Atmospheric and Oceanic Patterns Associated with Extreme Drought Events over the Paraná Hydrographic Region, Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Database
2.3. Identification of Dry Periods
2.4. Anomalous Atmospheric and Oceanic Patterns
3. Results and Discussion
3.1. Meteorological Droughts during Hydrological Drought Periods
3.2. Anomalous Atmospheric and Oceanic Patterns
3.2.1. Drought 2016/2017
3.2.2. Drought 2019/2020
3.2.3. Drought 2020/2021
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- NASEM—National Academies of Sciences, Engineering, and Medicine. Attribution of Extreme Weather Events in the Context of Climate Change; The National Academies Press: Washington, DC, USA, 2016. [Google Scholar] [CrossRef] [Green Version]
- IPCC—Intergovernmental Panel on Climate Change. Climate Change 2021: The Physical Science Basis. Summary for Policymakers. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. 2021. Available online: https://www.ipcc.ch/report/ar6/wg1/ (accessed on 2 February 2022).
- Reboita, M.S.; Kuki, C.A.C.; Marrafon, V.H.; De Souza, C.A.; Ferreira, G.W.S.; Teodoro, T.; Lima, J.W.M. South America climate change revealed through climate indices projected by GCMs and Eta-RCM ensembles. Clim. Dyn. 2021, 58, 459–485. [Google Scholar] [CrossRef]
- WMO—World Meteorological Organization. Atlas of Mortality and Economic Losses From Weather, Climate and Water Extremes (1970–2019); World Meteorological Organization: Geneva, Switzerland, 2021; Available online: https://library.wmo.int/index.php?lvl=notice_display&id=21930#.Yy8l2HaZPrc (accessed on 19 July 2022).
- CEPED. Atlas Brasileiro de Desastres Naturais 1991 a 2012. Florianópolis: CEPED UFSC. 2013. Available online: https://www.ceped.ufsc.br/wp-content/uploads/2012/01/AMAZONAS_mioloWEB.pdf (accessed on 26 January 2022).
- WMO—World Meteorological Organization. Standardized Precipitation Index. User Guide. 2012. Available online: https://library.wmo.int/doc_num.php?explnum_id=7768 (accessed on 10 February 2022).
- Van Loon, A.F.; Gleeson, T.; Clark, J.; Van Dijk, A.I.J.M.; Stahl, K.; Hannaford, J.; Baldasarre, G.; Teuling, A.J.; Tallaksen, L.M.; Uijlenhoet, R.; et al. Drought in the Anthropocene. Nat. Geosci. 2016, 9, 89–91. [Google Scholar] [CrossRef] [Green Version]
- Wilhite, D.A.; Glantz, M.H. Understanding: The drought phenomenon: The role of definitions. Water Int. 1985, 10, 111–120. [Google Scholar] [CrossRef] [Green Version]
- Schadeck, R. (Org). Relatório de Danos Materiais e Prejuízos Decorrentes de Desastres Naturais no Brasil: 1995–2019/Banco Mundial. Global Facility for Disaster Reduction and Recovery. Fundação de Amparo à Pesquisa e Extensão Universitária. Centro de Estudos e Pesquisas em Engenharia e Defesa Civil. 2 ed. Florianópolis: FAPEU. 2020. Available online: https://www.gov.br/mdr/pt-br/centrais-de-conteudo/publicacoes/protecao-e-defesa-civil-sedec/danos_e_prejuizos_versao_em_revisao.pdf (accessed on 15 February 2022).
- WMO—World Meteorological Organization; GWP—Global Water Partnership. Handbook of Drought Indicators and Indices; World Meteorological Organization: Geneva, Switzerland, 2016; Available online: https://public.wmo.int/en/resources/library/handbook-of-drought-indicators-and-indices (accessed on 25 January 2022).
- Silva, S.M.; Souza Filho, F.A.; Araújo, L.M., Jr. Mecanismo financeiro projetado com índices de seca como instrumento de gestão de risco em recursos hídricos. Rev. Bras. De Recur. Hidr. 2015, 20, 320–330. Available online: https://abrh.s3.sa-east-1.amazonaws.com/Sumarios/157/b916a3b776ef816b1c8b6d4f20737176_be9ff1352a9be9d30ef8a1cf001e09f1.pdf (accessed on 7 December 2021). [CrossRef]
- Brito, S.S.B.; Cunha, A.P.M.; Cunningham, C.C.; Alvalá, R.C.; Marengo, J.A.; Carvalho, M.A. Frequency, duration and severity of drought in the Semiarid Northeast Brazil region. Int. J. Climatol. 2017, 38, 517–529. [Google Scholar] [CrossRef]
- Cunha, A.P.M.A.; Zeri, M.; Leal, K.D.; Costa, L.; Cuartas, L.A.; Marengo, J.A.; Tomasella, J.; Vieira, R.M.; Barbosa, A.A.; Cunningham, C.; et al. Extreme drought events over Brazil from 2011 to 2019. Atmosphere 2019, 10, 642. [Google Scholar] [CrossRef] [Green Version]
- Xavier, L.C.P.; Silva, S.M.O.D.; Carvalho, T.M.N.; Pontes Filho, J.D.; Souza Filho, F.D.A.D. Use of Machine Learning in Evaluation of Drought Perception in Irrigated Agriculture: The Case of an Irrigated Perimeter in Brazil. Water 2020, 12, 1546. [Google Scholar] [CrossRef]
- Freitas, A.A.; Drumond, A.; Carvalho, V.S.B.; Reboita, M.S.; Silva, B.C.; Uvo, C.B. Drought Assessment in São Francisco River Basin, Brazil: Characterization through SPI and Associated Anomalous Climate Patterns. Atmosphere 2022, 13, 41. [Google Scholar] [CrossRef]
- MMA—Ministério do Meio Ambiente. Caderno da Região Hidrográfica do Paraná/Ministério do Meio Ambiente, Secretaria de Recursos Hídricos; MMA: Brasília, 2006; Available online: https://www.yumpu.com/pt/document/view/39998037/parana-caderno-da-regiao-hidrografica-ministerio-do- (accessed on 12 April 2022).
- ANA—Agência Nacional De Águas E Saneamento Básico. Atlas Brasil: Abastecimento Urbano de água: Panorama Nacional; ANA: Brasília, 2010. Available online: https://www.aris.sc.gov.br/uploads/revista/2735/YXwFOHqcDQSDQEA2bJfi2KfS2Pt-Binw.pdf (accessed on 25 January 2022).
- ANA—Agência Nacional De Águas E Saneamento Básico. Conjuntura dos Recursos Hídricos no Brasil: Regiões Hidrográficas Brasileiras—Edição Especial; ANA: Brasíli, 2015. Available online: https://www.snirh.gov.br/portal/centrais-de-conteudos/conjuntura-dos-recursos-hidricos/regioeshidrograficas2014.pdf (accessed on 3 March 2022).
- Rafee, S.A.A.; Freitas, E.D.; Martins, J.A.; Martins, L.D.; Domingues, L.M.; Nascimento, J.M.P.; Machado, C.B.; Santos, E.B.; Rudke, A.P.; Fujita, T.; et al. Spatial trends of extreme precipitation events in the paraná river basin. J. Appl. Meteorol. Climatol. 2020, 59, 443–454. [Google Scholar] [CrossRef]
- Cuartas, L.A.; Cunha, A.P.M.A.; Alves, J.A.; Parra, L.M.P.; Deusdará-Leal, K.; Costa, L.C.O.; Molina, R.D.; Amor, D.; Broedel, E.; Seluchi, M.H.; et al. Recent Hydrological Droughts in Brazil and Their Impact on Hydropower Generation. Water 2022, 14, 601. [Google Scholar] [CrossRef]
- Marengo, J.A.; Nobre, C.A.; Seluchi, M.E.; Cuartas, A.; Alves, L.M.; Mendiondo, E.M.; Obregón, G.; Sampaio, G. A seca e a crise hídrica de 2014-2015 em São Paulo. Rev. USP 2015, 106, 31–44. [Google Scholar] [CrossRef] [Green Version]
- Coelho, C.A.S.; De Oliveira, C.P.; Ambrizzi, T.; Reboita, M.S.; Carpenedo, C.B.; Campos, J.L.P.S.; Tomaziello, A.C.N.; Pampuch, L.A.; Custódio, M.S.; Dutra, L.M.M.; et al. The 2014 southeast Brazil austral summer drought: Regional scale mechanisms and teleconnections. Clim. Dyn. 2015, 46, 3737–3752. [Google Scholar] [CrossRef]
- Coelho, C.A.S.; Cardoso, D.H.F.; Firpo, M.A. A seca de 2013 a 2015 na região sudeste do Brasil. Climanálise 2016, 55–66. Available online: http://climanalise.cptec.inpe.br/~rclimanl/revista/pdf/30anos/Coelhoetal.pdf (accessed on 12 May 2022).
- Finke, K.; Jiménez-Esteve, B.; Taschetto, A.S.; Ummenhofer, C.C.; Bumke, K.; Domeisen, D.I.V. Revisiting remote drivers of the 2014 drought in South-Eastern Brazil. Clim. Dyn. 2020, 55, 3197–3211. [Google Scholar] [CrossRef] [PubMed]
- Itaipu Binacional. Assegurar o Acesso Confiável, Sustentável, Moderno e a Preço Acessível à Energia Para Todas e Todos/Itaipu Binacional. Dirección de Coordinación Ejecutiva; Diretoria de Coordenação; Central Hidrelétrica de Itaipu: Itaipu Binacional. 2019. Available online: https://www.itaipu.gov.br/sites/default/files/af_df/Estudo_de_caso_Itaipu_ODS_7.pdf (accessed on 11 March 2022).
- Itaipu Binacional. Relatório Anual Itaipu Binacional 2020. Foz do Iguaçu, Paraná. 2020. Available online: https://www.itaipu.gov.br/sites/default/files/af_df/RELATORIO_ITAIPU_2020.pdf (accessed on 11 March 2022).
- Fernandes, V.R.; Cunha, A.P.M.A.; Pineda, L.A.C.; Leal, K.R.D.; Costa, L.C.O.; Broedel, E.; França, D.A.; Alvalá, R.C.S.; Seluchi, M.E.; Marengo, J. Secas e os impactos na região sul do brasil. Rev. Bras. De Climatol. 2021, 28, 561–584. [Google Scholar] [CrossRef]
- Gomes, M.S.; Cavalcanti, I.F.A.; Müller, G.V. 2019/2020 drought impacts on South America and atmospheric and oceanic influences. Weather Clim. Extrem. 2021, 34, 100404. [Google Scholar] [CrossRef]
- Naumann, G.; Podesta, G.; Marengo, J.; Luterbacher, J.; Bavera, D.; Muñoz, C.A.; Barbosa, P.; Cammalleri, C.; Chamorro, L.; Cuartas, A.; et al. The 2019–2021 Extreme Drought Episode in La Plata Basin; EUR 30833 EN; Publications Office of the European Union: Luxembourg, 2021. [Google Scholar]
- ANA—Agência Nacional De Águas E Saneamento Básico. ANA Declara Situação Crítica de Escassez Quantitativa dos Recursos Hídricos da Região Hidrográfica do Paraná. 2022. Available online: https://agenciabrasil.ebc.com.br/geral/noticia/2021-06/ana-declara-situacao-critica-na-regiao-hidrografica-do-parana (accessed on 20 March 2022).
- DH—Departamento Hidroviário. Hidrovia Tietê-Paraná. 2022. Available online: http://www.dh.sp.gov.br/hidrovia-tiete-parana/ (accessed on 21 March 2022).
- DM—Diário da Manhã. Retomada de Navegação Tietê-Paraná Favorece Goiás. 2022. Available online: https://www.dm.com.br/economia/2022/03/retomada-de-navegacao-tiete-parana-favorece-goias/ (accessed on 21 March 2022).
- ECONÔMICO VALOR. Navegação na Hidrovia Tietê-Paraná Será Retomada Hoje. 2022. Available online: https://valor.globo.com/agronegocios/noticia/2022/03/15/navegacao-na-hidrovia-tiete-parana-sera-retomada-hoje.ghtml (accessed on 21 March 2022).
- FOLHA DE S.PAULO. Navegação na Hidrovia Tietê-Paraná Será Retomada Após seca. 2022. Available online: https://www1.folha.uol.com.br/colunas/painelsa/2022/03/navegacao-na-hidrovia-tiete-parana-sera-retomada-apos-seca.shtml?aff_source=56d95533a8284936a374e3a6da3d7996 (accessed on 21 March 2022).
- G1. Hidrovia Tietê-Paraná tem Data Marcada Para Retomada da Navegação Após Estiagem Suspender Operações. 2022. Available online: https://g1.globo.com/sp/bauru-marilia/noticia/2022/03/11/hidrovia-tiete-parana-tem-data-marcada-para-retomada-da-navegacao-apos-estiagem-suspender-operacoes.ghtml (accessed on 21 March 2022).
- Reboita, M.S.; Gan, M.A.; Da Rocha, R.P.D.; Ambrizzi, T. Regimes de precipitação na América do Sul: Uma revisão bibliográfica. Rev. Bras. De Meteorol. 2010, 25, 185–204. [Google Scholar] [CrossRef]
- Reboita, M.S.; Krusche, N.; Ambrizzi, T.; Rocha, R.P.D. Entendendo o Tempo e o Clima na América do Sul. 2012. Available online: https://www.ppegeo.igc.usp.br/index.php/TED/article/view/8401/7672 (accessed on 9 December 2022).
- Ferreira, G.W.S.; Reboita, M.S. A New Look into the South America Precipitation Regimes: Observation and Forecast. Atmosphere 2022, 13, 873. [Google Scholar] [CrossRef]
- Salton, F.G.; Morais, H.; Lohmann, M. Períodos Secos no Estado do Paraná. Rev. Bras. De Meteorol. 2021, 36, 295–303. [Google Scholar] [CrossRef]
- Marengo, J.A. O futuro clima do Brasil. Rev. USP 2014, 103, 25–32. [Google Scholar] [CrossRef]
- PBMC—Painel Brasileiro de Mudanças Climáticas. Base Científica das Mudanças Climáticas. Contribuição do Grupo de Trabalho 1 do Painel Brasileiro de Mudanças Climáticas ao Primeiro Relatório da Avaliação Nacional sobre Mudanças Climáticas; Ambrizzi, T., Araujo, M., Eds.; COPPE. Universidade Federal do Rio de Janeiro: Rio de Janeiro, RJ, Brasil, 2014; p. 464. Available online: http://www.pbmc.coppe.ufrj.br/documentos/RAN1_completo_vol1.pdf (accessed on 14 April 2022).
- Lyra, A.; Tavares, P.; Chou, S.C.; Sueiro, G.; Dereczynski, C.; Sondermann, M.; Silva, A.; Marengo, J.; Giarolla, A. Climate change projections over three metropolitan regions in Southeast Brazil using the non-hydrostatic Eta regional climate model at 5-km resolution. Theor. Appl. Climatol. 2017, 132, 663–682. [Google Scholar] [CrossRef]
- Reboita, M.S.; Marrafon, V.H.A.; Llopart, M.; Da Rocha, R.P. Cenários de mudanças climáticas projetados para o estado de Minas Gerais. Rev. Bras. Climatol. 2018, 1, 110–128. [Google Scholar] [CrossRef] [Green Version]
- ANA—Agência Nacional De Águas E Saneamento Básico. Mudanças Climáticas e Recursos Hídricos: Avaliações e Diretrizes Para Adaptação/Agência Nacional de Águas; ANA/GGES: Brasília, 2016; Available online: https://cdn.agenciapeixevivo.org.br/media/2019/06/MudancasClimaticaseRecursosHidricos.pdf (accessed on 4 May 2022).
- Mckee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology; 1993; pp. 179–183. Available online: https://climate.colostate.edu/pdfs/relationshipofdroughtfrequency.pdf (accessed on 10 November 2021).
- Fernandes, D.S.; Heinemann, A.B.; Da Paz, R.L.; Amorim, A.O.; Cardoso, A.S. Índices para a quantificação da seca. Embrapa Arroz e Feijão-Documentos (INFOTECA-E). 2009. Available online: https://www.infoteca.cnptia.embrapa.br/bitstream/doc/663874/1/doc244.pdf (accessed on 10 November 2021).
- Santos, S.R.Q.; Braga, C.C.; Sansigolo, C.A.; Santos, A.P.P. Determinação de regiões homogêneas do índice de precipitação normalizada (SPI) na Amazônia Oriental. Rev. Bras. De Meteorol. 2017, 32, 111–122. [Google Scholar] [CrossRef] [Green Version]
- Oliveira-Júnior, J.F.; Gois, G.; Terassi, P.M.B.; Silva Junior, C.A.; Blanco, C.J.C.; Sobral, B.S.; Gasparini, K.A.C. Drought severity based on the SPI index and its relation to the ENSO and PDO climatic variability modes in the regions North and Northwest of the State of Rio de Janeiro-Brazil. Atmos. Res. 2018, 212, 91–105. [Google Scholar] [CrossRef]
- Costa, M.D.S.; Oliveira-Júnior, J.F.D.; Santos, P.J.D.; Correia Filho, W.L.F.; Gois, G.D.; Blanco, C.J.C.; Teodoro, P.E.; Silva Junior, C.A.; Santiago, D.B.; Souza, E.O.; et al. Rainfall extremes and drought in Northeast Brazil and its relationship with El Niño–Southern Oscillation. Int. J. Climatol. 2020, 41, E2111–E2135. [Google Scholar] [CrossRef]
- Da Silva, D.F.; Lima, M.J.S.; Souza Neto, P.F.; Gomes, H.B.; Silva, F.D.S.; Almeida, H.R.R.C.; Pereira, M.P.S.; Costa, R.L. Caracterização de eventos extremos e de suas causas climáticas com base no índice Padronizado de Precipitação Para o Leste do Nordeste. RBGF 2020, 13, 449–464. [Google Scholar] [CrossRef]
- Palmer, W.C. Meteorological Drought; US Department of Commerce, Weather Bureau: Washington, DC, USA, 1965. [Google Scholar]
- Rossato, L.; Marengo, J.A.; Angelis, C.F.D.; Pires, L.B.M.; Mendiondo, E.M. Impact of soil moisture over Palmer Drought Severity Index and its future projections in Brazil. RBRH 2017, 22, E36. [Google Scholar] [CrossRef] [Green Version]
- Silva, F.J.B.C.; Azevedo, J.R.G. Temporal trend of drought and aridity indices in semi-arid pernambucano to determine susceptibility to desertification. RBRH 2020, 25, e32. [Google Scholar] [CrossRef]
- Lowe, R.; Lee, S.A.; O’reilly, K.M.; Brady, O.J.; Bastos, L.; Carrasco-Escobar, G.; Catão, R.C.; Colón-González, F.J.; Barcellos, C.; Carvalho, M.S.; et al. Combined effects of hydrometeorological hazards and urbanisation on dengue risk in Brazil: A spatiotemporal modelling study. Lancet Planet. Health 2021, 5, e209–e219. [Google Scholar] [CrossRef]
- Pagotto, M.A.; Menezes, I.R.N.; Costa, C.M.; Lisi, C.S.; Bräuning, A. Oxygen isotopes in tree rings of Cedrela odorata L. as an indicator of hydroclimate variations in a seasonally dry tropical forest in northeastern Brazil. Trees 2021, 35, 1889–1903. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef] [Green Version]
- Gozzo, L.F.; Palma, D.S.; Custodio, M.S.; Machado, J.P. Climatology and trend of severe drought events in the state of São Paulo, Brazil, during the 20th century. Atmosphere 2019, 10, 190. [Google Scholar] [CrossRef] [Green Version]
- Vega, H.M.; Lima, J.R.; Cerniak, S.N. SPEI and Hurst analysis of precipitation in the Amazonian Area of Brazil. Rev. Bras. De Meteorol. 2019, 34, 325–334. [Google Scholar] [CrossRef] [Green Version]
- Drumond, A.; Stojanovic, M.; Nieto, R.; Gimeno, L.; Liberato, M.L.R.; Pauliquevis, T.; Oliveira, M.; Ambrizzi, T. Dry and Wet Climate Periods over Eastern South America: Identification and Characterization through the SPEI Index. Atmosphere 2021, 12, 155. [Google Scholar] [CrossRef]
- Rosser, J.I.; Nielsen-Saines, K.; Saad, E.; Fuller, T. Reemergence of yellow fever virus in southeastern Brazil, 2017–2018: What sparked the spread? PLoS Negl. Trop. Dis. 2022, 16, e0010133. [Google Scholar] [CrossRef]
- Palmer, W.C. Keeping track of crop moisture conditions, nationwide: The new crop moisture index. Weatherwise 1968, 21, 156–161. [Google Scholar] [CrossRef]
- Venteris, E.R.; Tagestad, J.D.; Downs, J.L.; Murray, C.J. Detection of anomalous crop condition and soil variability mapping using a 26 year Landsat record and the Palmer crop moisture index. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 160–170. [Google Scholar] [CrossRef] [Green Version]
- Ahammed, S.J.; Homsi, R.; Khan, N.; Shahid, S.; Shiru, M.S.; Mohsenipour, M.; Ahmed, K.; Nawaz, N.; Alias, N.E.; Yuzir, A. Assessment of changing pattern of crop water stress in Bangladesh. Environ. Dev. Sustain. 2019, 22, 4619–4637. [Google Scholar] [CrossRef]
- Gonçalves, S.T.N.; Vasconcelos Junior, F.D.C.; Sakamoto, M.S.; Silveira, C.D.S.; Martins, E.S.P.R. Índices e Metodologias de Monitoramento de Secas: Uma Revisão. Rev. Bras. Meteorol. 2021, 36, 495–511. [Google Scholar] [CrossRef]
- Silva, B.B.D.; Ferreira, M.A.; Silva, V.D.P.; Ferreira, R.D.C. Desempenho de modelo climático aplicado à precipitação pluvial do Estado de Pernambuco. Rev. Bras. De Eng. Agrícola E Ambient. 2010, 14, 387–395. [Google Scholar] [CrossRef]
- Bernardino, B.S.; Vasconcellos, F.C.; Nunes, A.M.B. Impact of the equatorial Pacific and South Atlantic SST anomalies on extremes in austral summer precipitation over Grande river basin in Southeast Brazil. Int. J. Climatol. 2018, 38, e131–e143. [Google Scholar] [CrossRef]
- Morello, T.F.; Ramos, R.M.; Anderson, L.O.; Owen, N.; Rosan, T.M.; Steil, L. Predicting fires for policy making: Improving accuracy of fire brigade allocation in the Brazilian Amazon. Ecol. Econ. 2020, 169, 106501. [Google Scholar] [CrossRef]
- Aquino, D.N.; Andrade, E.M.D.A.M.; Tavares, E.T.D.S.F.; Campos, D.A.C.A. Impacto de Secas e Antropização na Dinâmica da Cobertura Florestal em Fragmento do Domínio Fitogeográfico da Caatinga. Rev. Bras. De Geogr. Física 2021, 14, 1675–1689. [Google Scholar] [CrossRef]
- Meyer, S.J.; Hubbard, K.G.; Wilhite, D.A. A crop-specific drought index for corn: I. Model development and validation. Agron. J. 1993, 85, 388–395. [Google Scholar] [CrossRef]
- Martins, M.A.; Tomasella, J.; Rodriguez, D.A.; Alvalá, R.C.S.; Giarolla, A.; Garofolo, L.L.; Siqueira, J.L., Jr.; Paolicchi, L.T.L.C.; Pinto, G.L.N. Improving drought management in the Brazilian semiarid through crop forecasting. Agric. Syst. 2018, 160, 21–30. [Google Scholar] [CrossRef]
- IBGE—Instituto Brasileiro de Geografia e Estatística. Censo de 2010. 2010. Available online: http://www.ibge.gov.br/home/estatistica/populacao/censo2010/default.shtm (accessed on 9 December 2021).
- Silva, D.F.; Brito, J.I.B. Variabilidade do vento na bacia hidrográfica do rio São Francisco durante a ocorrência da ZCAS. AMBIÊNCIA 2008, 4, 221–235. Available online: https://revistas.unicentro.br/index.php/ambiencia/article/view/164 (accessed on 13 December 2021).
- Reboita, M.S.; Marietto, D.M.G.; Souza, A.; Barbosa, M. Caracterização atmosférica quando da ocorrência de eventos extremos de chuva na região sul de Minas Gerais. Rev. Bras. De Climatol. 2017, 21, 20–37. [Google Scholar] [CrossRef] [Green Version]
- Escobar, G.C.J.; Reboita, M.S. Relationship between daily atmospheric circulation patterns and South Atlantic Convergence Zone (SACZ) events. Atmósfera. 2020. Available online: https://www.revistascca.unam.mx/atm/index.php/atm/article/view/52936 (accessed on 10 November 2021).
- Chen, M.; Shi, W.; Xie, P.; Silva, V.B.S.; Kousky, V.E.; Higgins, R.W.; Janowiak, J.E. Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geophys. Res. Atmos. 2008, 113, 1–13. [Google Scholar] [CrossRef]
- Sun, Q.; Miao, C.; Duan, Q.; Ashouri, H.; Sorooshian, S.; Hsu, K. A review of global precipitation data sets: Data sources, estimation, and intercomparisons. Rev. Geophys. 2018, 56, 79–107. [Google Scholar] [CrossRef] [Green Version]
- Barreto, N.J.; Cavalcanti, I.F.; Mesquita, M.D.; Pedra, G.U. Multivariate intraseasonal rainfall index applied to South America. Meteorol. Appl. 2019, 26, 521–527. [Google Scholar] [CrossRef] [Green Version]
- Jones, C. Recent changes in the South America low-level jet. Npj Clim. Atmos. Sci. 2019, 2, 20. [Google Scholar] [CrossRef]
- Torres, F.L.R.; Ferreira, G.W.S.; Kuki, C.A.C.; Vasconcellos, B.T.C.; Freitas, A.A.; Silva, P.N.; Souza, C.A.; Reboita, M.S. Validação de Diferentes Bases de Dados de Precipitação nas Bacias Hidrográficas do Sapucaí e São Francisco. Rev. Bras. Climatol. 2020, 27, 368–404. [Google Scholar]
- Balmaceda-Huarte, R.; Olmo, M.E.; Bettolli, M.L.; Poggi, M.M. Evaluation of multiple reanalyses in reproducing the spatio-temporal variability of temperature and precipitation indices over southern South America. Int. J. Climatol. 2021, 41, 5572–5595. [Google Scholar] [CrossRef]
- Liebmann, B.; Smith, C.A. Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Am. Meteorol. Soc. 1996, 77, 1275–1277. [Google Scholar]
- Hersbach, H.; Dee, D. “ERA-5 Reanalysis Is in Production”. ECMWF Newsletter, Number 147, Spring 2016. p. 7. Available online: https://www.ecmwf.int/sites/default/files/elibrary/2016/16299-newsletter-no147-spring-2016.pdf (accessed on 13 May 2022).
- Vasquez, T. Weather Analysis & Forecasting Handbook, 5th ed.; Weather Graphics Technologies: Garland, TX, USA, 2002. [Google Scholar]
- Guttman, N.B. Comparing the palmer drought index and the standardized precipitation index 1. J. Am. Water Resour. Assoc. 1998, 34, 113–121. [Google Scholar] [CrossRef]
- Enfield, D.B.; Mestas-Nuñez, A.M.; Mayer, D.A.; Cid-Serrano, L. How ubiquitous is the dipole relationship in tropical Atlantic sea surface temperatures? J. Geophys. Res. Ocean. 1999, 104, 7841–7848. [Google Scholar] [CrossRef]
- Reboita, M.S.; Ambrizzi, T.; Crespo, N.M.; Dutra, L.M.M.; Ferreira, G.W.D.S.; Rehbein, A.; Drumond, A.; De Rocha, R.P.; De Souza, C.A.D. Impacts of teleconnection patterns on South America climate. Ann. N. Y. Acad. Sci. 2021, 1504, 116–153. [Google Scholar] [CrossRef]
- NOAA—National Oceanic and Atmospheric Administration. Climate Variability: Oceanic Niño Index. 2009. Available online: https://www.climate.gov/news-features/understanding-climate/climate-variability-oceanic-ni%C3%B1o-index (accessed on 12 August 2022).
- De Souza, C.A.; Reboita, M.S. Ferramenta para o monitoramento dos padrões de teleconexão na América do Sul. TerraE Didat. 2021, 17, e02109. [Google Scholar] [CrossRef]
- Saji, N.H.; Yamagata, T.J.C.R. Possible impacts of Indian Ocean dipole mode events on global climate. Clim. Res. 2003, 25, 151–169. [Google Scholar] [CrossRef]
- Mo, K.C. Relationships between low-frequency variability in the Southern Hemisphere and sea surface temperature anomalies. J. Clim. 2000, 13, 3599–3610. [Google Scholar] [CrossRef]
- Thompson, D.W.J.; Wallace, J.M. Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Clim. 2000, 13, 1000–1016. [Google Scholar] [CrossRef]
- Mo, K.C.; Paegle, J.N. The Pacific–South American modes and their downstream effects. Int. J. Climatol. A J. R. Meteorol. Soc. 2001, 21, 1211–1229. [Google Scholar] [CrossRef]
- Hoskins, B.J.; Karoly, D.J. The steady linear response of a spherical atmosphere to thermal and orographic Forcing. J. Atmos. Sci. 1981, 38, 1179–1196. [Google Scholar] [CrossRef]
- Hoskins, B.J.; Ambrizzi, T. Rossby wave propagation on a realistic longitudinally varying flow. J. Atmos. Sci. 1993, 50, 1661–1671. [Google Scholar] [CrossRef]
- Ferraz, S.E.T. Variabilidade Intrasazonal no Brasil e Sul da América do Sul. Ph.D. Thesis, Universidade de São Paulo, São Paulo, São Paulo, Brazil, 2004. [Google Scholar]
- Müller, G.V.; Ambrizzi, T. Rossby wave propagation tracks in southern hemisphere mean basic flows associated to generalized frosts over southern South America. Atmósfera 2010, 23, 25–35. Available online: https://www.scielo.org.mx/scielo.php?pid=S0187-62362010000100002&script=sci_abstract&tlng=pt (accessed on 19 September 2022).
- Rossby, C.G. Planetary flow pattern in the atmosphere. Q. J. R. Meteorol. Soc. 1940, 66, 68–87. Available online: https://empslocal.ex.ac.uk/people/staff/gv219/classics.d/Rossby-planflowQJ40.pdf (accessed on 9 December 2022).
- Branstator, G. Circumglobal teleconnections, the jet stream waveguide, and the North Atlantic Oscillation. J. Clim. 2002, 15, 1893–1910. Available online: https://journals.ametsoc.org/view/journals/clim/15/14/1520-0442_2002_015_1893_cttjsw_2.0.co_2.xml (accessed on 9 December 2022). [CrossRef]
- Karoly, D.J. Rossby wave propagation in a barotropic atmosphere. Dyn. Atmos. Ocean. 1983, 7, 111–125. [Google Scholar] [CrossRef]
- Ambrizzi, T.; Hoskins, B.J. Stationary Rossby-wave propagation in a baroclinic atmosphere. Q. J. R. Meteorol. Soc. 1997, 123, 919–928. [Google Scholar] [CrossRef]
- Nogués-Paegle, J.; Mo, K.C. Alternating wet and dry conditions over South America during summer. Mon. Weather Rev. 1997, 125, 279–291. [Google Scholar] [CrossRef]
- Carvalho, L.M.V.; Jones, C.; Liebmann, B. The South Atlantic convergence zone: Intensity, form, persistence, and relationships with intraseasonal to interannual activity and extreme rainfall. J. Clim. 2004, 17, 88–108. [Google Scholar] [CrossRef]
- Silva, J.P.R.; Reboita, M.S.; Escobar, G.C.J. Caracterização da Zona de Convergência do Atlântico Sul em campos atmosféricos recentes. Rev. Bras. De Climatol. 2019, 25, 355–377. [Google Scholar] [CrossRef] [Green Version]
- Tanimoto, Y.; Xie, S.P. Inter-hemispheric decadal variations in SST, surface wind, heat flux and cloud cover over the Atlantic Ocean. J. Meteorol. Soc. Jpn. 2002, 80, 1199–1219. [Google Scholar] [CrossRef] [Green Version]
- Chan, S.C.; Behera, S.K.; Yamagata, T. Indian Ocean dipole influence on South American rainfall. Geophys. Res. Lett. 2008, 35, L14S12. [Google Scholar] [CrossRef]
- Reboita, M.S.; Ambrizzi, T.; Silva, B.A.; Pinheiro, R.F.; Rocha, R.P. The South Atlantic subtropical anticyclone: Present and future climate. Front. Earth Sci. 2019, 7, 8. [Google Scholar] [CrossRef]
- Cai, W.; Mcphaden, M.J.; Grimm, A.M.; Rodrigues, R.R.; Taschetto, A.S.; Garreaud, R.D.; Dewitte, B.; Poveda, G.; Ham, Y.; Santoso, A.; et al. Climate impacts of the El Niño–southern oscillation on South America. Nat. Rev. Earth Environ. 2020, 1, 215–231. [Google Scholar] [CrossRef]
- Grimm, A.M.; Barros, V.R.; Doyle, M.E. Climate variability in southern South America associated with El Niño and La Niña events. J. Clim. 2000, 13, 35–58. Available online: https://www.ige.unicamp.br/terraedidatica/v8-1/pdf81/s3.pdf (accessed on 9 December 2022). [CrossRef]
- Silva, G.A.M.; Ambrizzi, T.; Marengo, J.A. Observational evidences on the modulation of the South American Low Level Jet east of the Andes according the ENSO variability. In Annales Geophysicae; Copernicus GmbH, 2009; pp. 645–657. Available online: https://angeo.copernicus.org/articles/27/645/2009/ (accessed on 9 December 2022).
Index | Description | Limitation | Application References |
---|---|---|---|
Standardized Precipitation Index (SPI) | This index was developed by McKee et al. [45]. It uses historical precipitation data to quantify deficits; positive and negative values are related to wet and dry episodes, respectively; SPI can be calculated and analyzed for accumulated precipitation on scales from 1 to 48 months [10,46]. | It does not consider the temperature component, which is important in evapotranspiration processes [6]; therefore, it is more effective for droughts associated with precipitation deficits. | Freitas et al. [15]; Santos et al. [47]; Oliveira-Júnior et al. [48]; Costa et al. [49]; and Silva et al. [50]. |
Palmer Drought Severity Index (PDSI) | Developed by Palmer [51] to identify droughts affecting crops, it uses precipitation, temperature, and available water content data to measure the loss and demand of the soil moisture supply [10,46]. | For its calculation the data series must be complete; and, in addition, there may be lags in identifying dry conditions [46]. | Rossato et al. [52]; Silva and Azevedo [53]; Lowe et al. [54]; and Pagotto et al. [55]. |
Standardized Precipitation–Evapotranspiration Index (SPEI) | Using the SPI base in its calculation, the SPEI, developed by Vicente-Serrano et al. [56], also considers, through the calculation of the water balance, the temperature effect on the development of the drought, making the index sensitive to climate change [10]. | Requires temperature and precipitation complete data series; it is calculated from a monthly scale which does not allow the identification of rapidly developed dry conditions [10]. | Gozzo et al. [57]; Vega et al. [58]; Drumond et al. [59]; and Rosser et al. [60]. |
Crop Moisture Index (CMI) | Using precipitation and temperature data, this meteorological index, developed by Palmer [61], is more effective than the PDSI, since it can more efficiently monitor crop conditions in a short period (weeks) [10,46]. | It fails to effectively monitor long-term droughts [10,46]. | Venteris et al. [62]; Ahammed et al. [63]; and Gonçalves et al. [64]. |
Deciles and Quintiles | It uses precipitation data, dividing it into equal parts and in ascending order. In Deciles, the precipitation is divided into 10 parts, and in Quintiles into 5. Hence, it is possible to determine the probability of a dry event occurring [10,46]. | As with SPI, it does not account for the temperature effects on drought development [10,46]. | Silva et al. [65]; Bernardino et al. [66]; Morello et al. [67]; and Aquino et al. [68]. |
Crop-Specific Drought Indices (CSDI) | Developed by Meyer et al. [69], this index can measure the overall impact on final productivity. For its calculation, data from precipitation, maximum, minimum, and dew point temperature, wind speed, and solar radiation are necessary, as well as information on the available water content and data on the crop [10]. | As the input data for the model is complex, not every location has enough records for the calculation to be possible [10]. | Martins et al. [70]. |
Index | Definition | Phase | Impacts on South America Precipitation | Download Source |
---|---|---|---|---|
Tropical Southern Atlantic Index (TSA) | Anomalies of sea surface temperature in the western part of the tropical South Atlantic Ocean [85]. | The positive (negative) phase indicates a positive (negative) temperature anomaly over the tropical South Atlantic Ocean region. | The positive (negative) phase of the TSA is associated, in general, with less (more) rain in regions of the south and southeast of Brazil [86]. | https://psl.noaa.gov/data/correlation/tsa.data (accessed on 25 September 2022) |
Oceanic Niño Index (ONI) | Main monitor, based on SST anomalies in the Niño 3.4 region, of the phases of the El Niño-Southern Oscillation phenomenon [87]. | The positive (negative) phase indicates the occurrence of El Niño (La Niña) with warmer (cold) temperatures in the east-central tropical Pacific. | The positive (negative) phase of the ONI is associated with increasing (decreasing) precipitation in the southeastern South America [86]. | https://psl.noaa.gov/data/correlation/oni.data (accessed on 25 September 2022) |
The South Atlantic Subtropical Anticyclone Index (IASAS) | It allows the analysis of observed surface pressure variations over the south and southeastern Brazil associated with the South Atlantic Subtropical Anticyclone (SASA) [88]. | Positive (negative) values indicate higher (lower) pressure at mean sea level in southeast Brazil and lower (higher) in southern Brazil. | The positive (negative) phase of the IASAS is associated with less (more) rain in southeast Brazil and more (less) in the South [88]. | https://meteorologia.unifei.edu.br/teleconexoes/indice?id=iasas (accessed on 25 September 2022) |
Indian Ocean Dipole (IOD) | It characterizes the difference between the sea surface temperature in the western tropical Indian Ocean (Arabian Sea) and the southeastern tropical Indian Ocean, south of Indonesia [89]. | In its positive (negative) phase, the western part is warmer (cold) than the southeast. | Its positive (negative) phase is associated with wetter (dry) conditions in southeastern South America [86] | https://meteorologia.unifei.edu.br/teleconexoes/indice?id=iod (accessed on 25 September 2022) |
Antarctic Oscillation (AAO) | It indicates the zonal oscillation in the mean sea level pressure (geopotential height etc.) between mid-latitude and the surrounding Antarctica [90,91]. | Its positive (negative) phase is associated with negative (positive) anomalies of geopotential height along Antarctica and positive (negative) anomalies in the zonal band around 45°S. | The positive (negative) phase of the AAO contributes to dry (wet) conditions over southern Brazil and wet (dry) conditions in the southeast [86]. | https://meteorologia.unifei.edu.br/teleconexoes/indice?id=aao (accessed on 25 September 2022) |
Pacific South American (PSA1, PSA2) | While AAO is the first lead mode of EOF applied to different atmospheric variables, PSA1 and PSA2 are the second and third modes. PSA1 and PSA2 allow analyzing the relationship with the wave train that propagates from southeastern Australia to Argentina [91,92]. | In Souza and Reboita [88] the positive phase of PSA1 is characterized by positive anomalies of geopotential height over the Pacific reaching the extreme south of South America and negative anomalies covering most of southern South America. In the positive phase of PSA2, southern South America is covered by negative anomalies of geopotential height while south Brazil is covered by positive ones. | The positive phase of PSA1 is associated with increased rainfall in southeastern South America during the austral summer. The positive phase of PSA2, on the other hand, presents precipitation deficits in a region extending from the central region of South America toward the Atlantic Ocean [92]. | https://meteorologia.unifei.edu.br/teleconexoes/indice?id=psa1 (PSA1; accessed on 25 September 2022) https://meteorologia.unifei.edu.br/teleconexoes/indice?id=psa2 (PSA2; accessed on 25 September 2022) |
SPI | Classification |
---|---|
≥2.00 | Extremely wet |
1.50 to 1.99 | Very wet |
1.00 to 1.49 | Moderately wet |
−0.99 to 0.99 | Near normal |
–1.00 to −1.49 | Moderately dry |
−1.50 to −1.99 | Severely dry |
≤−2.00 | Extremely dry |
Region | Start Date | End Date | Severity | Duration (Months) | Intensity | Peak |
---|---|---|---|---|---|---|
PHR | 09/1985 | 11/1986 | 9.84 | 15 | 0.66 | 1.34 |
09/2007 | 08/2009 | 15.72 | 24 | 0.66 | 1.46 | |
12/2011 | 12/2015 | 56.94 | 49 | 1.16 | 1.98 | |
11/2016 | ** | 88.44 | 62 | 1.43 | 3.88 |
YEAR | SPI-6 MAR (OCT–MAR) |
---|---|
2015/2016 | 0.37 |
2016/2017 | −1.23 |
2017/2018 | −0.08 |
2018/2019 | −0.43 |
2019/2020 | −1.35 |
2020/2021 | −3.17 |
Periods | SPI-6 | IASAS (SD ± 1.164) | TSA (SD ± 0.38) | ONI (SD ± 0.5) | IOD (SD ± 0.34) | AAO (SD ± 0.98) | PSA1 (SD ± 0.18) | PSA2 (SD ± 0.12) |
---|---|---|---|---|---|---|---|---|
2016/2017 | −1.23 | 0.28 | 0.39 | −0.40 | −0.02 | −0.53 | −0.02 | −0.11 |
2019/2020 | −1.35 | −0.23 | 0.89 | 0.47 | 0.48 | −0.44 | −0.05 | −0.01 |
2020/2021 | −3.17 | −0.62 | 0.11 | −1.08 | 0.21 | 1.01 | −0.01 | −0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Freitas, A.A.; Reboita, M.S.; Carvalho, V.S.B.; Drumond, A.; Ferraz, S.E.T.; da Silva, B.C.; da Rocha, R.P. Atmospheric and Oceanic Patterns Associated with Extreme Drought Events over the Paraná Hydrographic Region, Brazil. Climate 2023, 11, 12. https://doi.org/10.3390/cli11010012
de Freitas AA, Reboita MS, Carvalho VSB, Drumond A, Ferraz SET, da Silva BC, da Rocha RP. Atmospheric and Oceanic Patterns Associated with Extreme Drought Events over the Paraná Hydrographic Region, Brazil. Climate. 2023; 11(1):12. https://doi.org/10.3390/cli11010012
Chicago/Turabian Stylede Freitas, Aline Araújo, Michelle Simões Reboita, Vanessa Silveira Barreto Carvalho, Anita Drumond, Simone Erotildes Teleginski Ferraz, Benedito Cláudio da Silva, and Rosmeri Porfírio da Rocha. 2023. "Atmospheric and Oceanic Patterns Associated with Extreme Drought Events over the Paraná Hydrographic Region, Brazil" Climate 11, no. 1: 12. https://doi.org/10.3390/cli11010012
APA Stylede Freitas, A. A., Reboita, M. S., Carvalho, V. S. B., Drumond, A., Ferraz, S. E. T., da Silva, B. C., & da Rocha, R. P. (2023). Atmospheric and Oceanic Patterns Associated with Extreme Drought Events over the Paraná Hydrographic Region, Brazil. Climate, 11(1), 12. https://doi.org/10.3390/cli11010012