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Abstract: This study considers the problem of approximating the temporal dynamics of the urban-
rural temperature difference (∆T) in Moscow megacity using machine learning (ML) models and
predictors characterizing large-scale weather conditions. We compare several ML models, including
random forests, gradient boosting, support vectors, and multi-layer perceptrons. These models,
trained on a 21-year (2001–2021) dataset, successfully capture the diurnal, synoptic-scale, and seasonal
variations of the observed ∆T based on predictors derived from rural weather observations or
ERA5 reanalysis. Evaluation scores are further improved when using both sources of predictors
simultaneously and involving additional features characterizing their temporal dynamics (tendencies
and moving averages). Boosting models and support vectors demonstrate the best quality, with RMSE
of 0.7 K and R2 > 0.8 on average over 21 years. For three selected summer and winter months, the
best ML models forced only by reanalysis outperform the comprehensive hydrodynamic mesoscale
model COSMO, supplied by an urban canopy scheme with detailed city-descriptive parameters
and forced by the same reanalysis. However, for a longer period (1977–2023), the ML models are
not able to fully reproduce the observed trend of ∆T increase, confirming that this trend is largely
(by 60–70%) driven by megacity growth. Feature importance assessment indicates the atmospheric
boundary layer height as the most important control factor for the ∆T and highlights the relevance of
temperature tendencies as additional predictors.

Keywords: statistical modeling; regression; urban climate; urban heat island; climate change;
urbanization; Moscow

1. Introduction

Urban heat island (UHI), i.e., a temperature excess in the cities with respect to their rural
or natural surroundings, is the most obvious and most studied feature of urban climate that
appears due to land cover modifications and anthropogenic activity. Such temperature excess
may exceed 10 K under favorable calm and clear weather conditions [1–3] and affects urban
dwellers and ecosystems in different ways. The UHI increases heat stress for urban citizens
and even heat-related mortality during heat waves [4,5], serves as one of the driving factors
for urban-induced impacts on convective processes and related dangerous weather events,
including intense precipitation and thunderstorms [6,7], and modifies phenology cycles [8,9].
Hence, accurate data on the UHI is important for various practical applications, from weather
forecasting to urban environmental management and climate change adaptation.

Given the deficit of in situ meteorological data in cities, hydrodynamic mesoscale
models of the atmosphere are nowadays one of the main tools for obtaining spatially and
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temporally detailed data on the UHI. Such models coupled to urban canopy parameter-
izations [10,11] with a grid spacing of a few kilometers to hundreds of meters are able
to reproduce the majority of urban-induced meteorological effects [12] and are routinely
used in numerical weather prediction [13,14], regional heat stress assessments [15,16] and
refinements of the climate change scenarios [17,18] for urban areas. However, such models
demand computing resources and require complex software and hardware infrastructure
(data storage, input and output data processing, etc.). Typically, such models are run on
supercomputers using hundreds to thousands of computational cores.

Alternatively, statistical models can be used to predict the UHI. These methods are
easier to use and computationally cheap, but they are not physically based explicitly and
require retuning for each city. Statistical models are often used to approximate urban-
rural temperature differences, called UHI magnitude or UHI intensity, based on available
observations and a set of predictors, and then to predict them for new points in time
and/or space. Several studies used multiple linear regressions to model spatial patterns
of the UHI based on landcover-dependent predictors such as building and road density,
albedo, greenery, etc. [19–21]. Other studies propose a statistical approximation of the
UHI magnitude at a fixed site and its temporal variations forced by diurnal and seasonal
cycles as well as meteorological conditions. Statistical models in such studies are typically
trained using long-term UHI observations and reanalysis-based predictors such as wind
speed, cloud cover, and humidity, and are further forced by climate projections to predict
future UHI changes [22–24] or by the same reanalysis data for a longer period in order to
distinguish UHI changes under the influence of urban growth and climate change [25].
Theeuwes et al. (2017) [26] proposed a diagnostic equation both for temporal and spatial
variations of the daily maximum UHI magnitude, where predictors for temporal variation
include incoming shortwave radiation, diurnal temperature range, and wind speed.

A new stage in the development of statistical modeling of meteorological variables
is associated with the rapid spread of modern methods of machine learning (ML), which
are gaining increasing popularity in the geosciences. ML methods have already been used,
e.g., for statistical modeling of the precipitation amounts [27,28], air temperature [29], wind
speed [30–32], and aerosol concentrations [33], for forecasting of the sea wave height [34],
and mapping of the sea surface height [35]. Not surprisingly, ML methods have already
found their applications in urban meteorology, primarily for downscaling and data fusion
with the ultimate goal of detailed temperature mapping in cities [36–41] and even for
reconstruction of 3D temperature and velocity fields around buildings [42].

Despite the abundance of studies focused on the ML-based spatial modeling of the
UHI and other urban climate anomalies, much fewer ML-based studies are focused on
the temporal variability of such anomalies. A few examples include London’s climate
reconstruction over 70 years using a generalized additive model [25] and the reconstruction
of the evaporation time series for urban landscapes [43]. However, the issues of comparing
different ML models and selecting the best predictors for the problem of statistical modeling
of the temporal dynamics of urban climate anomalies remain unexplored.

Our study aims to conduct a deeper investigation of the possibilities and limitations
of state-of-the-art ML models to approximate and predict the observed temporal dynamics
of the UHI magnitude based on background meteorological variables. We use long-term
meteorological observations available for the mid-latitude megacity of Moscow, Russia, to
address the following research questions: (1) to what extent ML models are able to repro-
duce the UHI magnitude based on predictors characterizing background meteorological
conditions; (2) what is the difference between state-of-the-art ML models in the perfor-
mance of the UHI approximation; and (3) what are the most relevant predictors for the UHI
magnitude. The presentation has the following structure: the next Section 2 describes the
study area and meteorological data, provides a statement of the machine learning problem,
and presents the specific ML models used in our study. Section 3 presents and discusses the
results, including quantitative metrics of models’ performance and predictors’ importance.
Section 4 highlights our conclusion and outlook.
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2. Data and Methods

2.1. Study Area

Moscow is the biggest Russian and European monocentric urban agglomeration with
a population of approximately 17 million people [44], including the population of Moscow
city as a federal subject of Russia and surrounding satellite cities in Moscow Oblast federal
subject. The actual area of the city (excluding the suburbs and undeveloped areas) is
about 1000 km2. The city experienced intensive and almost linear population growth in
the second half of the XX century as well as in the XXI century. Since the middle of the
XX century, the population of Moscow as a federal subject of Russia has more than doubled
and reached almost 13 million people in 2022 (Supplementary Figure S1). Population
growth was accompanied by urban sprawl and an increase in building height and density.

Moscow has a temperate humid, moderately continental climate (Dfb in Köppen
climate classification) with a mean annual temperature of 6.3 ◦C and mean June and January
temperatures of 19.6 ◦C and −6.3 ◦C, respectively (values are given for VDNKh weather
station, WMO ID 27612, that is typically used to characterize Moscow climate, for the
1991–2020 period). Due to the cold winters, Moscow is known as one of the world’s coldest
megacities. The urban-induced meteorological phenomena of Moscow are easy to detect
against the homogeneous surroundings and quasi-symmetric urban planning features,
which makes the city a convenient site for urban climate research. The city experiences
an intense UHI with an increasing magnitude trend over the last decades [45–47], with a
present-day annual-mean UHI magnitude of 2 K peaking at more than 10 K during calm
and clear nights [3,45,46].

2.2. Meteorological Data

Our study is based on long-term, regular observations at the weather stations in the
Moscow region, operated by the Russian National Hydrometeorological Service (Roshy-
droment). In total, we use data from 10 weather stations (Figure 1a), including the Balchug
weather station (WMO ID 27605) in the center of Moscow. It is located in a densely built
area in the historical city center, less than 1 km from the Kremlin (Figure 1b,c). Long-
term meteorological observations are also available for a few other stations within Moscow
megacity [45,48], but they are located within heterogeneous surroundings or in urban parks,
and only the Balchug weather station is located in a quasi-homogeneous built environment.
The Balchug site experiences higher temperatures than other urban weather stations and
represents a hotspot of the Moscow UHI [45,49,50]. In terms of the Local Climate Zones
(LCZs) classification [51], Balchug weather station represents LCZ 2 “compact midrise”. To
characterize the background conditions, we used the data for nine stations surrounding the
city, namely Klin (WMO ID 27417), Dmitrov (WMO ID 27419), Pavlovsky Posad (WMO
ID 27523), Novo-Jerusalim (WMO ID 27511), Naro-Fominsk (WMO ID 27611), Serpukhov
(WMO ID 27618), Kolomna (WMO ID 27625), Maloyaroslavets (WMO ID 27606), and
Aleksandrov (WMO ID 27428). These stations are further referred to as rural, though they
may be affected by local anthropogenic effects due to their location close to smaller towns
or within rural/suburban settlements.

The observational dataset was compiled from the archives of the All-Russia Research
Institute of Hydrometeorological Information, the World Data Centre (http://meteo.ru/,
accessed on 24 September 2023), the Hydrometeorological Research Center of the Russian
Federation, and the Central Administration of Hydrological and Environmental Monitoring
(http://www.ecomos.ru/, accessed on 24 September 2023).

We also use state-of-the-art global atmospheric reanalysis ERA5 produced by the
European Center for mid-range weather forecasts (ECMWF) [52] as an alternative and/or
supplementary to observations. Reanalysis data with its original grid spacing of 0.25◦

was derived from the Copernicus climate data store. The high quality of ERA5 reanalysis,
noted in a large number of works, e.g., in [53–55], allows us to expect good quality in
its reproduction of the large-scale atmospheric processes in the Moscow region. Yet, it is
important to note that reanalysis does not take into account urban-induced climate features,

http://meteo.ru/
http://www.ecomos.ru/
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including the UHI, due to its coarse resolution and absence of an urban parameterization
in the ECMWF Integrated Forecasting System (IFS) atmospheric model used to produce
ERA5 (such parameterization is currently under development and testing [56]).

Figure 1. Location of rural weather stations (blue points) and urban weather station Balchug (red
point), used in our study (a). Photo (b) shows Balchug weather station in winter, and a piece
of satellite imagery from Google Maps (c) represents the local-scale surroundings of this station,
indicated by a red point. Figure is adopted from [46].

2.3. Statement of the Machine Learning Problem

We aim to approximate the UHI dynamics in the center of Moscow on time scales
ranging from hours to decades based on a set of predictors characterizing the large-scale
meteorological regime over a background (mostly non-urban) area. Our target variable
is UHI magnitude, defined as ∆T = Turb − Trur, where Turb is the temperature measured
in the center of Moscow at the Balchug weather station, Trur for each moment of time is
defined as the average temperature over nine selected rural weather stations. The same
definition of the UHI magnitude is used in several previous urban climate studies for
Moscow [46,49,50].

Two formulations of the ML problem are considered. In the first one, ∆T at the i-th
time moment is approximated by a model f based on instant values of the predictors
x1. . .xn characterizing the large-scale meteorological conditions for the same moment:

∆Ti = f (x1,i, x2,i, . . . , xn,i) (1)

The second formulation accounts for the delayed connections between ∆T and predic-
tors by using the values of the latter for several time steps prior to the i-th time moment:

∆Ti = f (x1,i, x1,i−1, . . . , x1,i−m, . . . xn,i, xn,i−1, . . . , xn,i−m) (2)

2.4. Predictors of the UHI Magnitude

Based on the theoretical knowledge about UHI control factors [57] and data availability,
we selected several meteorological variables that may be relevant as predictors of the UHI
magnitude. These variables are listed in Table 1. Air temperature, humidity, wind speed,
and cloud cover fraction are available both from observations and reanalysis. The rest we
take only from the reanalysis. Among them, several variables are observed as well, yet we
do not include these observations because of data availability problems or methodological
issues. For example, precipitation is observed two or four times per day instead of 8 times
per day for other variables, while the reanalysis provides hourly data for all variables,
including precipitation.
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Table 1. List of meteorological variables used as predictors for urban heat island (UHI) magnitude.
Plus and minus signs indicate the presence of variables in observations and reanalysis.

Name Description Unit Weather Station
Observations Reanalysis

t2m Air temperature at 2-m height ◦C + +

rh2m Relative humidity at 2-m height % + +

vel10m Wind speed at 10-m height m/s + +

Tcc Total cloud cover fraction unitless
(0–1) + +

Lcc Low cloud cover fraction unitless
(0–1) + +

Sp Atmospheric pressure hPa − +

Blh Boundary layer height m − +

Str Net longwave radiation W/m2 − +

ssr Net shortwave radiation W/m2 − +

strd Downwelling longwave radiation W/m2 − +

ssrd Downwelling shortwave radiation W/m2 − +

tp 3-h precipitation sum mm − +

Since the problem statement assumes the use of the characteristics of a large-scale
meteorological regime, predictor values are obtained by averaging the observed meteoro-
logical variables over nine selected background weather stations around Moscow (Figure 1).
In the case of gaps for one or more stations, the averaging is carried out for the remaining
ones. For reanalysis data, we perform areal averaging over a 3 × 3 grid cell set centered
over Moscow. It is worth noting that the predictors derived both from observation and
reanalysis are not necessarily highly correlated. The best agreement is found for rural
temperature t2m, with a slight negative bias of 0.3 K and a correlation coefficient of almost
1. However, it is much worse for wind speed and cloudiness (Supplementary Table S1).
Such differences may be due to a large number of factors. In any case, from a machine
learning point of view, having a large number of uncorrelated predictors is good.

For the second approach (Equation (2)), we design additional features character-
izing delayed connections between ∆T and meteorological predictors (hereafter called
temporal features, or TFs). Firstly, we use the tendencies of each meteorological vari-
able during 3, 6, and 12 h prior to the i-th time moment, defined for the k-th variable as
∆xk,3h = xk,i − xk,i−1; . . . ; ∆xk,12h = xk,i − x,i−4. Secondly, we use left-side moving averages

(MAs) with window widths of 3, 6, and 12 h, defined as xk,3h =
xk,i+xk,i−1

2 and so on.
In addition, we use a so-called weather factor (WF) as a predictor for ∆T, an empirical

function, of wind speed, cloud fraction and cloud type, as suggested in [58] and explained
in more detail in [59]. We use a slightly simplified formulation based on 10-m wind speed
(vel10m), total (tcc), and low (lcc) cloud fractions, which allows WF to be calculated without
information about cloud type and is applicable both for observations and reanalysis.

Fw =
[
1 − 0.8·tcc2 − 0.4·(tcc − lcc)2

]
·min

(
vel10m− 1

2 ; 1
)

(3)

We calculate WF independently based on observations and reanalysis but do not
calculate its temporal features.

In addition to weather-dependent predictors, we consider the so-called astronomical
predictors, i.e., diurnal and seasonal cycles. These factors include solar height, the day’s
position in the seasonal cycle, and position in the diurnal cycle.

To compare the relevance of different predictors, we independently consider six sets
of predictors (Table 2). Firstly, we analyze the opportunity to approximate UHI magnitude
using different types of source data and consider sets of observation-based predictors
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(a), reanalysis-based predictors (b), and both types of predictors combined together (c).
Secondly, we analyze the impact of temporal features by comparing approaches (1) and
(2). Temporal features are calculated for all meteorological variables based on observations
(2a), reanalysis (2b), or both (2c). Astronomical predictors are included in all sets.

Table 2. Sets of predictors used to approximate UHI magnitude. Plus and minus signs indicate the
presence of the listed groups of predictors in the different sets.

ID Set Name Astronomical
Predictors

Observations-
Based

Predictors

Reanalysis-
Based

Predictors

Temporal
Features

Number of
Features

1a obs + + − − 9

1b rea + − + − 18

1c obs&rea + + + − 24

2a obs + TF + + − + 39

2b rea + TF + − + + 102

2c obs&rea +
TF + + + + 138

To train and validate ML models, we use the dataset that includes target variable ∆T
and abovementioned predictors over an almost 21-year period starting from 1 January 2001
to 31 August 2021 with 3-h temporal spacing, which gives 60,385 rows. The selection of
such a period is determined by a tradeoff between dataset size and the homogeneity of
the climatic conditions. After excluding rows with a missing value of the target variable
or at least one predictor, 60,091 rows remain for combinations of predictors involving
observations (1a, 1c, 2a, 2c), and 60,135 rows remain for the reanalysis-based datasets
(1b, 2b).

Additionally, we use a dataset for a more than twice-longer period from 01.01.1977
to 31.08.2023 (almost 47 years) in order to evaluate model quality against the background
of much larger climate change and urban growth [45,46]. During this longer period, the
population of Moscow as an administrative unit has increased by 65%, from 7.8 million in
1977 to almost 13 million in 2022 (Supplementary Figure S1). In comparison, during the
basic study period of 2001–2021, the population changed by 24%, from 10.2 to 12.6 million.

2.5. Machine Learning Models

The so-called “no free lunch theorem” [60,61] in its various forms establishes in
general that, for an ML model, any elevated performance over one class of problems
is offset by performance over another class. As a result, there are no ML models that
would perform better than others in all possible classes of problems, given all reasonable
measures of quality being assessed using all reasonable options of cross-validation. Rather,
being averaged over a large set of problem classes, quality measures, and cross-validation
approaches with several definitions of averaging, all algorithms have the same average
off-training-set empirical risk level. Thus, there is no reliable way to presume one model’s
superiority over others. Instead, one needs to try several promising methods in order to
exploit the opportunity of choosing the best one. In this study, we explore the capabilities
of six different ML models (see Table 3) in the problem of UHI magnitude approximation
from large-scale predictors described above. Assessing multiple algorithms, we intend to
cover the most promising models among a wide variety of ML methods that are capable of
performing regression tasks on tabular data.

We employ ridge regression (RR) as a baseline statistical approach. RR is a linear
model with ordinary least squares loss yet regularized by the sum of squared parameters
of the model (a.k.a. L2 regularization). RR is a biased parameter estimator for the linear
model, which is often used to address the issue of feature collinearity in multidimensional
linear regression [62,63]. There are other regularizations that aim to overcome the issue of
feature non-orthogonality, resulting in the Lasso model [64] in the case of L1 regularization
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(meaning the sum of absolute values of model parameters as an additive loss component)
and ElasticNet exploiting the weighted sum of L2 and L2 regularization terms. Regarding
this variety of regularization choices, in this study, we employ only the RR method, since
we did not expect the linear model to deliver high quality compared to other machine
learning approaches; thus, we only needed the level of baseline accuracy.

Table 3. List of ML models used in the study.

Model Name Acronym Tuned Hyperparameters
and Their Values

Used to Analyze
Feature Importance

Ridge Regression (baseline) RR - −

Random Forest Regression RFR n_estimators [100, 200, 500] +

Gradient Boosting Regression RBR n_estimators [100, 200, 500,
1000] +

CatBoost Regression CBR n_estimators [100, 200, 500,
1000, 2000] +

Support Vector Regression SVR - −

Multi-Layer Perceptron Regression MLPR

hidden_layer_sizes [100 × 3,
100 × 5, 100 × 7, 200 × 3,
200 × 5, 200 × 7]; max_iter
[200, 500, 1000]

−

Among the more advanced statistical models, we compare the nonparametric random
forests regression (RFR), gradient boosting regression (GBR), CatBoost regression (CBR),
and support vector regression (SVR) models. We also use a regression model based on
multilayer perceptron (MLPR), which is a fully connected class of feedforward artificial
neural networks. We use the software implementation from the scikit-learn (version 0.24.2)
Python library for all models except CBR, which is provided as an independent catboost
(version 1.06) module.

Here, we outline the fundamentals of each model. RFR, GBR, and CBR are non-
parametric ensemble models based upon the basic algorithms of decision trees (DT) [65–67].
DT is a popular ML model used for both classification and regression. They are tree-
structured models where the leaves represent either class labels in cases of classification or
a range of a real-valued target variable in cases of regression tasks and the branches (data
subset splits) represent conjunctions of features that lead to those class labels. The main
approach of decision trees is to generate an algorithm involving dataset splitting operations
on the basis of rules generated within a greedy approach of optimal (maximum) reduction
of the total empirical cost of the resulting regressor with each split. DT models are prone
to overfitting [68], yet their expressive power is strongly dependent on hyperparameters,
which include tree maximum depth (the maximum number of branches), among many oth-
ers. In this study, we do not exploit DT as is, since they demonstrate this strong dependency
of bias and variance on depth hyperparameter. However, we exploit ensembles of DT:
Random Forests [69] and Gradient Boosting Machines (GBM) [70]. GBM is implemented in
the form of the GBR algorithm in the scikit-learn package as well as CBR, an open-source
boosting model developed by Yandex that performs exceptionally well on categorical
datasets [71,72]. The main approach of GBM is to sequentially build an ensemble of weak
algorithms, namely DT, characterized by low depth (also known as decision stumps). The
ensemble is built in such a way that each DT is trained on the residuals of the previous
ensemble. The most influential hyperparameter of all three ensemble models is the number
of ensemble members (also known as estimators). This hyperparameter is mentioned in
Table 3 as “n_estimators”, and we have performed the optimization regarding this option
as described further.

Support vector machines [73] for Regression (SVR) [74] have emerged as a powerful
tool for solving regression problems since 1996. SVR exploits the geometric interpretation
of feature space and the power of kernel functions employed in kernel-equipped SVR. The
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main advantage of SVR is that there are almost no strongly influencing hyperparameters
except the kernel function, which is hard to choose on the basis of prior knowledge. In our
study, we employed the SVR model, for the sake of comparison with other models, in its
default form, meaning the radial-basis kernel function [75].

Multilayer perceptron (MLP) [76,77] is a fully-connected artificial neural network
(ANN), also known as a feedforward neural network. MLP is a type of ANN containing
multiple sets of computational units (also known as layers of artificial neurons), with
each layer fully connected to the next. MLP is trained through the minimization of the
cost function, which is typically the sum of the squared residuals of this model. The
minimization is performed using gradient-based optimization, exploiting the efficient
procedure of the computation of cost function gradients with respect to parameters of the
model, also known as the backpropagation method [78]. Due to the [79] theorem and its
sigmoid-equipped variation by Cybenko [80], an ANN is a universal approximator that
is capable of approximating any function (with some reservations on function properties
and its support; also, with the reservation on the single-layer perceptron implied in the
Kolmogorov theorem). In our study, we employed an MLP as a promising competing ML
model capable of handling tabular data in regression tasks.

The most influential generic hyperparameter of MLP is its architecture, which implies
the combination of its depth (number of layers) and the width of each layer (number of
neurons in each layer). Generally, the expressive power of an MLP increases as the number
of layers increases; increasing the number of neurons with each layer delivers a similar
effect. There are, however, known issues of deep MLPs that prevent them from stable
learning with high network depth. Thus, one needs to tradeoff between the expressive
power of an MLP and its quality. In our study, we tested various combinations of MLP
depth and the widths of its layers (presented in Table 3 as “hidden_layer_sizes”). An MLP is
optimized through a gradient-based minimization procedure typically involving the Adam
iterative optimization solver [81], which is the case in our study. Along with the learning
rate schedule, one of the most important hyperparameters of this algorithm is the number
of iterations (presented in Table 3 as “max_iter”) of estimating the cost function (also known
as, the loss function), loss gradients, and correspondingly updating MLP weights.

The data-driven approach assumes an accurate assessment of the quality of the models
to choose from. Every statistical method developed based on data is prone to either a bias
or a variance in residuals, or even both of them, as stated in the no-free-lunch theorem.
Thus, one needs to choose a model that suits the problem the best. A model in this scope is a
method with some tunable parameters that are subject to fit based on data and a set of either
constants or sub-routines (e.g., learning rate schedule in the case of neural networks) that
are not tuned during the model optimization. These entities are known as hyperparameters.
Hyperparameters are subject to optimization as well; however, one cannot use the training
subset to do so. Hyperparameter optimization is a subroutine within the model choice; thus,
one optimizes them using cross-validation for reliable quality assessment (see Section 2.6)
per hyperparameter set and a sampling strategy for the optimization itself.

When it comes to hyperparameter tuning for machine learning models, there are
several strategies that can be employed; among them, Bayesian [82–84] and grid search of
various types [85,86] are the most common ones. Grid search involves defining a grid of
hyperparameter values and testing all possible combinations of these values to determine
the best-performing model. While grid search can be computationally expensive, it is
often a practical choice due to its simplicity and transparency. By limiting the range of
hyperparameter values to a reasonable set, computational costs can be reduced while
still achieving high model performance. One more justification for using grid search
with limited hyperparameter values is based on previous experience. Many studies have
investigated the relationship between hyperparameters and model performance and have
identified that model quality indeed depends on the hyperparameters, though there are
reasonable ranges for hyperparameter values that tend to work well across a variety of
datasets and problems [87–89]. By constraining the hyperparameter search space to these
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known reasonable values, one can reduce the risk of overfitting or wasting computational
resources on unlikely parameter combinations. In our study, we limited the values of
specific hyperparameters based on our previous experience (e.g., on [90,91] for MLPR),
considering also the trade-off between the potential improvement of the model quality
and the computational costs. Thus, in this study, we applied the grid-search method for
hyperparameters optimization. In Table 3, we present a subset of hyperparameters for each
model type and a reasonable grid for each hyperparameter.

In the case of regression tasks, the default loss function is the sum (or mean) of squared
residuals (also known as mean squared error, MSE) of a model compared to ground truth.
It is not the only option, though. One needs to consider the distribution of the noise
term ε in the model of target variable generation y = f (x) + ε, where f (x) is the tractable
relationship between feature vector x and target variable y (namely UHI magnitude ∆T).
In case of a normal distribution, of ε, maximum likelihood estimation method delivers MSE
as a loss function. The assumption of normal distribution is the most reasonable one in
case of natural processes; thus, we employed MSE as a loss function in our study.

Three DT-based models, RFR, GBR, and CBR, automatically provide estimates of
feature importance after their optimization. Feature importance I(xk) is a relative score that
indicates how valuable each feature xk was in the construction of the decision trees within
the model, expressed as a fraction of 1 or as a percentage, where 1 or 100% is the total
importance of all predictors used to train the model. Feature importance is also available
from the linear model (RR) as regression coefficients in the case of standardized features;
however, we do not assess them in this study since the linear model is employed as a
baseline only.

In practice, we use feature importance, provided by the implementations of models,
to analyze weather-related controls of the UHI magnitude in Moscow. When dealing with
temporal features, the challenge lies in aggregating their influence to accurately estimate
the overall importance of various derived forms of a corresponding meteorological variable.
However, there is no unified, strict method for assessing the total importance of a group of
predictors for DT-based models that would take into account their mutual relationships.
For a coarse-grain estimate, we define the total importance of a predictor as a sum of
importance estimates of its instant values, its tendencies, and MAs:

Itot(xk) = I(xk) +
n

∑
j=1

I
(

∆xk,j

)
+

n

∑
j=1

I
(

xk,j

)
(4)

where n = 3 is number of periods for which temporal features are calculated (3, 6, and
12 h). We also analyze the total importance of tendencies and MAs.

2.6. Model Evaluation

In machine learning, it is typical to evaluate a model by estimating quality metrics
using a subset of data that is acquired from the original set through random sampling
and not used for model optimization (also known as test subset). Such a technique is
known as cross-validation or the holdout method. This approach is appropriate when
the examples are independent and identically distributed. However, when studying
observational time series generated by physical processes, smooth changes in natural states
can cause successive observations to exhibit strong autocorrelation. These natural states
refer to the underlying physical phenomena that drive the observed UHI magnitude. Since
successive examples in our dataset may be strongly correlated, they cannot be assumed to
be independent.

Therefore, it is important to avoid adding successive examples from a time-series
dataset obtained through observing a natural process to training and testing sets on a
systematic basis. Specific methods of sampling should be applied to validate models
trained on time-series data. In our study, we used block-wise cross-validation to address
the issue of strongly correlated successive examples. In particular, we split our dataset
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using the blocked k-fold method, with the size of the training block of 15 days, the size of
the test block of 5 days, which gives the train-to-test ratio of 3:1, and five iterations of the
rearrangement of these blocks (K = 5). At the first iteration, the first 15-day block of the
dataset is included to train the subset, the next 5-day block is included to test the subset, and
so on. At each of the next iterations, all blocks are shifted to the right by (5 + 15)/5 = 4 days.
The scheme of this method is shown in Supplementary Figure S1. Such a procedure
gives five instances of the trained model and five values of each model quality metric
estimated over the test subset, which allows estimating uncertainty. As quality metrics,
we use the root-mean square error (RMSE), the mean error (ME), and the determination
coefficient (R2).

3. Results and Discussion

3.1. Overall Performance of the Different ML Models

To demonstrate the features of the behavior of different models, we present model-to-
observation comparisons in the shape of hexagonal binning diagrams for baseline Ridge
Regression (Figure 2) and more advanced CBR (Figure 3) and MLPR (Figure 4) models. For
all these models we show plots for results derived using six sets of predictors (Table 1),
which demonstrate the common patters. For all models, approximation of the ∆T based on
observations performs better than approximation based on reanalysis, despite the large
number of features in a reanalysis-based dataset. Such a pattern is demonstrated by the
shape of the data cloud in the diagrams as well as by the RMSE and R2 metrics. Yet, the
difference between reanalysis-based and observational-based approximations decreases
when using more advanced statistical models. For example, R2 values for sets 1a and 1b
are 0.57 and 0.50 for the RR model, 0.75 and 0.74 for the CBR model, and 0.62 and 0.64 for
the MLPR model.

Figure 2. Hexbin plots showing comparison between observed and modeled UHI magnitude for
the Ridge Regression (RR) baseline model for different sets of predictors (Table 1) with (lower
row) and without (upper row) temporal features. Each subplot contains the size of the dataset,
including number of columns, i.e., features (nx) and rows (ny), and the values of quality metrics
RMSE (◦C) and R2, as well as their uncertainty, characterized by standard deviation according to
blocked k-fold method.



Climate 2023, 11, 200 11 of 24

Figure 3. Same as Figure 2 for CatBoost Regression (CBR) model.

Figure 4. Same as Figure 2 for Multi-layer Perceptron Regression (MLPR) model.

In all cases, approximation quality improves noticeably when using the combined
dataset that includes observational-based and reanalysis-based predictors simultaneously.
Using temporal features (TFs) additionally improves models’ behavior; such improvement
remains noticeable for all sets of predictors and all ML models. With a combined set of
predictors, TFs improve R2 from 0.63 to 0.7 for the linear model, from 0.76 to 0.79 for CBR,
and from 0.72 to 0.77 for MLPR. The uncertainty of the quality metrics is low; their standard
deviation does not exceed 0.01–0.02 both for R2 and RMSE (K).

The presented examples clearly demonstrate the differences between models. More
advanced ML models provide not only better quality metrics and a more compact point
cloud in comparison to baseline but also perform significantly better for extreme ∆T > 5 K,
where the linear model systematically underestimates observations. It is noteworthy that
the point clouds for CBR and MLPR models have different shapes. For CBR, it is noticeable
asymmetric in the region of small ∆T values; this model almost never underestimates ∆T
when it is close to zero or negative. MLPR, on contrary, may underestimate or overestimate
∆T with almost similar probability, which results in a more symmetric point cloud. Other
advanced ML models, i.e., RFR, GBR, and SVR, behave similarly to CBR (more examples
are given in Supplementary Figures S3–S9).
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Figure 5 presents the rankings of all considered models and their configurations
according to RMSE and R2 metrics. As expected, sophisticated ML models outperform
the baseline model (RR) in terms of quality metrics. Three configurations of CBR with
n_estimators ≥ 500 and SVR models are the best for all sets of predictors. The RMSE value
for these models varies from about 0.8 K for the reanalysis-based set of predictors to 0.7 K
for the combined set, which is by 20–25% lower than the baseline. The ranking is always led
by the most detailed configuration of the CBR model, with n_estimators = 2000. This group
of four leading models is followed by RFR and GBR models and the simplest configuration
of CBR (n_estimators = 100). Note that we use more estimators for CBR than for GBR and
RFR due to the higher computational efficiency of CBR. When the number of estimators
is fixed, CBR typically performs better than GBR and RFR. For all GBR, CBR, and RFR
models, the error decreases with an increase in number of estimators, yet the difference
is small.

Figure 5. RMSE and R2 quality metrics for all models and their configurations trained with
observational-based, reanalysis-based, and combined sets of predictors with time features. The
models are sorted according to RMSE quality metric for reanalysis-based models. Different colors
indicate models of same type with different hyperparameters.

Surprisingly, MLPR models perform worse than all non-parametric models, occupying
an intermediate position between them and the baseline in ranking. The RMSE value for
MLPR models decreased with increasing depth and width of hidden layers; its relation
to the maximum number of iterations (max_iter) is not clear due to the small number of
experiments. MLPR models with the smallest number of hidden layers (100 × 3) are only
slightly better than linear regression, while the best results are achieved with sizes 200 × 5
and 200 × 7. Another metric, R2, ranks the models in the same way as RMSE. For further
analysis, we select the best configuration of each model type according to the RMSE metric.

Figure 6 provides a more visual impression of how ML models simulate the dynamics
of ∆T on example of a time series for contrasting winter and summer periods. Variations
of Moscow UHI in January are almost devoid of the diurnal cycle due to the presence
of snow cover, short sunlight duration, and low solar incidence angles (not more than
13◦), and are mostly determined by the alteration of synoptic conditions [46,50]. On the
contrary, in summer, synoptic-scale variations are superposed by a classic diurnal cycle of
UHI magnitude with a maximum before sunrise [92].

The modeled values shown in these plots are averaged over model predictions for
training subsets sampled during five iterations of the cross-validation (see Section 2.5). The
ML models nicely reproduce these complicated variations, including a persistent winter
UHI with ∆T reaching up to 7 K observed from 7 to 9 January 2017 (Figure 6a) against
the background of a strong cold spell [93], a clear diurnal cycle in summer with nocturnal
maxima exceeding 8 K under favorable weather conditions (Figure 6b) including those
ones observed during the heat wave in June 2021 (Figure 6).
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Figure 6. Time series of the UHI magnitude according to observations, predictions of ML models
(the best configurations of each model type, forced by reanalysis data), and simulations of the
hydrodynamic mesoscale model COSMO (see the text) for three months (a–c). Predictions of ML
models are averaged over predictions for test subsets sampled during five iterations of the blocked
k-fold cross-validation. Values of RMSE (in K) and R2 metrics for these specific periods are given for
each model in the legend, where rows are sorted according to RMSE.

Three selected months are especially interesting due to the opportunity for comparison
of the ML-based approximation of the UHI with the results of its simulation the mesoscale
hydrodynamic atmospheric model. Results presented in Figure 6 are obtained using the
predictors derived from global atmospheric reanalysis ERA5 without involving any local
observations. The numerical experiments on dynamic downscaling of global reanalysis
were performed for the same periods using the regional mesoscale model COSMO [50,94].
High-resolution (1-km grid spacing) numerical simulations were conducted involving
the urban canopy scheme TERRA_URB [95,96] and detailed data on the city-descriptive
parameters required for TERRA_URB [50]. COSMO simulations for June 2021 were forced
by ERA5 reanalysis [94], i.e., by the same product as used to force ML models in this study.
For two other periods, the model was forced by a reanalysis-like dataset compiled from
ICON analysis product provided by German Weather Service with 13-km grid spacing, even
more detailed than ERA5 [50]. These model simulations reproduced the UHI magnitude for
the Balchug weather station defined in this study with RMSEs of 0.87 K for January 2017,
1.57 K for June 2019, and 1.35 K for June 2021, and with R2 in the range of 0.59 to 0.66. Thus,
the ML models significantly outperform the much more complex and computationally
expensive hydrodynamic models in terms of the quality of the simulated ∆T. The best ML
models demonstrate RMSE lower than the mesoscale model by 13–42%, and R2 higher
by 12–46%.

3.2. Temporal Variations of Models’ Quality

Model quality is not constant over time and varies on different time scales. In particular,
it has diurnal and seasonal variations (Figure 7). The mean error (ME) of all models
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converges to zero for all seasons, indicating a minor seasonal dependency of the bias.
Moreover, ME values typically do not fall beyond the range of ±0.1 K, which is the
accuracy of meteorological measurements. Only ME for the baseline linear model reaches
values significantly outside this range.

Figure 7. Diurnal cycles of the ME (a) and RMSE (b) quality metrics (in K), RMSE to mean ∆T ratio
(c) in different seasons for best configurations of each model. Gray shading indicates diurnal cycle of
the mean ∆T according to observations.

The RMSE metric experiences more noticeable seasonal and diurnal course. For all
models and sets of predictors, the highest RMSE is found in summer (June-August or JJA)
and spring (March-May or MAM), and the lowest is found in autumn
(September-November or SON). The diurnal cycle is clearly visible in summer and winter;
its patterns in these two seasons are opposite. In summer, the RMSE is the highest in the
afternoon (at 15–18 h of local time) and the lowest at night and early morning (3–6 h of
local time for all models except baseline). In contrast, in winter, the RMSE is higher at night
than at daytime. Differences between the seasons become much smaller if we consider
the relative RMSE value, normalized by the mean observed ∆T (which is shown by gray
shading in Figure 7). For all seasons, ∆T follows its classic diurnal cycle, with a maximum
at night and a minimum around noon. As a result, the relative error is smaller at night,
against the background of higher ∆T, and higher during the daytime. High absolute and
relative errors in the daytime during the warm season may be explained by convective
atmospheric processes, e.g., the development of cumulonimbus clouds and associated local
precipitation over the city. Such processes can strongly affect local temperatures, but they
likely could not be taken into account based on the large-scale predictors used in our study.
In winter, the convection is suppressed, resulting in less disturbance. In further studies, it
will be appropriate to study the possibility of reducing the revealed summertime errors by
including additional predictors characterizing the conditions for the development of deep
convection and the influence of the city on such processes, such as the CAPE (convective
available potential energy) index, total column water content, wind share, etc.
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Interannual dynamics of model quality are analyzed based on the dataset for the longer
period of 1977–2023. For the basic study period of 2001–2021, as before, we take the quality
metrics evaluated according to the k-fold cross-validation method with k = 5. For the
preceding period of 1977–2000 and the subsequent period of 2022–2023, we applied models,
trained with data from the basic period from each of these 5 folds, evaluated these 5 models
against observations, and averaged their quality metrics (Supplementary Figure S2).

The interannual dynamics of the RMSE demonstrate a decreasing trend (Figure 8a),
which is significant (p ≤ 0.01) for most models. For the best models, such as CBR, RMSE
decreases from ≈0.8 K in 1980th to less than 0.7 K in 2010th. This is not surprising
because the models were trained with only the data for the period of 2001–2021. Such
behavior demonstrates the non-stationary relationship between predictors and predicants.
It may be associated with several reasons, including large-scale climate change, local-scale
climate changes due to urban development and landcover changes, the inhomogeneity of
observational time series, and the evolution of the reanalysis quality.

Figure 8. Interannual variability of the RMSE quality metric for the whole year (a), the ME qual-
ity metric for the whole year (b), and summer (c) for best configurations of each model; interan-
nual variability of the 10-wind speed according to observations and reanalysis (d) over the period
1977–2023. In subplots (a–c), gray shading indicates the mean ∆T for corresponding samplings
according to observations, black dotted line in (b,c) indicates mean ∆T predicted for an ensemble of
reanalysis-based models. Black rectangle indicates the basic study period used for model training
(2001–2021).
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More insights into the reasons for observed non-stationarity are disclosed based on
ME dynamics (Figure 8b,c). The mean ME over the basic study period is close to zero;
however, it has a decreasing trend within this period, so the models’ overestimation of
the ∆T evolves to an underestimation. The positive bias persists before the basic study
period, yet the differences between the models increase with distance from the start of the
base period to the past. For the reanalysis-based models, the ME fluctuates around 0.2 K
during 1980th and begins to decrease in 1990th. For other datasets, the dynamics are more
complex, with an increasing trend before 1990th.

Inconsistent ME dynamics for the models forced by reanalysis and observations
indicate the non-stationary relationships between observational-based and reanalysis-
based predictors. For example, the annual mean wind speed in the Moscow region clearly
decreases during the analyzed period, according to observations, but reanalysis does
not confirm this trend (Figure 8d). Such behavior is likely caused by local land cover
changes and an increase in surface roughness in the vicinity of the rural weather stations.
So, reanalysis seems to be a more reliable source of data on the long-term variability of
large-scale meteorological conditions.

It is interesting to compare the long-term dynamics of the models’ ME and ob-
served ∆T. Previous studies reported an increasing trend of ∆T in Moscow during the
last few decades. The annual-mean ∆T increased from 1.6 to 2.0 K since the middle of
XX century [45,47]. The same increase rates are found for the period of 1977–2023 used in
our study, and even faster rates are found for summer (Figure 8c). The most trivial explana-
tion of the UHI intensification is urban growth and development. In particular, Moscow’s
population has increased by 65% during the period 1977–2023 (Supplementary Figure S1).
The ML models are not supplied with any information about these anthropogenic factors
and could not take them into account. So, one may expect that ME would have the same
trend as observed ∆T but with an opposite sign.

However, the model’s MEs experience weaker trends than ∆T. The annual mean
observed ∆T increases during 1977–2020 with a significant (p < 0.01) linear trend slope of
0.11 K/decade, while MEs for reanalysis-based models decrease by about 0.08 K/decade,
which is 68% of the observed slope (Figure 8b). For the summer season, when the highest
rates of ∆T increase by 0.24 K/decade are observed, model bias decreases by 0.15 K/decade,
p < 0.01, which is 62% of the observed slope (Figure 8c). In other words, statistical models
only partially (by 100 − 68 = 32% for the whole year and by 100 − 62 = 38% for summer)
reproduce the increasing trend in ∆T (see black dotted lines in Figure 8), which is due to
trends in large-scale meteorological conditions, as these models use only meteorological
predictors. This confirms that the missing part of the observed trend (approximately
60–70%) is caused by non-meteorological factors, with urban development being one of the
major candidates.

Performed analysis of the linear trends suggests that observed UHI intensification
in Moscow is driven both by local anthropogenic factors (by about 60–70%) and by the
changes in large-scale conditions (by about 30–40%) that are becoming more favorable to
UHI appearance, especially in summer. This agrees with previous findings by Varentsova
and Varentsov (2021), who used spectral analysis of the temperature and ∆T time series
to demonstrate that background meteorological conditions in the Moscow region have
been becoming more favorable for UHI appearance in summer and in general throughout
the year during recent decades. In particular, there is a downward trend in the summer
cloudiness and in overcast frequency in the European part of Russia [97], which is further
confirmed by high-quality radiation observations at the meteorological observatory of
Lomonosov Moscow State University [98,99].

3.3. Importance of the Predictors

We use the scores of predictor importance provided by the RFR, GBR, and CBR models
to analyze which among the weather-related controls of the UHI magnitude in Moscow are
more important (see Section 2.4). As in previous sections, we average feature importance
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over the models trained with data from different folds and analyze the resulted importance
for the best models of each type.

In the simplest case of instant observation-based predictors (Figure 9a), the most
important one is the weather factor (WF), an empirical function of wind speed and cloud
cover. Its importance varied from 25 to 60% for different models. The differences between
other predictors are small; the most important among them are the wind speed and
solar elevation angle. If we take into account the delayed connections (Figure 9d), the
total contribution of temperature-based predictors increases up to 20–40%, mostly due to
the tendencies, and temperature becomes the second most important predictor. At the
same time, the contribution of astronomical features decreases. In the case of the instant
reanalysis-based predictors (Figure 9b), the most important is the ABL height with a weight
of 25–60%. Air temperature, wind speed, and precipitation stand out from the rest. As for
observations, the addition of temporal features enhances the contribution of temperature
due to the significant role of its tendencies (Figure 9e). At the same time, the ABL height
remains the most important predictor, not due to its tendencies but due to instant values
and MAs. MAs also become important for precipitation and wind speed. For the combined
set of predictors, the WF again turns out to be the most important, and the contribution of
the ABL height sharply decreases (Figure 9c,f). Differences between the contributions of
other predictors in the combined dataset inherit the patterns of both individual datasets,
while the contribution of both observations and reanalysis remains significant.

Figure 9. Relative importance of the predictors according to best ML models of three different types
(CBR, GBR, and RGR) trained with observational-based (a,d), reanalysis-based (b,e), and combined
(c,f) datasets with (a–c) and without (d–f) temporal features. For datasets containing temporal
features, different bar shadings indicate weights of predictors for instant values and temporal
features, i.e., moving averages and tendencies over preceding periods.
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The presented results agree with the physical basis of the UHI appearance and with
previously known dependencies. It is well known that UHI is strongly modulated by wind
speed and cloudiness [57]. Such dependences have also been reported for Moscow [3]. In
our study, these dependencies are taken into account through the WF, which becomes the
most important observational-based predictor. A high correlation between the WF and
UHI magnitude was also reported in several studies for other cities [59,100–102].

Our results highlight the linkages between canopy-layer and boundary-layer processes,
which is demonstrated by the high importance of the ABL height as a predictor. The UHI is
determined by differences in the heat balance between urban and rural surfaces [92]. As
well as for urban air pollution, a stable and shallow ABL traps the impact of the heat balance
differences on atmospheric properties near the surface [103]. On the contrary, the difference
between urban and rural surface heat balance is distributed over a higher ABL under
unstable stratification, causing a smaller urban-rural air temperature difference. Recently,
the ABL height and vertical temperature gradients in the lower atmosphere were found to
be important UHI predictors in the small polar city of Nadym in winter [104]. Here we show
that such dependencies are relevant for a much larger city throughout a whole year. Linkage
with ABL height also explains the high importance of the WF. WF reaches its maximum in
calm and clear conditions, which are known as ideal for UHI appearance [57,105]. Such
conditions favor the development of shallow, stable ABL above rural areas. Hence, the
WF serves as a proxy for ABL height at night. This explains why observational-based WF
almost replaces the reanalysis-based ABL height in the combined dataset.

For the first time, we demonstrate the relevance of temperature tendencies as a pre-
dictor of UHI magnitude. Temperature tendencies become the most important temporal
features, with a total contribution of up to 20%. This is not surprising since the urban-
induced differences in the energy balance result in differences in cooling and heating rates
between the two areas, and the formation of the intense nocturnal UHI is associated with a
strong cooling rate in rural areas [105,106]. This explains why a diurnal temperature range
is considered an important predictor of the daily maximum UHI magnitude [3,26,102].
However, temperature tendencies themselves have not been used as a quantitative UHI
predictor prior to our study.

4. Conclusions

Machine learning (ML) is an emerging technique that brings new opportunities to
various scientific areas, including urban meteorology. In this study, we used data-driven
ML models to simulate the temporal dynamics of the urban heat island (UHI) magnitude
in Moscow megacity on time scales ranging from hours to decades based on predictors
characterizing large-scale meteorological conditions according to rural meteorological
observations and ERA5 reanalysis.

For the first time, we performed a comparison of several state-of-the-art ML models
in a problem of approximation of the UHI magnitude time series. We compared the
baseline ridge regression (RR) linear model with three models based on decision trees,
namely random forest regression (RFR), gradient boosting regression (GBR), and CatBoost
regression (CBR), support vector machines for regression (SVR), and a fully connected
artificial neural network, multi-layer perceptron regression (MLPR). All these models,
trained on a 21-year (2001–2021) dataset, successfully capture the diurnal, synoptic-scale,
and seasonal variations of the UHI magnitude based on predictors derived from either
observation or reanalysis. The models forced by reanalysis perform worse than models
forced with rural weather observations, despite the smaller number of predictors in the
observation-based dataset. Evaluation scores are further improved when using both sources
of predictors simultaneously and involving additional features characterizing the dynamics
of predictors and representing their delayed connections with UHI magnitude (tendencies
and moving averages over periods of 3–12 h prior to the target moment).

The best evaluation scores are achieved with boosting models, first with CBR and
then with SVR. Forced with the combined set of reanalysis-based and observation-based
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predictors, these best models achieve RMSE as low as 0.7 K and R2 more than 0.8 on
average over 21 years, which is about 20% better than the baseline linear model (RR). When
using only reanalysis-based predictors, the model quality remains quite high, with an
RMSE of 0.8 K and an R2 of 0.75 for the best models. Moreover, for three selected summer
and winter months, the best ML models forced only by reanalysis data outperform the
comprehensive hydrodynamic mesoscale model COSMO, supplied by an urban canopy
scheme and detailed city-descriptive data and used for dynamical downscaling of the
same reanalysis.

For a longer 47-year period (1977–2023), the ML models only partially reproduce
the observed trend of increasing UHI magnitude in Moscow. The simulated trend in
due to trends of large-scale meteorological conditions, as our statistical models use only
meteorological predictors. This suggests that the observed trend is largely (by 60–70%)
driven by urban growth and development, which is not taken into account by the models.
The rest (30–40%) is driven by the changes in large-scale meteorological conditions, which
are becoming more favorable for UHI appearance, in particular due to the downward
trend in summer cloudiness and overcast frequency. Thus, for the first time, we have
obtained a quantitative assessment of the contribution of urbanization and meteorological
factors to the UHI trends for a large megacity. Many previous studies attribute the trends
of UHI intensification solely to urbanization factors, e.g., the regional-scale studies for
Japan [107], the United States [108], and China [109,110], as well as studies for specific
cities [111,112] including previous studies for Moscow [45]. Our results confirm that
urbanization factors are the dominant drivers of the UHI evolution in Moscow; however,
the changes in meteorological forcing are also important and should not be ignored.

Finally, we used the feature importance assessment provided by the ML models to
analyze the meteorological controls of the UHI. Our results highlight the importance of
the atmospheric boundary layer height as the most important control factor for the UHI
magnitude. Moreover, for the first time, we show the relevance of the temperature tendency
as a UHI magnitude predictor. The importance of these predictors is trivial in the context
of classical ideas about the physics of the UHI appearance [92]. However, these predictors
were not used in recent studies devoted to statistical modeling of the UHI [24–26]. So, we
recommend using the boundary layer height and temperature tendencies together with
other widely acknowledged UHI predictors such as cloudiness and wind speed.

Our research complements a series of recent studies showing the promise of ML
models in urban meteorology. We have shown the possibility of using the ML models to
approximate the temporal dynamics of the UHI magnitude, while other recent studies have
shown the possibility of approximating its spatial heterogeneity [36–41]. As a next step, it
seems promising to use ML models for simultaneous approximation of the spatiotemporal
variability of the UHI and other urban meteorological anomalies, which will open up new
opportunities for computationally efficient downscaling of coarse-resolution meteorological
datasets (reanalysis, climate change projections, output fields of numerical weather forecast
models) for urban areas. In turn, such downscaling techniques appear promising for
various urban meteorological services, including weather forecasting, real-time city-scale
meteorological mapping [113], and thermal stress warning systems [114,115].

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cli11100200/s1, Figure S1: Recent changes in the population of the
city of Moscow as an administrative unit according to two different data sources; Figure S2: Scheme
of the blocked k-fold method used to split the dataset into train and test subsets; Table S1: Metrics of
comparison between observation-based and reanalysis-based predictors; Figures S3–S9: hexbin plots
showing comparison between observed and modeled UHI magnitude for different models.
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