDB (and VIC—not shown), annual maximum temperature anomalies averaged between
1910 and 2001 are quite small while in the eighteen years of 2002–2019 the differences
are circa 1.1 ◦C to 1.2 ◦C. For Tasmania the change is less at circa 0.7 ◦C. We also see that
extreme maximum temperatures have become more prevalent. For the 20th century PATD10
for maximum temperatures is just a few percent for SEA, NSW and MDB (and VIC—not
shown) but for 2002–2019 the area of extreme maximum temperature rises to between
47% and 49% for SEA, NSW, MDB and VIC and to 32% for Tasmania. These temperature
changes for SEA are quite dramatic and if continued could have major implications for the
primary food bowl of the Murray Darling Basin.
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The smoothed 10-year running means of the results, shown in Figure 9c,d for SEA
(respectively, Figure 10c,d for Tasmania), aid in the visualization of the regime transitions.
It is evident that maximum temperature anomalies in SEA, and in NSW and MDB, as well
as maximum temperature extremes for these regions change dramatically at the start of
the 21st century. Table 10 lists the averaged trends or gradients of these 10-year running
means of both annual maximum temperature anomalies and temperature extremes for
1910–2001. The distinct increases in trends in the early 21st century again support the
concept of a regime transition in SEA temperatures.

For annual average maximum temperatures and PATD10 for maximum tempera-
tures averages over the Southern Australian (SNA) and Eastern Australian (EA) regions
(Figure 1), and for the state of QLD, the notable increases again occurred at the start of
the 21st century (not shown). For the Northern Australian (NA) region the increases in
maximum temperatures and PATD10 started in the 1990s and became more evident during
the 21st century (not shown).
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8. Australian Temperature and Temperature Extremes

The regime transitions of SWWA and SEA maximum temperatures and particularly
extreme maximum temperatures in fact apply to extreme temperatures averaged more
generally across the whole of Australia, as might be expected from the results in the
previous sections. For both mean and maximum temperatures extremes characterized by
PATD10 increase dramatically in the first two decades of the 21st century; PATD10 increases
from just a few percent to 44% for mean and 47% for maximum temperatures for 2002–
2019 as show in Table 9. Again, Table 10 shows that there is a considerable change in the
averaged gradient around 2002 based on 10-year running means of PATD10 for both mean
and maximum temperatures. The distinct increases in trends in the early 21st century again
support the concept of a regime transition in Australian temperatures.

In summary, the findings of Sections 6–8 indicate that, for Australia as a whole and for
most subregions and states, mean and maximum temperature regime transitions occurred
in the early 21st century. In the case of SWWA there are indications that the transitions
occurred over the decade of the 1990s.

9. Discussion and Conclusions

The main purpose of this study has been to present evidence of regime transitions
during the 20th and early 21st century in important aspects of Australian climate. We have
focussed on the changes over Southern Australia in rainfall, temperatures and extremes,
and associated circulation features since the early 20th century. We have also examined
some particularly dramatic shifts in streamflow into Perth dams.
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We have found very clear signals that the climate of south-west Western Australia
(SWWA) has transited into a drier and warmer state with some of these changes in rainfall,
rainfall extremes and streamflow into Perth dams starting as early as the 1960s. Annual
streamflow into Perth dams over the last decade has reduced to just 20% of the pre-1960s
average. We have determined that the gradient of the 10-year running mean (RM) of
streamflow is negligible for the period 1911–1958 followed by a steep decline between
1959 and 1978 and a lesser decline between 1979 and 2018 (circa 40% of that for 1959–1978).
Similarly, the Southern Wet Season (SWS) Percentage Area with Rainfall in Decile 10
(PARD10) for SWWA decreased from 16% for the period 1900–1958 to just 0.2% for 2009–2018.
As in the case of streamflow into Perth dams most of the decrease in PARD10 occurred
between 1959–1978 but with little further systematic decrease between 1979–2018. The
changes in magnitude and gradients for streamflow and PARD10 are strong indicators of
regime transitions in these variables for SWWA.

Perth streamflow has been shown to be essentially proportional to the square of
rainfall and is thus a more sensitive indicator than rainfall itself. Indeed, in comparison
SWWA rainfall in the SWS in 2009–2018 was reduced by 21% compared with the long-term
average over 1900–1958. Attributing the relative causes of streamflow changes over a large
catchment is a difficult problem [81–83]. Liu, et al. [82] in a recent study of streamflow in
SWWA catchments concluded that the contributions to streamflow changes were nearly
equal for precipitation and catchment characteristics with potential evapotranspiration
accounting for a lesser circa 7%. Precipitation can also have an indirect effect in changing
catchment properties. This greater sensitivity of streamflow to climate change can also
be expressed by the fact that, in broad terms, a 10% reduction in rainfall may reduce
streamflow by 30% or more [81,82,84–86].

The gradients for the 10-year RM of rainfall again show similar behaviour to Perth
streamflow with the steepest drop between 1959–1978 and a lesser drop between 1959–2018
(circa 45% of that for 1959–1978). As proposed by Frederiksen and Frederiksen [7], and
further established in the data driven study of Osbrough and Frederiksen [1] for winter,
reductions in the intensity of fast-growing storms in the SWWA region are responsible for
the declines in rainfall. We have shown here that the atmospheric flow fields are consistent
with a regime transition into a weaker zonal flow and baroclinicity state in the regions
upstream and over SWWA in the twenty-year period 1959–1978.

Surface temperatures in SWWA have also increased with most of the rise occurring
from the late 20th or early 21st century. Annual maximum temperatures have increased
over the last 20 to 30 years by circa 0.9 ◦C compared with the earlier period starting in 1910.
The change in extreme maximum temperatures has been more dramatic; the Percentage
Area with Temperatures in Decile 10 (PATD10) increased from 2.7% for 1910–2001 to 46%
for 2002–2019. On average, maximum temperatures also increased nearly 5 times faster
in 2002–2019 compared with 1910–2001 based changes in the gradient of the 10-year RM.
For PATD10 the average gradient was negligible for 1910–2001 but with a rapid rise of 4.8%
year−1 for 2002–2019. These shifts in maximum temperatures (with somewhat similar
shifts in mean and minimum temperatures) and extremes and their gradients are consistent
with phase transitions in the temperatures of SWWA in addition to the earlier transitions
in rainfall. Interestingly, the alignment of increasing areas of SWWA (Figure 8b,d) to
experiencing extreme temperatures since 2002 is reminiscent of the alignment of atomic
spins in ferromagnets in transition to the magnetic state.

SWWA has seen the earliest and most dramatic systematic shifts in climate to a drier
state with South-Eastern Australia (SEA) impacted towards the end of the 20th century.
Cool Season (CS) rainfall over SEA reduced by an average of 12% between the two periods
1900–1998 and 1999–2019 while PARD10 reduced from 11% to 5%. For Victoria (VIC),
which is the central region of SEA, the relative changes are virtually identical, and they
are also very similar for New South Wales (NSW) and the Murray Darling Basin (MDB).
In Tasmania (TAS), the southern part of SEA, rainfall reductions, particular for extreme
rainfall, occurred earlier with PARD10 reducing from 12.5% to 5% between the periods
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1910–1978 and 1979–2019. Again, the changes in rainfall in SEA is associated with changes
in the circulation over and around this region.

Annual maximum temperatures anomalies for SEA, and for VIC, NSW and MDB,
averaged over the early period 1910–2001 are quite small while in the eighteen years of
2002–2019 the anomalies are circa 1.0 ◦C to 1.2 ◦C. For Tasmania the change is less at circa
0.7 ◦C. Further, PATD10 for SEA increased from 2.7% for 1910–2001 to 47% for 2002–2019,
which is very similar to the case for SWWA and VIC, with slightly larger changes for NSW
and MDB, and smaller changes for TAS. For SEA, maximum temperatures rose circa 7 times
faster in 2002–2019 compared with 1910–2001 based on changes in the gradient of the
10-year RM. For PATD10 the average gradient was negligible for 1910–2001 but with a rise
of 2.7% year−1 for 2002–2019.

The regime transitions of SWWA and SEA temperatures are in fact mirrored by shifts
over Australia, as a whole. This is seen particularly in extremes, with PATD10 increasing
from very low values to 44% for mean and 47% for maximum temperatures for 2002–2019.

We note that there is considerable interannual variability in average and extreme
rainfall and temperatures and in streamflow into Perth dams. For that reason, we have also
examined 10-year running means to see the systematic changes in the climate variables and
their gradients. We have noted discontinuities in the average gradients of the smoothed
data typical of second order regime transitions. However, the large and sudden shifts in
the temperature extremes are suggestive of first order regime transitions. These abrupt
shifts have severe implication particularly for Australian food production, including in
the Murray Darling Basin food bowl [2,3], and for increasing frequency and severity of
bushfires [2,3,87]. It is aggravated by the continuing downward trend in rainfall, extreme
rainfall, and streamflow in Southern Australia [2,3,81,82].
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Appendix A. Reanalysis Data Sets and Observations

We have noted the consistency between aspects of the large-scale circulation in the
Australian region as characterized by the NCEP-NCAR reanalysis data set [65]; (hereafter
NNR) and Southern Australian rainfall in this study and in our earlier works discussed
in the Introduction. Kistler, et al. [88] describe the first 50 years of the NNR system and
their Figure 1 shows how the number of observations contributing to the analysis has
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changed over time at different latitudes. The contributing radiosonde stations, including
from Australia, are listed in the National Oceanic and Atmospheric Administration [89]
archive and the characteristics of data from 27 Australian radiosonde stations are described
by Jovanovic, et al. [90].

In our earlier works (e.g., [12]) we also compared results based on NNR reanalyses with
those for European Centre for Medium Range Weather Forecasting (ECMWF) Reanalysis
(ERA-40) project [91] and Twentieth Century Reanalysis (20CR v2) project [92] that include
the pre-satellite era. Here, we consider the relationships between NNR reanalyses and other
reanalyses and observations in the Australian region including during the pre-satellite era.

Hertzog, et al. [93] compared the results of the August 1971 to December 1972 EOLE
(from the Greek God of the Winds) experiment, involving flights of super-pressure balloons
in the Southern Hemisphere upper troposphere, largely between 230 hPa and 190 hPa and
20◦ S–70◦ S, with NNR and ERA-40 data. They argued that their findings are representative
of reanalysis accuracy for the pre-satellite era between 1957 and 1979. They noted that
their analysis of the zonal wind structure in their Figure 6 shows that both NNR and ERA-
40 largely capture the meridional structure of the mean upper tropospheric jet although
ERA-40 has a spurious double-jet peak structure. As well, ERA-40 has much larger errors
in capturing upper tropospheric synoptic-scale variability. ERA-40 also has larger errors
than NNR in representing mean sea level pressure and 500 hPa geopotential heights in
the mid to high latitudes of the Southern Hemisphere in the pre-satellite era as shown in
Figures 3 and 6 of Bromwich and Fogt [94].

Frederiksen and Frederiksen [6,7], found broad consistency between changes in the
Southern Hemisphere July large-scale circulation determined by NNR data, and the results
of instability calculations of synoptic disturbances based on this data, and changes in
rainfall over south-west Western Australia before and after the mid-1970s. Frederiksen and
Frederiksen [7] (Table 7) also compared results for ERA-40 data with those for NNR and
found very close agreement for leading synoptic scale modes with growth rates differing
by less than 4% and pattern correlations between 0.94 and 0.99. The similar weakening
of the mid-winter Southern Hemisphere subtropical jet at 200 hPa around the Australian
region, in both NNR and ERA-40 data, in the 1990s compared with the 1950s and 1960s,
was also noted by Joseph and Sabin [95] (Figure 4).

Frederiksen, et al. [12], Figures 1 and 2, compared the Southern Hemisphere linear
trend in Phillips [71] criterion (discussed in our Section 3.2), in each of the four seasons, for
NNR and 20CR v2 over the period 1950–1999 and for ERA-40 over 1958–1999. Of particular
interest here are the consistent negative trends in the criterion upstream of Australia in
NNR and ERA-40 with generally poorer agreement with 20CR. Rikus [96], in a study
of mid-latitude jet streams in nine reanalyses, including NNR, ERA-40 and 20CR, over
the period 1979–2009, noted that 20CR had some systematic biases in upper-level winds
compared with the other reanalyses. Nevertheless, as shown in Figure 1 of Freitas, et al. [27],
the mid-winter reduction in the Southern Hemisphere subtropical jet that occurred in NNR
data between the periods (1949–1968) and (1975–1994), and the increase further south, is
evident in 20CR v2 data but with peak values at slightly lower levels, consistent with the
findings of Rikus [96].

The study of Osbrough and Frederiksen [1], based on six hourly NNR 850 hPa data,
found there was good correspondence between the reduction in fast growing storms in
the Australian region since the late 1960s and the reduction in Southern Australian rainfall
providing further evidence of the general consistency of NNR data with rainfall variability.

Appendix B. Utility and Applications of Decile Data

Since the first introduction by Gibbs and Maher [66], the decile representation of mete-
orological data has been widely used in the study of droughts and rainfall and temperature
variability. As noted in Section 2, the decile data is available from the website of Bureau of
Meteorology [61] and the decile method is described on the websites of Bureau of Meteo-
rology [67,68]. Decile data for seasons, extended seasons and years have been presented in
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many reports (e.g., [2]) and BoM publishes Australian maps of annual rainfall deciles from
1900 to the present [97]. Deciles of rainfall and temperatures have also been used in the hor-
ticultural and agricultural industries. For example, cool season—April to October—rainfall
deciles were used in the South Australian Government study of climate change, wheat
production and erosion risk by Sweeney and Liddicoat [98]. In a study of “The Riverland
Climate for Almond Production” Thomas and Hayman [99] examined September–April
deciles of temperature. Hayman and Hudson [100] explored the value of recent new BoM
forecast products of weekly, monthly, and seasonal rainfall and temperature deciles for
grain production.

Keyantash [101] reviewed indices of meteorological and hydrological drought and
compared the established quantile methodology of deciles with other approaches. He
noted the simplicity and nonparametric nature of deciles that make no assumption about
the distribution function but determines a coarse-grained version directly from the total
available data. Keyantash and Dracup [102] noted that, in the USA context, for Meteoro-
logical Drought the rainfall decile index as used at BoM is the superior index overall and
particularly in terms of robustness, transparency and extendibility (their Table 3). In the
Handbook of Drought Indicators and Indices by the World Meteorological Organization
and Global Water Partnership [103] some of the properties of deciles are noted. In particular:
deciles are “easy to calculate”. “Daily, weekly, monthly, seasonal and annual values can all
be considered in the methodology, as it is flexible when current data are compared to the
historical record for any given period”. “Applications: With the ability to look at different
timescales and time steps, deciles can be used in meteorological, agricultural and hydro-
logical drought situations”. Table 2 of the Handbook also lists some of the Meteorological
Institutions, in addition to those in Australia and USA, that use deciles.

Appendix C. Regression for Trends and Critical Points

Here, we summarize and provide an example of the use of regression methods for
determining critical points and changes in trends in time series. Suppose we have a time-
series f (ti) for i = 1, 2, . . . , N and we want to fit it by a polynomial for part or the whole of
the timeseries. We shall in fact only need to consider linear and quadratic functions, so we
suppose that

f (ti) = a + bti + ct2
i + ε(ti)

where ε(ti) is the residual in the fit by the quadratic (or parabola). The best fit is achieved if
the coefficients are chosen to minimize the sum of the squares

S =
N

∑
i=1

(
f (ti)− a − bti − ct2

i

)2

This minimum is achieved when the derivative of S with respect to each of the
parameters vanishes and the optimal parameters are obtained by solving the associated
simultaneous equations.

We consider as an example the SEA maximum temperature graph of the 10-year
running mean (RM) of the Percentage Area with Temperatures in Decile 10 (PATD10) in
Figure 8d. We notice that the values are small until after about year 2000 and thereafter
PATD10 increases rapidly. Suppose we first fit the whole time series with a quadratic. Then,
the resultant fit is a parabolic shape that looks like a right-leaning capital J with small
values in the early period but too small values near the peak. If we successively shorten the
fitted timeseries by starting at later times then the rapidly rising part of the curve becomes
better fitted, the correlation with time increases and the parabola becomes more linear.
With a start point of 2002 and a linear fit the correlation is 0.95 reflecting the very good
fit for the rapidly rising right-hand part PATD10. Fitting the left-hand part of the curve
through linear regression the correlation with time is 0.02 reflecting a near constant value
from the start to 2001. For these fits the root mean square of the sum of the residuals before
and after the critical point of 2001–2002 are also minimized. The corresponding consistent
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piece-wise trends or gradients are shown in Table 10. Of course, the same results can be
arrived at by iterating piece-wise linear regression.
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