Linking Climate Change Information with Crop Growing Seasons in the Northwest Ethiopian Highlands
Abstract
:1. Introduction
2. Materials and Method
2.1. Study Area
Agriculture of the Study Area
2.2. Data Sets and Research Design
2.3. Determining the Best Reference for Validation
2.4. Model Validation and Evaluation
2.5. Climate Change Analysis
2.6. Potential Evapotranspiration
2.7. Soil Water Content Proxy
2.8. Growing Season Analysis
3. Results and Discussion
3.1. Changes in Temperature
3.2. Changes in Rainfall
3.3. Changes in Potential Evapotranspiration
3.4. Changes in Soil Water Balance
3.5. Variability in Length of Growing Season
4. Conclusions and Summary
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Akinseye, F.M.; Ajayi, V.O.; Oladitan, T.O. Assessing the impacts of climate variability on crop yield over Sudano-Sahelian zone in Nigeria. Int. J. Agric. Sci. 2013, 1, 91–98. [Google Scholar]
- Mesike, C.S.; Esekhade, T.U. Rainfall variability and rubber production in Nigeria. Afr. J. Environ. Sci. Technol. 2014, 8, 54–57. [Google Scholar] [CrossRef]
- Alemayehu, A.; Bewket, W. Local climate variability and crop production in the central highlands of Ethiopia. Environ. Dev. 2016, 19, 36–48. [Google Scholar] [CrossRef]
- Wubie, A.; Tadesse, Z.; Tesfaye, G.; Lakew, A. Fish Distribution and Abundance in the Upper Awash River, West Shewa, Ethiopia. J. Sci. Sustain. Dev. (JSSD) 2017, 5, 109–118. [Google Scholar]
- Cheung, W.H.; Senay, G.B.; Singh, A. Trends and spatial distribution of annual and seasonal rainfall in Ethiopia. Int. J. Climatol. A J. R. Meteorol. Soc. 2008, 28, 1723–1734. [Google Scholar] [CrossRef]
- Alebachew, A.; Woldeamlak, B. A Climate Change Country Assessment Report for Ethiopia. In Submitted to Forum for Environment; Epsilon International R&D: Addis Ababa, Ethiopia, 2011. [Google Scholar]
- Benedicta, Y.F.-M. Modelling Maize (Zea mays L.) Productivity and Impact of Climate Change on yield and Nutrient Utilization in Sub-humid Ghana; Ecology and Development Series; Zentrum für Entwicklungsforschung: Bonn, Germany, 2012. [Google Scholar]
- Hultine, K.R.; Hernández-Hernández, T.; Williams, D.G.; Albeke, S.E.; Tran, N.; Puente, R.; Larios, E. Global change impacts on cacti (Cactaceae): Current threats, challenges and conservation solutions. Ann. Bot. 2023, mcad040. [Google Scholar] [CrossRef]
- Lobell, D.B.; Gourdji, S.M. The influence of climate change on global crop productivity. Plant Physiol. 2012, 160, 1686–1697. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Wang, M.; Jiang, L.; Zhao, F.; Gao, F.; Zhao, H. Dynamics of carbon budget and meteorological factors of a typical maize ecosystem in Songnen Plain, China. Span. J. Agric. Res. 2023, 21, e0301. [Google Scholar] [CrossRef]
- Rosenzweig, C.; Strzepek, K.M.; Major, D.C.; Iglesias, A.; Yates, D.N.; McCluskey, A.; Hillel, D. Water resources for agriculture in a changing climate: International case studies. Glob. Environ. Chang. A 2004, 14, 345–360. [Google Scholar] [CrossRef]
- Horgan, F.G. Potential for an impact of global climate change on insect herbivory in cereal crops. In Crop Protection under Changing Climate; Springer: Cham, Switzerland, 2020; pp. 101–144. [Google Scholar]
- Lesk, C.; Anderson, W.; Rigden, A.; Coast, O.; Jägermeyr, J.; McDermid, S.; Davis, K.F.; Konar, M. Compound heat and moisture extreme impacts on global crop yields under climate change. Nat. Rev. Earth Environ. 2022, 3, 872–889. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Prueger, J.H. Temperature Extremes: Effect on Plant Growth and Development. Weather. Clim. Extrem. 2015, 10, 4–10. [Google Scholar] [CrossRef]
- Kukal, M.S.; Irmak, S. US agro-climate in 20th century: Growing degree days, first and last frost, growing season length, and impacts on crop yields. Sci. Rep. 2018, 8, 6977. [Google Scholar] [CrossRef] [PubMed]
- Gautam, H.R.; Bhardwaj, M.L.; Kumar, R. Climate change and its impact on plant diseases. Curr. Sci. 2013, 105, 1685–1691. [Google Scholar]
- Robertson, A.W.; Ines, A.V.; Hansen, J.W. Downscaling of seasonal precipitation for crop simulation. J. Appl. Meteorol. Climatol. 2007, 46, 677–693. [Google Scholar] [CrossRef]
- World Bank. Ethiopian: Country Economic Memorandum, Background Report: Fourth Ethiopia: A Regional Characterization Assessing Ethiopia Growth Potential and Development Obstacles; World Bank: Washington, DC, USA, 2004. [Google Scholar]
- World Bank. Ethiopia: Climate Risk Factsheet (Draft Summary Report); World Bank: Addis Ababa, Ethiopia, 2009. [Google Scholar]
- Thornton, P.K.; Jones, P.G.; Alagarswamy, G.; Andresen, J. Spatial variation of crop yield response to climate change in East Africa. Glob. Environ. Chang. 2009, 19, 54–65. [Google Scholar] [CrossRef]
- Gebrehiwot, T.; Van Der Veen, A. Farm level adaptation to climate change: The case of farmer’s in the Ethiopian Highlands. Environ. Manag. 2013, 52, 29–44. [Google Scholar] [CrossRef]
- Asrat, P.; Simane, B. Farmers’ perception of climate change and adaptation strategies in the Dabus watershed, North-West Ethiopia. Ecol. Process. 2018, 7, 7. [Google Scholar] [CrossRef]
- Senbeta, A.F.; Worku, W. Ethiopia’s wheat production pathways to self-sufficiency through land area expansion, irrigation advance, and yield gap closure. Heliyon 2023, 9, e20720. [Google Scholar] [CrossRef]
- Trouet, V.; Van Oldenborgh, G.J. KNMI Climate Explorer: A Web-Based Research Tool for KNMI Climate Explorer (CE) Instruction Manual. 2013. Available online: http://climexp.knmi.nl/help.cgi (accessed on 1 December 2012).
- Fujino, J.; Nair, R.; Kainuma, M.; Masui, T.; Matsuoka, Y. Multigas mitigation analysis on stabilization scenarios using aim global model. Energy J. Spec. Issue 2006, 3, 343–354. [Google Scholar]
- Hijioka, Y.; Matsuoka, Y.; Nishimoto, H.; Masui, T.; Kainuma, M. Global GHG emission scenarios under GHG concentration stabilization targets. J. Glob. Environ. Eng. 2008, 13, 97–108. [Google Scholar]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An overview of CMIP5 and the experiment design. Bull Amer. Met. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef]
- Becker, A.; Finger, P.; Meyer-Christoffer, A.; Rudolf, B.; Schamm, K.; Schneider, U.; Ziese, M. A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901–present. Earth Syst. Sci. Data (ESSD) 2013, 5, 71–99. [Google Scholar] [CrossRef]
- Jury, M.R. Statistical evaluation of CMIP5 climate change model simulations for the Ethiopian highlands. Int. J. Climatol. 2015, 35, 37–44. [Google Scholar] [CrossRef]
- Thornthwaite, C.W.; Mather, J.R. Instructions and Tables for Computing Evapotranspiration and the Water Balance, 5th ed.; Climatology: Centerton, NJ, USA, 1957. [Google Scholar]
- Fuchs, T.; Schneider, U.; Rudolf, B. Global Precipitation Analysis Products of the GPCC. 2007. Available online: http://www.dwd.de/en/FundE/Klima/KLIS/int/GPCC/ReportsPublications/QR/GPCC-intro-products-2007.pdf (accessed on 1 December 2012).
- Dinku, T.; Connor, S.J.; Ceccato, P.; Ropelewski, C.F. Comparison of global gridded precipitation products over a mountainous region of Africa. Int. J. Climatol. A J. R. Meteorol. Soc. 2008, 28, 1627–1638. [Google Scholar] [CrossRef]
- Muluneh, B. Spatial Variability of Impact of Climate Change on Water Availability in BlueNile Basin. Master’s Thesis, Arbaminch University, Arbaminch, Ethiopian, 2008. [Google Scholar]
- Banchiamlak, K. Analysis of the Variability of Rainfall Distribution and Evapotranispiration over Eastern Amahara Region. Master’s Thesis, Arbaminch University, Arbaminch, Ethiopia, 2009. [Google Scholar]
- World Meteorology Organization. Scientists Urge More Frequent Updates of 30-Year Climate Baseline to Keep Pace with the Rapid Climate Change; Press Release No. 997; World Meteorology Organization: Heidelberg, Germany, 2014. [Google Scholar]
- Stern, R.; Rijks, D.; Dale, I.; Knock, J. INSTAT Climatic Guide; University of Reading: Reading, UK, 2006; 330p, Available online: http://www.reading.ac.uk/ssc/software/instat/climatic.pdf/oct.27/2010 (accessed on 1 December 2012).
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements—FAO Irrigation and Drainage Paper 56; Food and Agricultural Organization: Rome, Italy, 1998. [Google Scholar]
- Henricksen, B.L.; Durkin, J.W. Moisture Availability, Cropping Period and the Prospects for Early Warning of Famine in Ethiopia; Computer Unit, ILCA: Addis Ababa, Ethiopia, 1987. [Google Scholar]
- Masresha, E. Growing season belts of Ethiopia. In Proceedings of the National Sensitization Workshop on Agrometeorology and GIS, Addis Ababa, Ethiopia, 17–18 December 2001; EARO: Addis Ababa, Ethiopia, 2003; pp. 35–36. [Google Scholar]
- Belay, S. Agroclimatic Analysis in Relation to Crop Production; Ethiopian Agricultural Research Organization of Ethiopia: Bahir Dar, Ethiopia, 2001. [Google Scholar]
- Araya, S.D.; Keesstra, L.; Stroosnijder, L. A new agro-climatic classification for crop suitability zoning in northern semi-arid Ethiopia. Agric. For. Meteorol. 2010, 150, 1057–1064. [Google Scholar] [CrossRef]
- McBean, E.A.; Rovers, F.A.; Farquhar, G.J. Solid Waste Landfill Engineering and Design; Prentice Hall PTR: Englewood Cliffs, NJ, USA, 1995. [Google Scholar]
- Food and Agricultural Organization. Agro-Ecological Zoning Guidelines, FAO Soils Bulletin 76, Soil Resources, Management and Conservation Service; FAO Land and Water Development Division: Rome, Italy, 1996. [Google Scholar]
- Thornton, P.K.; Jones, P.G.; Owiyo, T.; Kruska, R.L.; Herrero, M.T.; Kristjanson, P.M.; Notenbaert, A.M.O.; Bekele, N.; Omolo, A. Mapping Climate Vulnerability and Poverty in Africa; Department for International Development: Nairobi, Kenya, 2006; p. 171. [Google Scholar]
- Thornthwaite, C.W. An approach toward a rational classification of climate. Geographical Review. Am. Geogr. Soc. 1948, 38, 55–94. [Google Scholar]
- Nata, T. Surface Waters Potential of the Hantebet Basin, Tigray, Northern Ethiopia. Agric. Eng. Int. CIGRE J. 2006, VIII, LW0501. [Google Scholar]
- Tesfaye, M. Water Balance Applications in the Identification and Analysis of Agricultural Droughts in South Wollo Zone, Ethiopia. Ph.D. Thesis, The University the Andhra University, Visakhapatnam, India, 2014. [Google Scholar]
- Knutson, T.R.; Zeng, F.; Wittenberg, A.T. Multi-Model Assessment of Regional Surface Temperature Trends: CMIP3 and CMIP5 20th Century Simulations. J. Clim. 2013. [Google Scholar] [CrossRef]
- Federal Democratic Republic of Ethiopia. Climate Resilient Green Economy: Mission Statement; FDRE: Addis Ababa, Ethiopia, 2011. [Google Scholar]
- National Meteorological Services Agency. Climate Change National Adaptation Programme of Action (NAPA) of Ethiopia; NMSA: Addis Ababa, Ethiopia, 2007. [Google Scholar]
- Intergovernmental Panel on Climate Change. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; 151p. [Google Scholar]
- Conway, D.; Schipper, L.; Mahmud, Y.; Menale, K.; Aurélie, P.; Bereket, K. Reducing Vulnerability in Ethiopia: Addressing the Implications of Climate Change Integration of Results from Phase I; Report prepared for the UK Department for International Development (DFID) and the Canadian International Development Agency (CIDA); Ethiopian Development Research Institute (EDRI): Addis Ababa, Ethiopia, 2007. [Google Scholar]
- Cramer, W.; Guiot, J.; Marini, K.; Azzopardi, B.; Balzan, M.V.; Cherif, S.; Doblas-Miranda, E.; Dos Santos, M.J.P.L.; Drobinski, P.; Fader, M.; et al. MedECC 2020 summary for policymakers. In Climate and Environmental Change in the Mediterranean Basin–Current Situation and Risks for the Future. First Mediterranean Assessment Report; Union for the Mediterranean, Plan Bleu, UNEP/MAP: Marseille, France, 2020; pp. 11–40. [Google Scholar]
- Conway, D.; Schipper, E.L.F. Adaptation to Climate Change in Africa: Challenges and Opportunities; (Draft) Final Revised Version, June, 2012; Elsevier: Addis Ababa, Ethiopia, 2011. [Google Scholar]
- Jury, M.R. Ethiopian highlands crop-climate prediction 1979–2009. J. Appl. Meteorol. Climatol. 2013, 52, 1116–1126. [Google Scholar] [CrossRef]
- National Meteorological Services Agency. Climatic and Agro-Climatic Resources of Ethiopia; Meteorological Research Report Series; National Meteorological Services Agency: Addis Ababa, Ethiopia, 1996; Volume 1, pp. 1–37. [Google Scholar]
- Yilma, S.; Ulrich, Z. Recent changes in rainfall and rainy days in Ethiopia. Int. J. Climatol. 2004, 24, 973–983. [Google Scholar] [CrossRef]
- Segele, Z.T.; Lamb, P.J. Characterization and variability of JJAS rainy season over Ethiopia. Meteorol. Atmos. Phys. 2005, 89, 153–180. [Google Scholar] [CrossRef]
- Gizaw, M.T. High-Resolution Monthly Rainfall Database for Ethiopia: Homogenization, Reconstruction, and Gridding. J. Climatol. 2012, 25, 8422–8443. [Google Scholar]
- McSweeney, C.; New, M.; Lizcano, G. UNDP Climate Change Country Profiles—Ethiopia; United Nations Development Programme: New York, NY, USA, 2008. [Google Scholar]
- Fazzini, M.; Carlo, B.; Billi, P. (Eds.) The Climate of Ethiopia: Landscapes and Landforms of Ethiopia, World Geomorphological Landscapes; Springer: Dordrecht, The Netherlands, 2015. [Google Scholar] [CrossRef]
- Subrahmanyam, V.P. Water Balance and Its Applications; Andhra University Press: Waltair Visakhapatnam, India, 1980. [Google Scholar]
- Markos, D.; Worku, W.; Mamo, G. Spatio-temporal variability and rainfall trend affects seasonal calendar of maize production in southern central Rift Valley of Ethiopia. PLoS Clim. 2023, 2, e0000218. [Google Scholar] [CrossRef]
- Ayele, G.; Jabbar, M.A.; Teklewold, H.; Mulugeta, E.; Kebede, G. Seasonal and Inter-Market Differences in Prices of Small Ruminants in Ethiopia; Research Reports 182171; International Livestock Research Institute: Nairobi, Kenya, 2006. [Google Scholar]
No | Model | GPCC v6(r) | JJAS- Diff. (GPCC v6 vs. rcp6) | Season Peak- JA/Day) | Annual Pattern Fitness | Remark |
---|---|---|---|---|---|---|
1 | bcc-csm1-1 | 0.65 | −3.2 | 3.8 | poor | Screened out |
2 | bcc-csm1-1-m | 0.90 | −1.4 | 6.3 | poor | Screened out |
3 | CCSM4 | 0.76 | −2.0 | 4.3 | poor | Screened out |
4 | CESM1-CAM5 | 0.75 | −0.9 | 5.7 | poor | Screened out |
5 | CSIRO-Mk3-6-0 | 0.91 | −1.1 | 8.8 | moderate | Screened out |
6 | FIO-ESM | 0.80 | −2.1 | 4.6 | poor | Screened out |
7 | GFDL-CM3 | 0.87 | −1.5 | 6.2 | poor | Screened out |
8 | GFDL-ESM2G | 0.86 | −0.3 | 6.7 | moderate | Screened out |
9 | GFDL-ESM2M | 0.87 | −0.5 | 6.4 | moderate | Screened out |
10 | GISS-E2-H_p1 | 0.96 | −5.3 | 3.2 | poor | Screened out |
11 | GISS-E2-H_p2 | 0.96 | −5.5 | 2.8 | poor | Screened out |
12 | GISS-E2-H_p3 | 0.96 | −4.7 | 4.0 | poor | Screened out |
13 | GISS-E2-R_p1 | 0.97 | −5.6 | 2.5 | poor | Screened out |
14 | GISS-E2-R_p2 | 0.97 | −5.7 | 2.6 | poor | Screened out |
15 | GISS-E2-R_p3 | 0.96 | −5.3 | 2.7 | poor | Screened out |
16 | HadGEM2-AO | 0.96 | −0.4 | 8.1 | high | 2nd selected |
17 | HadGEM2-ES | 0.97 | −0.5 | 8.0 | high | 1st selected |
18 | IPSL-CM5A-LR | 0.89 | −2.7 | 6.3 | poor | Screened out |
19 | IPSL-CM5A-MR | 0.90 | −3.3 | 5.3 | poor | Screened out |
20 | MIROC5 | 0.98 | 11.5 | 21.1 | poor | Screened out |
21 | MIROC-ESM | 0.86 | −0.5 | 7.3 | high | Screened out |
22 | MIROC-ESM-CHEM | 0.88 | −0.5 | 7.4 | high | Screened out |
23 | MRI-CGCM3 | 0.93 | −2.5 | 6.0 | moderate | Screened out |
24 | NorESM1-M | 0.66 | −2.7 | 3.4 | poor | Screened out |
25 | NorESM1-ME | 0.62 | −2.3 | 3.3 | poor | Screened out |
CMIP5 rcp6 Tasmax Model Stepwise Evaluation Using CRUTS 3.22 as Reference from 1981–2010 | |||||
---|---|---|---|---|---|
No | Model Type | CRUTS 3.22 Tasmax (r) | Seasonal Peak/MAM Diff. (CRUTS 3.22 vs. rcp6) | Annual Pattern Fitness | Remark |
1 | bcc-csm1-1 | 0.90 | 2.0 | Poor | Screened out |
2 | bcc-csm1-1-m | 0.35 | −1.4 | Poor | Screened out |
3 | CCSM4 | 0.98 | −0.5 | High | 1st selected |
4 | CESM1-CAM5 | 0.90 | −2.3 | Poor | Screened out |
5 | CSIRO-Mk3-6-0 | 0.43 | −1.8 | Poor | Screened out |
6 | FIO-ESM | 0.81 | 1.6 | Poor | Screened out |
7 | GFDL-CM3 | 0.90 | 3.6 | Poor | Screened out |
8 | GFDL-ESM2G | 0.91 | −1.0 | Moderate | Screened out |
9 | GFDL-ESM2M | 0.92 | −0.7 | Moderate | 4th selected |
10 | GISS-E2-H_p1 | 0.94 | 4.0 | Poor | Screened out |
11 | GISS-E2-H_p2 | 0.90 | 4.0 | Poor | Screened out |
12 | GISS-E2-H_p3 | 0.95 | 3.9 | Poor | Screened out |
13 | GISS-E2-R_p1 | 0.97 | 4.7 | Poor | Screened out |
14 | GISS-E2-R_p2 | 0.93 | 4.8 | Poor | Screened out |
15 | GISS-E2-R_p3 | 0.95 | 4.8 | Poor | Screened out |
16 | HadGEM2-AO | 0.91 | 0.2 | Moderate | 3rd selected |
17 | IPSL-CM5A-LR | 0.20 | −1.1 | Poor | Screened out |
18 | IPSL-CM5A-MR | 0.22 | 1.1 | Poor | Screened out |
19 | MIROC5 | 0.93 | −3.3 | Poor | Screened out |
20 | MIROC-ESM | 0.93 | 3.2 | Poor | Screened out |
21 | MIROC-ESM-CHEM | 0.94 | 2.8 | Poor | Screened out |
22 | MRI-CGCM3 | 0.85 | 0.9 | Poor | Screened out |
23 | NorESM1-M | 0.94 | 0.3 | High | 2nd selected |
No | CMIP5 rcp6 Models | ERA Vs rcp6 PET/Adjshf (r) | Seasonal Diff. FMA (ERA vs. rcp6) | Annual Cycle Fitness | Remark |
---|---|---|---|---|---|
1 | bcc-csm1-1-m | 0.79 | 0.46 | moderate | Filtered out |
2 | bcc-csm1-1 | 0.73 | 0.72 | poor | Filtered out |
3 | CCSM4 | 0.96 | 0.63 | high | 2nd selected |
4 | CESM1-CAM5 | 0.78 | 0.06 | moderate | Filtered out |
5 | CSIRO-Mk3-6-0 | 0.79 | 1.04 | poor | Filtered out |
6 | FIO-ESM | 0.95 | 0.81 | high | 4th selected |
7 | GFDL-CM3 | 0.92 | 1.26 | poor | Filtered out |
8 | GFDL-ESM2G | 0.9 | 0.92 | moderate | Filtered out |
9 | GFDL-ESM2M | 0.92 | 0.88 | moderate | Filtered out |
10 | GISS-E2-H_p1 | 0.95 | 1.48 | poor | Filtered out |
11 | GISS-E2-H_p2 | 0.96 | 1.32 | poor | Filtered out |
12 | GISS-E2-H_p3 | 0.97 | 1.21 | poor | Filtered out |
13 | GISS-E2-R_p1 | 0.95 | 1.29 | poor | Filtered out |
14 | GISS-E2-R_p2 | 0.97 | 1.11 | poor | Filtered out |
15 | GISS-E2-R_p3 | 0.97 | 1.04 | moderate | Filtered out |
16 | HadGEM2-AO | 0.93 | 0.34 | high | Filtered out |
17 | HadGEM2-ES | 0.96 | 0.24 | very high | 1st selected |
18 | IPSL-CM5A-LR | 0.87 | 1.52 | poor | Filtered out |
19 | IPSL-CM5A-MR | 0.74 | 1.34 | poor | Filtered out |
20 | MIROC5 | 0.95 | −0.95 | moderate | Filtered out |
21 | MIROC-ESM | 0.87 | 0.11 | moderate | Filtered out |
22 | MIROC-ESM-CHEM | 0.85 | 0.05 | moderate | Filtered out |
23 | MRI-CGCM3 | 0.8 | 0.31 | moderate | Filtered out |
24 | NorESM1-M | 0.95 | 0.58 | high | 3rd selected |
25 | NorESM1-ME | 0.91 | 0.44 | high | Filtered out |
Time Period | Parameter | January | February | March | April | May | June | July | August | September | October | November | December |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Past | Rainfall | 7 | 11 | 29 | 89 | 147 | 197 | 217 | 231 | 171 | 74 | 23 | 14 |
RO | 2.2 | 3.5 | 9.3 | 28.5 | 47.0 | 63.0 | 69.4 | 73.9 | 54.7 | 23.7 | 7.4 | 4.5 | |
(1981–2010) | PET/Es | 110 | 121 | 126 | 123 | 112 | 92 | 81 | 81 | 86 | 93 | 99 | 103 |
P-Es-RO | −105 | −114 | −106 | −62 | −12 | 42 | 67 | 76 | 30 | −43 | −83 | −93 | |
ACC.P.WL | −325 | −439 | −545 | −607 | −619 | −43 | −126 | −220 | |||||
ST | 38 | 22 | 13 | 9 | 8 | 50 | 117 | 193 | 200 | 161 | 105 | 66 | |
∆ST | −28 | −16 | −9 | −4 | −1 | 42 | 67 | 76 | 7 | −39 | −56 | −39 | |
AE (P + ∆ST) | 35 | 27 | 38 | 93 | 112 | 92 | 81 | 81 | 86 | 93 | 79 | 53 | |
Future | Precipitation | 8 | 9 | 26 | 92 | 161 | 211 | 216 | 227 | 188 | 86 | 26 | 15 |
RO | 2.6 | 2.9 | 8.3 | 29.4 | 51.5 | 67.5 | 69.1 | 72.6 | 60.2 | 27.5 | 8.3 | 4.8 | |
(2041–2070) | PET/Es | 123 | 140 | 152 | 139 | 111 | 94 | 84 | 82 | 84 | 88 | 97 | 108 |
P-Es-RO | −118 | −134 | −134 | −76 | −2 | 49 | 63 | 72 | 44 | −30 | −79 | −98 | |
ACC.P.WL | −325 | −459 | −593 | −669 | −671 | −30 | −109 | −207 | |||||
ST | 39 | 20 | 10 | 7 | 7 | 56 | 119 | 192 | 200 | 172 | 115 | 70 | |
∆ST | −31 | −19 | −10 | −3 | 0 | 49 | 63 | 72 | 8 | −28 | −57 | −45 | |
AE (P + ∆ST) | 39 | 28 | 36 | 95 | 111 | 94 | 84 | 82 | 84 | 88 | 83 | 60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarekegn, G.B.; Alaminie, A.A.; Debele, S.E. Linking Climate Change Information with Crop Growing Seasons in the Northwest Ethiopian Highlands. Climate 2023, 11, 243. https://doi.org/10.3390/cli11120243
Tarekegn GB, Alaminie AA, Debele SE. Linking Climate Change Information with Crop Growing Seasons in the Northwest Ethiopian Highlands. Climate. 2023; 11(12):243. https://doi.org/10.3390/cli11120243
Chicago/Turabian StyleTarekegn, Gashaw Bimrew, Addis A. Alaminie, and Sisay E. Debele. 2023. "Linking Climate Change Information with Crop Growing Seasons in the Northwest Ethiopian Highlands" Climate 11, no. 12: 243. https://doi.org/10.3390/cli11120243
APA StyleTarekegn, G. B., Alaminie, A. A., & Debele, S. E. (2023). Linking Climate Change Information with Crop Growing Seasons in the Northwest Ethiopian Highlands. Climate, 11(12), 243. https://doi.org/10.3390/cli11120243