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Abstract: This study analyzed long-term extreme precipitation indices using 4 × 4 km gridded data
obtained from the National Meteorological Agency of Ethiopia between 1981 and 2018. The study
examined trends in extreme precipitation over three districts (Lay Gayint, Tach Gayint, and Simada)
in the northwestern highlands of Ethiopia. Innovative Trend Analysis (ITA) and Mann–Kendall (MK)
trend tests were used to study extreme precipitation trends. Based on the ITA result, the calculated
values of nine indices (90% of the analyzed indices) showed significant increasing trends (p < 0.01) in
Lay Gayint. In Tach Gayint, 70% (seven indices) showed significantly increasing trends at p < 0.01.
On the other hand, 60% of the extreme indices showed significant downward trends (p < 0.01) in
Simada. The MK test revealed that 30% of the extreme indices had significantly increasing trends
(p < 0.01) in Lay Gayint. In Tach Gayint, 30% of the extreme indices showed significant increasing
trends at p < 0.05, while 10% of the extreme indices exhibited significant increasing trends at p < 0.01.
In Simada, 20% of the extreme indices showed significant increasing trends at p < 0.05. Overall, the
results showed that the ITA method can identify a variety of significant trends that the MK test misses.

Keywords: precipitation extremes; trends; climate change; Northwest Ethiopia

1. Introduction

Climate change has altered the circulation and distribution of water resources while
increasing the likelihood of extreme disasters [1–4]. Precipitation is an important variable
in local climate characteristics and a critical element of the global water cycle [5]. The
recurrence of extreme precipitation events, such as droughts and floods, has a significant
impact on human livelihoods and socioeconomic development [6–8]. Average global mean
temperature has been rising since the pre-industrial period, with 2015–2019 being the
warmest period since records began in 1850 [9]. Every 1 ◦C temperature rise increases the
moisture holding capacity of the air by 7% [10]. An increase in humidity leads to heavier
precipitation and increases the risk of flooding. Recent studies on global precipitation
trends show an increase in the frequency of extreme events [11,12]. Climate-related events
cause more than 70% of reported natural disasters worldwide, with most of these disasters
being caused by extreme precipitation events of floods and droughts [13]. According to
the World Meteorological Organization (WMO) [9], the weather in Africa in 2019 was
characterized by steadily rising temperatures, and the negative effects of weather and
climate extreme events were large. East Africa in particular is prone to severe climate
extremes such as droughts and floods [7]. The climate of the Horn of Africa had changed
abruptly from drought conditions in 2018 to floods and landslides in late 2019 [9].

Ethiopia is one of the East African countries facing climate-related risks, such as floods
and droughts, caused by climate change and variability [14]. Several studies confirmed that

Climate 2023, 11, 164. https://doi.org/10.3390/cli11080164 https://www.mdpi.com/journal/climate

https://doi.org/10.3390/cli11080164
https://doi.org/10.3390/cli11080164
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/climate
https://www.mdpi.com
https://doi.org/10.3390/cli11080164
https://www.mdpi.com/journal/climate
https://www.mdpi.com/article/10.3390/cli11080164?type=check_update&version=1


Climate 2023, 11, 164 2 of 18

Ethiopia’s economy and food security, which are largely based on rain-fed agriculture, are
very sensitive to fluctuations in rainfall and extreme events [7,15]. According to Bezu [16],
Ethiopia has experienced at least two catastrophic droughts per decade. This has had an
impact on the country’s environment and natural resources. The tropical currents of the
Pacific Ocean are the primary global climatic drivers for such severe events (i.e., floods and
droughts) in Ethiopia [17]. In addition, changes in precipitation extremes in the country are
influenced by local-scale climate controls [18,19].

The current study districts (Lay Gayint, Tach Gayint, and Simada) in the northwestern
part of the country are among the drought-prone and food-insecure districts of the Amhara
Region [20,21] These districts are classified as chronically food insecure because of their
reliance on regularly receiving food aid [22,23]. The food insecurity of the area is mainly
caused by rainfall variability and associated drought episodes.

Investigating daily precipitation extreme indices within the context of climate change
and variability holds significant importance for multiple reasons. The knowledge gained
from this study can prove valuable for policymakers in their efforts to manage floods,
control runoff, and understand hydrological processes. This understanding can also help
assess the risk of altered rainfall patterns, particularly those that arise from extreme rainfall
events resulting from climate change [24–26] highlight the need for a more comprehensive
comprehension of extreme rainfall variability to aid in water resource management, drought
monitoring, and flood control. Additionally, Obada et al. [27] emphasize the critical role
that scientific analysis of extreme rainfall and its evolution plays in implementing effective
operational management and mitigating flood risks. Overall, studying daily precipitation
extreme indices is a substantial contribution to our understanding of climate change and
its environmental impacts.

There are many studies on rainfall patterns and trends in Ethiopia. For instance,
Berhan et al. [28] performed a trend analysis for observed trends in climatic extremes at
Choke Mountain and reported a significant decrease in total precipitation along with a
decrease in wet extremes. A significant decrease in extreme climate indices was found in
the semi-arid areas of western Tigray [28]. Most precipitation extreme indices considered
in their study in the southern and southwestern parts of Ethiopia showed increasing
trends [29]. According to Damtew et al. [30], most extreme climate indices decreased in the
Awash River basin. The disparity in the findings of extreme precipitation trends in Ethiopia
might be attributed to extremely variable topography features, data analysis methodologies
utilized, time series data length, number of meteorological stations, data quality, and spatial
coverage of the studied area.

In South-eastern Ethiopia, Degefu et al. [31] found a significant downward trend in the
extreme precipitation indices for annual and seasonal timescales. Dendir and Birhanu [32]
identified inconsistencies in the trend of extreme climate events in the Gurage Zone in
Central Ethiopia. Esayas et al. [33] reported that very wet days showed a positive trend
in the midlands and highlands of Southern Ethiopia. Gedefaw et al. [34] found signif-
icantly increasing trends in seasonal and annual precipitation in the Amhara Region.
Geremew et al. [15] discovered that extreme rainfall trends in Enebsie Sar Midir district,
central Ethiopian highlands, did not show a systematic pattern. Worku et al. [35] found
decreasing trends in annual precipitation extremes in the southern parts of the Blue Nile
basin. Terefe et al. [19] found clearly decreasing trends for most extreme precipitation
indices in the Meki watershed of the central rift valley basin. In addition, Terefe et al. [19]
found significant decreasing trends for most extreme precipitation indices in the same
watershed (the Meki watershed of the central Rift Valley basin).

The Mann–Kendall (MK) test [36,37] is widely used to detect monotonic trends. It
is well-known that the MK and MMK methods rely on several assumptions. Therefore,
the validity of utilizing these methods and the results they generate is contingent upon
adhering to these assumptions [38].

The MK trend test offers several advantages over parametric tests [24–26]. Firstly,
it is a non-parametric test and does not make any assumptions about the distribution of
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the data, making it useful for analyzing data that may not follow a normal distribution.
Secondly, the MK trend test is a robust test and is less sensitive to outliers and missing
values than other trend tests, making it more reliable when analyzing data that may contain
extreme values or noise. Lastly, the MK trend test can handle ties in the data, which are
multiple data points having the same value, making it useful for analyzing data with
repeated values. Although the MK test is widely used in hydrological trend analysis,
studies have shown that the presence of autocorrelation could affect trend identification
using the MK and Sen’s slope methods [39,40]. Some studies have used pre-whitening
technique to remove autocorrelation from datasets [39,40]. However, several studies have
shown that pre-whitening can remove some of the true trends and may be ineffective when
serial correlation persists beyond the first-order autoregressive process and the sample size
is large [41,42]. To address this problem, Sen [43] proposed the Innovative Trend Analysis
(ITA) approach, which can solve the challenge of trend detection in autocorrelated time series
data. Studies around the world have confirmed the reliability of the ITA method [2,44–47].

This paper is novel in its application and comparison of Sen’s innovative trend test with
the Mann–Kendall test, despite the widespread use of ITA trend analysis in various regions
worldwide. However, to our knowledge, only a few studies in Ethiopia have utilized
ITA trend analysis, including one in the Amhara regional state [34], another in the Meki
watershed of the central rift valley basin of Ethiopia [19], and a third in Addis Ababa [48]. In
contrast, most studies that analyze hydro-climatological data for trend analysis in Ethiopia
have used the MK test, t-test, and linear regression test. The paper highlights the potential
benefits of using Sen’s innovative trend test, particularly in countries like Ethiopia where
there may be limited research on the use of ITA trend analysis. Overall, comparing these
trend analysis methods can provide valuable insights into the strengths and limitations of
each approach, helping researchers choose the most appropriate method for their specific
research context.

The aim of this study is to analyze trends of extreme precipitation events in Northwest-
ern Ethiopia and covering the three food-insecure districts of Lay Gayint, Tach Gayint, and
Simada. The specific objectives are: (i) to examine trends in extreme precipitation using the
ITA and MK methods; and (2) to compare the results of the ITA method with the MK test.

2. Materials and Methods
2.1. Study Area Description

The study area covers Tach Gayint, Lay Gayint, and Simada districts (Woredas in
Amharic) in the South Gondar Administrative Zone of the Amhara National Regional
State of Ethiopia (Figure 1). Lay Gayint is located in the High Dega agroecological zone
(3200–3700 m a.s.l.), while Tach Gayint and Simada are located in Dega (2300–3200 m a.s.l.)
and Woyna Dega (1500–2300 m a.s.l.), respectively [49]. Average annual rainfall ranges
from 788 mm in Simada to 1096 mm in Lay Gayint, while the average annual temperature
ranges from 14.4 ◦C in Lay Gayint to 18.2 ◦C in Simada. The main rainy season (Kiremt)
lasts from June to mid-September, and the small rainy season (Belg) lasts from March to
May [20]. The bimodal precipitation system allows for two harvest seasons (peak and
off-season, known locally as Meher and Belg, respectively). However, the Belg harvest is
hampered by the short, highly variable, and often insufficient rainy season [20]. The study
area is generally food insecure due to a delayed start, early finish, and low Belg outputs.
Most households struggle to produce enough food and rely heavily on the Productive
Safety Nets Program (PSNP). The PSNP is a national program implemented in almost all
areas that are vulnerable to persistent food insecurity, with support from development
partners, to help the poor build assets, improve their living standards, and eventually
become self-sufficient in terms of nutrition and resilience to shocks and stresses. According
to information from the South Gondar Zone Administration Office, five districts, including
the study area, benefit from the PSNP (Simada, Libokemkem, Lay Gayint, Ebnat, and Tach
Gayint). Due to limited access to infrastructure, inadequate and inefficient agricultural
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marketing system, and limited access to institutional support services, non-agricultural
livelihood activities are not well established in the study area.
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2.2. Data Sources and Quality Control

The National Meteorological Agency (NMA) of Ethiopia provided the precipitation
data used for the study, which covered the period from 1981 to 2018. It is a gridded
dataset (4 × 4 km grid) obtained by merging station records with remote sensing-based
estimates [50]. The satellite-based estimates are used to bridge temporal and spatial gaps
in station records. The gridded dataset is particularly useful in data-sparse regions [51].
The dataset has been evaluated extensively and has demonstrated strong performance
when evaluated at station locations across Ethiopia [51,52]. It also provides a homogeneous
dataset [53] and is therefore recommended for climate analysis. The gridded dataset with
a 4 × 4 km grid was chosen for analysis due to three reasons: (1) weather stations over
the study area are scarce and do not cover all the study sites [51], (2) station datasets have
many missing values [54], and (3) most stations are recently established and lack sufficient
data records to support trend analysis [51,52,54].

Homogeneity testing of climate data is crucial in climatological research, particularly
when evaluating climate change [55]. When weather stations record long-term series cli-
mate data, non-climatic factors of the data are inevitably influenced due to changes in
instruments, observers, site locations, or surrounding environments [56]. In this study,
the homogeneity of precipitation data was examined using the RHtests_dlyPrcp software,
a tool developed in the R programming language for testing the homogeneity of daily
precipitation data. The software is designed to identify and adjust for artificial shifts
in climate data series caused by various factors unrelated to climate change. The tool
utilizes statistical tests to detect the presence of inhomogeneities in the data. If signifi-
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cant inhomogeneities are detected, the tool can then adjust the data by eliminating the
effects of non-climatic factors, allowing for a more precise analysis of climate trends. The
RHtests_dlyPrcp package is commonly used in climatological research and has been doc-
umented in the literature [57]. In this study, the RHtests_dlyPrcp software indicated no
significant inhomogeneities that necessitated mean adjustments. Hence, the original data
series was used for further analysis.

2.3. Data Analysis

Extreme precipitation indices were calculated with the specially developed software
RClimDex (version 1.0) [58] running under the programming environment R (http://www.
rproject.org/ (accessed on 23 February 2023)). There are many extreme precipitation indices
compiled by the Expert Team on Climate Change Detection and Indices (ETCCDI) [59].
Climate indices are easy to understand and are also statistically reliable quantitative indica-
tors for climate extremes [60]. Based on the ETCCDI, 10 precipitation extreme indices were
selected for the present study. Table 1 presents the selected indices with their descriptions
and units. The Mann–Kendall (MK), Modified Mann–Kendall (MMK), Sen’s slope (SS),
and ITA (both the statistical and graphical techniques) were used to detect trends and
magnitudes in precipitation extreme indices. The “trend change” package in RStudio
version 4.2.1 was applied for the test statistics.

Table 1. Definition of the extreme precipitation indices used in the study.

Index Indicator Name Definition of the Index Units

SDII Simple daily
intensity index

Annual total precipitation divided
by the number of wet days mm/day

Rx1day Max 1-day precipitation
amount

Monthly maximum 1-day
precipitation mm

Rx5day Max 5-day precipitation
amount

Monthly maximum consecutive
5-day precipitation mm

R10mm Number of heavy
precipitation days

Annual count of days when
PRCP ≥ 10 mm Days

R20mm Number of very heavy
precipitation days

Annual count of days when
PRCP ≥ 20 mm Days

CDD Consecutive dry days Maximum number of consecutive
days with RR < 1 mm Days

CWD Consecutive wet days Maximum number of consecutive
days with RR ≥ 1 mm Days

R95p Very wet days Annual total PRCP when
RR > 95th percentile mm

R99p Extremely wet days Annual total PRCP when
RR > 99th percentile mm

PRCPTOT Annual total wet-day
precipitation

Annual total PRCP in wet days
(RR ≥ 1 mm) mm

2.3.1. Mann–Kendall/Modified Mann–Kendall and Sen’s Slope Estimator
The Mann–Kendall (MK) Test

The Mann–Kendall (MK) test [36,37] was used to detect significant trends in time-
series data [61,62]. The presence of serial autocorrelation often affects the detection of
trends in time series data [63]. Hence, the lag-1 autocorrelation coefficient in the data series
was| calculated and assessed at a 5% confidence level.

Equation (1) is used to compare the ordered xi and xj datasets in this test. The test
involves sorting a xi dataset up to i = 1. . ., n − 1 and a xj dataset up to j = i + 1. . ., n before
conducting the comparison.

http://www.rproject.org/
http://www.rproject.org/
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sgn
(
xj − xi

)
=


+1 if

(
xj − xi

)
> 0

0 if
(
xj − xi

)
= 0

−1 if
(
xj − xi

)
< 0

 (1)

Secondly, the MK test statistic S is calculated through Equation (2) below.

S =
n−1

∑
i=1

n

∑
j=i+1

sgn
(
xj − xi

)
(2)

Equation (2) represents the assumed value of n, which corresponds to the total data
for the basic period being analyzed (e.g., a month or a year). Moving on to Equation (3),
it provides the vs. variance value for the S test statistic, considering a normal probability
distribution with a mean of zero. Lastly, Equation (4) outlines the calculation process for
the Z statistic.

VS =
n(n− 1)(2n + 5)

18
(3)

Z =


S−1
VS

for S > 0

0 for S = 0
S+1
VS

for S < 0

 (4)

When comparing the calculated Z value to the normal distribution value correspond-
ing to the selected significance level, two possible outcomes emerge. Firstly, if the calculated
Z value is below this normal distribution value, the null hypothesis holds true, indicating
no trend in the analyzed time series. Conversely, if the calculated value exceeds this abso-
lute value, a trend is present, and the direction of the trend can be determined. Specifically,
a negative Z value indicates a decreasing trend, while a positive Z value indicates an
increasing trend.

The Modified Mann–Kendall (MMK) Test

The modified Mann–Kendall (MMK) test was used for serially correlated data with a
significant lag-1 autocorrelation coefficient using the variance correction method of [40].
The negative and positive values of the MK and MMK test statistics show decreasing and
increasing trends, respectively [21]. This test calculates the corrected z value and adjusts
the variance of the original MK test. In this method, the variance value in Equation (4) for
the MK test should be calculated according to Equations (5) and (6) below.

V∗S = VS
n
n∗

(5)

n
n∗

= 1 +
2

n(n− 1)(n− 2)

n−1

∑
x=1

(n− x)(n− x− 1)(n− x− n)θx (6)

In the context of the MMK test, the autocorrelation function between sequence num-
bers of data, denoted as θx , plays a crucial role as it influences the effective data number,
n∗, causing autocorrelation within the time series. Meanwhile, n represents the overall
data number in the series. To determine the Z value of the MMK test, the variance value in
Equation (4) is replaced with Vs∗. Subsequently, trends are identified by comparing this
newly calculated Z value with the standard Z value, following a similar approach to the
MK method. The comparison is based on α significance levels.

The Sen’s slope (SS) estimator is used to estimate the magnitude of the trend [64,65].
Negative and positive values of SS indicate decreasing and increasing trends, respectively.
The test statistic is determined using Equations (5) and (6):

SS = median
(Qj −Qi

j− i

)
i < j (7)
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SSmedium =


SS( N+1

2 ); if N is odd

1
2

[
SS( N

2 ) + SS( N+2
2 )

]
; if N is even

(8)

where Qj and Qi are consecutive data series, and SS is the magnitude of the trend. When
SS has a positive or negative value, it shows that the trend’s magnitude is increasing
or decreasing.

2.3.2. Innovative Trend Analysis (ITA)

The ITA technique proposed by Sen [43] was also applied to detect trends in the precip-
itation time series. The ITA method is free from the assumptions of serial autocorrelation,
normality, and record length.

Graphical Innovative Trend Assessment (G-ITA)

The G-ITA method is essential for identifying (1) non-monotonic trends, (2) monotonic
trends, and (3) distributional changes in climate parameter values between the first and
second halves of a time series [66].

In this method, the initial phase involves dividing time-series data into two equal
parts and arranging each sub-series independently in ascending order. For instance, in the
present study, there were 38 precipitation observations (1981–2018) in the time series. In
the subsequent phase, the first half of the sub-series is placed on the X axis, and the second
half is placed on the Y axis, as shown in Figure 2. If the data points are 1:1 above or below
the bisecting line, there is an upward or downward trend in the time series Sen [43]. The
presence of no trend is indicated when the data under study is collected on the 1:1 line. If the
data points scatter on both sides of the 1:1 line, this indicates a non-monotonic trend [43,66].
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Statistical Innovative Trend Assessment (S-ITA)

In the S-ITA method, the time series is divided into two equal halves and ordered
in ascending order. According to Sen [67], the slope, Sm, can be determined using the
arithmetic mean of the ordered two-parts as follows:

Sm =
x2 − x1

(n/2)
(9)

In this Equation, n stands for the number of observations, x2 and x1, respectively,
represent the mean values of the second and first half. Here, (n/2) is the time difference
between the two halves. The trend direction, i.e., positive or negative, is derived based on
the slope sign (+ or −). The probability density function (PDF) of the slope fits the normal
distribution and the standard deviation of the slope can be represented as:

σs =
2
√

2
n
√

n
σ
√

1−ρx1x2 (10)

where (ρx1x2) is the cross-correlation between the arithmetic means of the two halves
in ascending order. Scri is the confidence limit of a standard normal PDF at α percent
significance level, and Şen [67], suggested finding the (1 − α) percent confidence limits for
the trend slope as follows:

CL1−α = 0± Scri × σS (11)

where σS is the calculated standard deviation of the slope, Sm, from Equation (1). The null
hypothesis, H0 (there is no significant trend), is accepted if the calculated slope is within
the upper and lower CL limits (Equation (11)), or an alternative hypothesis, Ha (there is a
significant trend) is concluded. Moreover, this study includes a flow chart outlining the
methodologies employed (Figure 3).
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3. Results
3.1. Trends in Precipitation Extremes
3.1.1. Simple Daily Intensity Index (SDII), Consecutive Dry Days (CDD), Consecutive Wet
Days (CWD), and Annual Total Wet-Day Precipitation (PRCPTOT)

The trend in precipitation extremes from 1981 to 2018 as recorded by the MK/MMK
test is summarized in Table 2. The trend of the SDII showed a significantly increasing trend
at a rate of 0.04 mm/day for Lay Gayint (p < 0.05). The rate of change in Tach Gayint was
0.03 mm/day (p < 0.05). CDD showed a significantly increasing trend (p < 0.05) at a rate
of 0.26 days/year in Simada. The result suggests that a drier condition was observed in
both Simada and Tach Gayint compared to Lay Gayint. In all districts, CWD showed a
statistically significant increasing trend (p < 0.01). The rate of change was 0.86 mm/day
for Lay Gayint, 0.85 mm/day for Tach Gayint, and 0.79 mm/day for Simada. In Lay
Gayint, PRCPTOT showed a statistically significant upward trend (p < 0.01) at a rate of
9.16 mm/year. The rate of change in Tach Gayint was 5.42 mm/year at p < 0.05.

Table 2. The Mann–Kendall/Modified-Mann–Kendall trend test and Sen Slope values of the extreme
indices (1981–2018).

Indices Lay Gayint Tach Gayint Simada

MK/MMK SS MK/MMK SS MK/MMK SS

Rx1day 1.10 0.12 −0.55 −0.05 −1.53 −0.15
Rx5day 1.70 0.45 −0.12 −0.03 −1.25 −0.22
R10mm 2.96 0.46 ** 2.33 0.31 * 1.10 0.12
R20mm 1.98 0.14 * 0.49 0.02 −0.75 −0.01

CDD −0.74 −0.13 1.70 0.26 1.88 0.26 *
CWD 3.57 0.86 ** 2.86 0.85 ** 3.34 0.79 **
R95p 1.50 2.06 0.27 0.53 −1.00 −1.08
R99p 1.50 0.72 −0.59 −0.29 −1.23 −0.58

PRCPTOT 2.91 9.16 ** 2.46 5.42* 0.65 1.70
SDII 2.47 0.04 * 2.35 0.03* 1.32 0.01

* and ** significant at α 0.05 and 0.01 level, respectively. Bold values indicate MMK test values (series with
significant autocorrelation).

The trend of precipitation extremes using the ITA method is given in Tables 3–5.
Results showed a statistically significant increasing SDII trend in Lay Gayint (0.05 mm/day)
and Tach Gayint (0.04 mm/day) at p < 0.01. In Lay Gayint, CDD increased at a statistically
significant rate of 0.33 days/year (p < 0.01). The corresponding value for Simada was
0.18 days/year (p < 0.01). On the other hand, CDD showed a statistically significant
decreasing trend (p < 0.01) in Lay Gayint at a rate of 0.21 days/year. CWD showed a
statistically significant decreasing trend at a rate of 0.72 days/year in Lay Gayint (p < 0.01).

Table 3. The innovative trend analysis results in precipitation extreme indices in Lay Gayint (1981–2018).

Indices SITA SSD
Correlation
(ρ

¯
x1

¯
x2)

UCL/LCL
Sig. (p < 0.05)

UCL/LCL
Sig. (p < 0.01)

Rx1day 0.10 ** 0.01 0.97 ±0.03 ±0.03
Rx5day 0.38 ** 0.04 0.97 ±0.07 ±0.09
R10mm 0.44 ** 0.04 0.92 ±0.07 ±0.09
R20mm 0.15 ** 0.01 0.98 ±0.02 ±0.02

CDD −0.21 ** 0.03 0.98 ±0.05 ±0.07
CWD 0.72 ** 0.04 0.97 ±0.07 ±0.09
R95p 2.21 ** 0.15 0.99 ±0.28 ±0.37
R99p 0.78 ** 0.08 0.97 ±0.15 ±0.20

PRCPTOT 7.70 ** 0.72 0.92 ±1.41 ±1.85
SDII 0.05 ** 0.00 0.95 ±0.01 ±0.01

** significant at α 0.05 level. UCL/LCL represent upper and lower confidence limits.
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Table 4. The innovative trend analysis results in precipitation extreme indices in Tach Gayint (1981–2018).

Indices SITA SSD
Correlation
(ρ

¯
x1

¯
x2)

UCL/LCL
Sig. (p < 0.05)

UCL/LCL
Sig. (p < 0.01)

Rx1day −0.11 ** 0.02 0.94 ±0.04 ±0.05
Rx5day −0.01 0.05 0.92 ±0.09 ±0.12
R10mm 0.29 ** 0.03 0.93 ±0.05 ±0.07
R20mm 0.04 ** 0.01 0.97 ±0.01 ±0.01

CDD 0.33 ** 0.02 0.98 ±0.04 ±0.05
CWD 0.59 ** 0.06 0.94 ±0.11 ±0.15
R95p 0.97 ** 0.17 0.96 ±0.33 ±0.44
R99p −0.44 ** 0.05 0.98 ±0.11 ±0.14

PRCPTOT 3.93 ** 0.40 0.95 ±0.79 ±1.04
SDII 0.04 ** 0.00 0.96 ±0.00 ±0.01

** significant at α 0.05 level. UCL/LCL represent upper and lower confidence limits.

Table 5. The innovative trend analysis results in precipitation extreme indices in Simada (1981–2018).

Indices SITA SSD
Correlation
(ρ

¯
x1

¯
x2)

UCL/LCL
Sig. (p < 0.05)

UCL/LCL
Sig. (p < 0.01)

Rx1day −0.17 ** 0.01 0.98 ±0.01 ±0.02
Rx5day −0.29 ** 0.02 0.97 ±0.04 ±0.06
R10mm −0.08 ** 0.01 0.97 ±0.02 ±0.03
R20mm −0.03 ** 0.00 0.98 ±0.01 ±0.01

CDD 0.18 ** 0.02 0.97 ±0.05 ±0.06
CWD 0.42 ** 0.04 0.94 ±0.09 ±0.12
R95p −1.29 ** 0.13 0.97 ±0.26 ±0.34
R99p −0.79 ** 0.05 0.98 ±0.09 ±0.12

PRCPTOT 0.27 0.16 0.99 ±0.31 ±0.41
SDII 0.01 0.00 0.96 ±0.01 ±0.02

** significant at α 0.05 level. UCL/LCL represent upper and lower confidence limits.

The corresponding values for Tach Gayint and Simada were 0.59 days/year and
0.42 days/year, respectively (p < 0.01). A statistically significant increasing PRCPTOT trend
was observed in Lay Gayint (7.70 mm/year) and Tach Gayint (3.93 mm/year) at p < 0.01.
The result showed that some significant increasing trends masked by the MK/MMK test
are detected with the ITA method; indicating the ITA’s ability to identify trends in time series.
The increasing trend towards the extremes mentioned above can also be clearly seen from the
scattered points that lie above the 1:1 line in the cartesian coordinate system (Figures 4–6).

3.1.2. Number of Heavy (R10mm) and Very Heavy (R20mm) Precipitation Days

Based on analysis of the MK/MMK test, R10mm showed a statistically significant
increasing trend in Lay Gayint (0.46 days/year) at p < 0.01 and Tach Gayint (0.31 days/year)
at p < 0.05. Regarding the trend of R20mm, Lay Gayint showed a statistically significant
increasing trend (p < 0.01) at a rate of 0.14 days/year (Table 2). According to ITA analysis,
the trends of R10mm and R20mm showed statistically significant decreasing trends in
Simada at a rate of 0.08 days/year and 0.03 days/year, respectively, at p < 0.01. On the
other hand, the trend of R10mm showed a significantly increasing trend (p < 0.01) with
rates of 0.44 days/year and 0.29 days/year in Lay Gayint and Tach Gayint, respectively.
R20mm showed a significantly increasing trend (p < 0.01) at rates of 0.15 days/year in Lay
Gayint and 0.04 days/year in Tach Gayint. The increase in R10mm and R20mm indicates
potential risks related to soil erosion and flooding (Tables 3–5). As shown in Figures 4–6,
the scatter points for R10mm and R20mm values in Tach Gayint and Lay Gayint districts
are above the 1:1 line. The trends in Simada are unclear.
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3.1.3. Maximum 1-Day (Rx1day) and 5-Day (Rx5day) Precipitation

As indicated in Table 2, the results of the MK/MMK test analysis showed that the
trends of Rx1day and Rx5day in Lay Gayint increased at rates of 0.12 mm/year and
0.45 mm/year, respectively, but the trends were not statistically significant. On the other
hand, the values in Tach Gayint increased by 0.05 mm/year (Rx1day) and 0.03 mm/year
(Rx5days) and in Tach Gayint by 0.15 mm/year (Rx1day) and 0.22 mm/year (Rx5days).
In Simada, the trends were not statistically significant over the study period. ITA analysis
showed that a statistically significant increasing trend of Rx5day was recorded in Lay Gayint
(0.38 mm/year) at p < 0.01. Tach Gayint, on the other hand, showed a statistically significant
decreasing trend in Rx1day at p < 0.01. In addition, the Rx1day and Rx5day values in
Simada showed statistically significant decreasing trends at rates of 0.17 mm/year and
0.29 mm/year, respectively, at p < 0.01 (Tables 3–5). Further examination of the ITA graph
showed inconsistent trends for Rx1day and Rx5day values. As a result, the scatter points
lying above and below the 1:1 line in Lay Gayint and Simada indicate rising and falling
trends, respectively. For Tach Gayint, the scatter points showed unclear trends (Figures 4–6).

3.1.4. Very Wet Days (R95p) and Extremely Wet Days (R99p)

The trend of R95p using the MK/MMK test showed a tendency to increase at both
Lay Gayint and Tach Gayint. The trend of R99p showed an increasing trend in Lay Gayint
but a decreasing trend in both Tach Gayint and Simada over the study period. However,
the observed trends were not statistically significant in either case (Table 2). In contrast,
the ITA test showed that the trends of R95p (2.21 mm/year) and R99p (0.78 mm/year) had
statistically significant increasing trends in Lay Gayint at p < 0.01. Statistically significant
decreasing trends of R95p (1.29 mm/year) and R99p (0.79 mm/year) were observed in
Simada at p < 0.01. In Tach Gayint, R95p and R99p showed statistically significant increasing
and decreasing trends, respectively, at p < 0.01 (Tables 3–5). The finding supports the
ability of the ITA method to identify masked trends in time-series data; several significant
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increasing trends that the MK/MMK test missed were detected using the ITA. As shown in
Figures 4–6, the scatter points in Lay Gayint and Simada fall above and below the 1:1 line,
representing rising and falling trends, respectively. The scatter points in Tach Gayint district
showed unclear trends.

3.2. Comparison of Trend Analysis Methods

The comparison between the trend detection results by the two methods, i.e., the MK
and ITA tests, is shown in Table 6. It is shown that statistically significant increasing or
decreasing trends are observed in 11 (37%) of the precipitation time series with the MK test.
The ITA found a significantly increasing or decreasing trend in 27(90%) of the precipitation
time series, indicating that a large number of significant trends are detected by the ITA
method. Likewise, any statistically significant trend detected by the MK test is identified
by the ITA. The ITA detects trends in 16 (53%) of the extreme rainfall index time series that
the MK tests failed to do.

Table 6. Comparisons of results of trend analysis of precipitation extremes by the MK and ITA
methods (1981–2018).

Indices Lay Gayint Tach Gayint Simada

MK ITA MK ITA MK ITA

Rx1day No Yes (++) No Yes (− −) No Yes (− −)
Rx5day No Yes (++) No No No Yes (− −)
R10mm Yes (++) Yes (++) Yes (+) Yes (++) No Yes (++)
R20mm Yes (+) Yes (++) No Yes (++) No Yes (− −)

CDD No Yes (− −) No Yes (++) Yes (+) Yes (++)
CWD Yes (++) Yes (++) Yes (++) Yes (++) Yes (− −) Yes (++)
R95p No Yes (++) No Yes (++) No Yes (− −)
R99p No Yes (++) No Yes (− −) No Yes (− −)

PRCPTOT Yes (++) Yes (++) Yes (+) Yes (++) No No
SDII Yes (+) Yes (++) Yes (+) Yes (++) No No

Yes (+) and Yes (−) indicate significant increasing and decreasing trends at 5% significance level (p < 0.05); Yes
(++) and Yes (− −) indicate significant increasing and decreasing trends at 1% significance level (p < 0.01). No
indicates non-significant result.

4. Discussions

The study investigated variations and trends in precipitation extremes. According to
the ITA results, the CDD, CWD, PRCPTOT, SDII, R95p, R10mm, and R20mm exhibited
statistically significant increasing trends in Tach Gayint, while the Rx1day and R99p showed
statistically significant decreasing trends at p < 0.01. With the exception of CDD, all extreme
precipitation indices in Lay Gayint exhibited statistically significant increasing trends at
p < 0.01. In Simada, R10mm, CDD, and CWD exhibited statistically significant increasing
trends, while R95p, R99p, R20mm, Rx1day, and Rx5day showed statistically significant
decreasing trends. The MK test findings in Lay Gayint showed statistically significant
increasing trends for R10mm, CWD, PRCPTOT, R20mm, and SDII at p < 0.05. The CWD,
R10mm, PRCPTOT, and SDII in Tach Gayint showed statistically significant increasing
trends at p < 0.01. On the other hand, only CDD and CWD showed statistically significant
increasing trends in Simada at p < 0.05 and p < 0.01, respectively.

The significance of extreme precipitation indices in the study area can be attributed to
differences in elevation. Specifically, the Lay Gayint district is situated in the High Dega
agroecological zone, with an elevation ranging from 3200 to 3700 m above sea level. In
contrast, the Tach Gayint and Simada districts are located in the Dega zone (2300–3200 m
above sea level) and the Woyna Dega zone (1500–2300 m above sea level), respectively [49],
as it is explained in the methodology section of this study. Agroecological zones are
defined based on the interactions between climate, topography, and soil characteristics,
and can provide a useful framework for understanding the spatial distribution of extreme
precipitation events. Different agroecological zones can have different temperature and
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moisture regimes, which can affect the timing, intensity, and type of extreme precipitation
events that occur. This indicates that variations in elevation play a significant role in
the spatial distribution of precipitation extremes. Previous research studies consistently
demonstrate a strong correlation between elevation in Ethiopia and the spatial variability
of precipitation extremes [7,19,28,68,69]. Overall, the study highlights the importance of
considering elevation and agroecological zones when studying extreme precipitation events
in the study area. The differences in elevation between the districts can lead to variations
in the spatial distribution of extreme precipitation indices, which can have important
implications for water resource management and disaster risk reduction.

The trend results we found for some extreme precipitation indices are similar to
findings reported in previous studies [19,33,35,69]. Terefe et al. [19] reported the existence
of statistically significant increasing trends for R10 mm and R20 mm in the Ejersalele
and Tora stations in the Meki watershed, central Ethiopia. Similarly, increasing trends of
R10 mm and R20 mm were reported by Esayas et al. [33], Shawul and Chakma [69], and
Worku et al. [35] in the majority of weather stations in Southern Ethiopia, in the Upper
Awash basin and Jemma Sub-basin of Ethiopia, respectively. Furthermore, studies by
Damtew et al. [30], Degefu et al. [31], and Geremew et al. [15] found increasing trends of
CWD and CDD in the Awash River basin and Southeastern and Northwestern Ethiopia,
respectively. On the other hand, our results did not agree with the findings of some other
studies. For example, a study by Esayas et al. [33] found statistically significant decreasing
trend in CWD in Southern Ethiopia. The trend in PRCPTOT showed a statistically non-
significant decreasing trend in the Jemma Sub-Basin of the Upper Blue Nile Basin [35].
Statistically non-significant decreasing trends in the Rx1day and Rx5day precipitation were
observed in most of the studied agroecologies in the Gurage Zone, Southern Ethiopia [32].
Esayas et al. [33] reported that lowland and midland agroecologies in the Wolaita Zone
of Southern Ethiopia exhibited statistically non-significant increasing trends for Rx1-day
and Rx5-day. In general, topography, variations in record lengths, number of stations, and
method of data analysis used account for the majority of observed discrepancies [7,68,70].

Comparison of the ITA and MK trend detection methods indicates that the ITA method
is superior to the MK test. The ITA method detected statistically significant increasing
and decreasing trends in 27 (90%) of the precipitation time series, which indicated that a
large number of significant trends that were missed by the MK test were detected using
the ITA method. The ITA method detected trends in 16 (53%) of the precipitation extreme
time series that the MK tests did not detect. Singh et al. [71] compared the ITA with the
MK test for assessing spatiotemporal variations of precipitation extremes in India and
recommended the ITA as the better option. Harka et al. [72] found the ITA approach to be
more reliable than the MK test in their study on the Wabe Shebelle River Basin of Ethiopia.
Similarly, in their investigation of seasonal and annual rainfall variability in the Amhara
Regional State, Gedefaw et al. [34] reported that the ITA was preferable to the MK test.

Several studies also noted the ITA method and its capacity to detect trends more
effectively than the MK test in different parts of the world [2,10,73,74]. The ITA approach
enables more in-depth interpretations of trend identification, which is advantageous for
detecting trends that are hidden from view as well as for illustrating the trend variabil-
ity of extreme events in a graphical form [45,47,75]. It illustrates monotonic and non-
monotonic trends [2,43].

In general, the results provided useful information for policy makers and water re-
source managers, given that extreme precipitation events can result in natural disasters such
as flooding and landslides. These events can cause significant damage to infrastructure
and pose a threat to communities, thereby warranting careful and strategic management
of water resources. There are several ways in which policy makers and water resource
managers can prepare for extreme precipitation events, including developing early warn-
ing systems, building and maintaining infrastructure, implementing land-use planning
and zoning, promoting sustainable agriculture, educating and training communities, and
investing in research. By implementing these strategies, policy makers and water resource
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managers can help reduce the risk and impact of extreme precipitation events and promote
the safety and well-being of communities.

Although the study may have identified long-term trends in extreme precipitation
indices in the study area, it may not have explored the underlying causes of these trends.
Therefore, future investigations could focus on examining the meteorological, climato-
logical, and environmental factors that contribute to changes in extreme precipitation.
Additionally, while the study may have focused on three districts of Northwest Ethiopia
(Lay Gayint, Tach Gayint, and Simada), expanding the analysis to other districts could
help identify spatial patterns in extreme precipitation indices and vulnerable regions.
Furthermore, while the study may have focused on the trends in extreme precipitation
indices themselves, future investigations could examine the impacts of these events on
the environment, agriculture, infrastructure, and communities in the area. Such research
could help inform adaptation and mitigation strategies to reduce the negative impacts
of extreme precipitation events. Finally, investigating the potential for future changes in
extreme precipitation could be valuable. Although the study may have analyzed trends
in extreme precipitation indices over a historical period, using climate models to project
how these trends may change in the future under different scenarios of greenhouse gas
emissions and climate change could help inform planning and decision-making for future
climate risks and impacts in the study area.

5. Conclusions

The study conducted an analysis of the frequency and intensity of extreme precip-
itation events in Northwest Ethiopia using both the MK/MMK methods. The findings
revealed significant changes in the patterns of extreme precipitation events in the area over
the past few decades, with an increase in both frequency and intensity. It is noteworthy
that trend detection studies in the literature typically rely on both the MK/MMK test and
the SS investigation. While the MK/MMK test determines the existence of a trend and
its direction, the trend magnitude is calculated using the SS method only if a significant
trend is found according to these methodologies. Otherwise, the SS method is generally not
employed. It is worth noting that the validity of the results obtained from the MK/MMK
methods is subject to several assumptions. The study also compared the MK/MMK and SS
methodologies with the ITA method, another popular trend detection tool. Although the
different methodologies resulted in some variations in trend magnitudes, the ITA and SS
methods’ trend direction results matched up in some extreme precipitation indices. The
ITA method provides graphical and statistical trend analysis that objectively interprets the
trends. Another significant finding of the study is that neither the SS nor the ITA methods
rely on assumptions or statistical significance levels. Therefore, employing and comparing
different methods such as MK/MMK, SS, and ITA for trend analysis can provide more
detailed information on trend identification in the studied data. This can ultimately lead
to more accurate climate analysis and better-informed decision-making. By using multi-
ple methodologies, researchers can gain a comprehensive understanding of trends and
minimize the impact of potential bias resulting from a single method.

Author Contributions: Conceptualization, A.L., A.A. and W.B.; methodology, A.L., A.A. and W.B.;
software, A.L. and A.A.; validation, A.L. and W.B.; formal analysis, A.L and A.A.; investigation, A.L.,
A.A. and W.B.; resources, A.L. and W.B.; data curation, A.L.; Writing—Original draft preparation,
A.L., A.A. and W.B.; Writing—Review and editing, A.L. and W.B.; visualization, A.L., A.A. and
W.B.; supervision, A.A. and W.B. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Not applicable.



Climate 2023, 11, 164 16 of 18

Acknowledgments: The authors would like to thank Addis Ababa University and Dilla University
for providing financial support for the data collection and write-up of the manuscript. The authors are
also very grateful to the National Meteorological Agency of Ethiopia for providing daily rainfall data.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mukherjee, S.; Mishra, A.K. Cascading effect of meteorological forcing on extreme precipitation events: Role of atmospheric

rivers in southeastern US. J. Hydrol. 2021, 601, 126641. [CrossRef]
2. Wang, Y.; Xu, Y.; Tabari, H.; Wang, J.; Wang, Q.; Song, S.; Hu, Z. Innovative trend analysis of annual and seasonal rainfall in the

Yangtze River Delta, eastern China. Atmos. Res. 2020, 231, 104673. [CrossRef]
3. Yang, Y.; Gao, M.; Xie, N.; Gao, Z. Relating anomalous large-scale atmospheric circulation patterns to temperature and precipitation

anomalies in the East Asian monsoon region. Atmos. Res. 2020, 232, 104679. [CrossRef]
4. Marie, M.; Yirga, F.; Haile, M.; Tquabo, F. Farmers’ choices and factors affecting adoption of climate change adaptation strategies:

Evidence from northwestern Ethiopia. Heliyon 2020, 6, e03867. [CrossRef]
5. Jin, H.; Chen, X.; Wu, P.; Song, C.; Xia, W. Evaluation of spatial-temporal distribution of precipitation in mainland China by

statistic and clustering methods. Atmos. Res. 2021, 262, 105772. [CrossRef]
6. Ferijal, T.; Batelaan, O.; Shanafield, M. Rainy season drought severity trend analysis of the Indonesian maritime continent. Int.

J. Climatol. 2021, 41, E2194–E2210. [CrossRef]
7. Gebrechorkos, S.H.; Hülsmann, S.; Bernhofer, C. Changes in temperature and precipitation extremes in Ethiopia, Kenya, and

Tanzania. Int. J. Climatol. 2019, 39, 18–30. [CrossRef]
8. Janizadeh, S.; Pal, S.C.; Saha, A.; Chowdhuri, I.; Ahmadi, K.; Mirzaei, S.; Mosavi, A.H.; Tiefenbacher, J.P. Mapping the spatial and

temporal variability of flood hazard affected by climate and land-use changes in the future. J. Environ. Manag. 2021, 298, 113551.
[CrossRef]

9. World Meteorological Organization (WMO). State of the Climate in Africa 2020; World Meteorological Organization: Geneva,
Switzerland, 2021.

10. Marak, J.D.K.; Sarma, A.K.; Bhattacharjya, R.K. Innovative trend analysis of spatial and temporal rainfall variations in Umiam
and Umtru watersheds in Meghalaya, India. Theor. Appl. Climatol. 2020, 142, 1397–1412. [CrossRef]

11. Myhre, G.; Alterskjær, K.; Stjern, C.W.; Hodnebrog, Ø.; Marelle, L.; Samset, B.H.; Sillmann, J.; Schaller, N.; Fischer, E.; Schulz, M.; et al.
Frequency of extreme precipitation increases extensively with event rareness under global warming. Sci. Rep. 2019, 9, 16063.
[CrossRef]

12. Papalexiou, S.M.; Montanari, A. Global and Regional Increase of Precipitation Extremes Under Global Warming. Water Resour.
Res. 2019, 55, 4901–4914. [CrossRef]

13. Wang, Y.; Liu, G.; Guo, E. Spatial distribution and temporal variation of drought in Inner Mongolia during 1901–2014 using
Standardized Precipitation Evapotranspiration Index. Sci. Total Environ. 2019, 654, 850–862. [CrossRef] [PubMed]

14. Gezie, M. Farmer’s response to climate change and variability in Ethiopia: A review. Cogent Food Agric. 2019, 5, 1613770.
[CrossRef]

15. Geremew, G.M.; Mini, S.; Abegaz, A. Spatiotemporal variability and trends in rainfall extremes in Enebsie Sar Midir district,
northwest Ethiopia. Model. Earth Syst. Environ. 2020, 6, 1177–1187. [CrossRef]

16. Bezu, A. Analyzing Impacts of Climate Variability and Changes in Ethiopia: A Review. Am. J. Mod. Energy 2020, 6, 65. [CrossRef]
17. Nicholson, S.E. Climate and climatic variability of rainfall over eastern Africa. Rev. Geophys. 2017, 55, 590–635. [CrossRef]
18. Gebrehiwot, B.; Gessesse, B.; Melgani, F. Characterizing the spatiotemporal distribution of meteorological drought as a response

to climate variability: The case of rift valley lakes basin of Ethiopia. Weather. Clim. Extrem. 2019, 26, 100237. [CrossRef]
19. Terefe, S.; Bantider, A.; Teferi, E.; Abi, M. Spatiotemporal trends in mean and extreme climate variables over 1981–2020 in Meki

watershed of central rift valley basin, Ethiopia. Heliyon 2022, 8, e11684. [CrossRef]
20. Endalew, H.A.; Sen, S. Effects of climate shocks on Ethiopian rural households: An integrated livelihood vulnerability approach.

J. Environ. Plan. Manag. 2020, 64, 399–431. [CrossRef]
21. Likinaw, A.; Alemayehu, A.; Bewket, W. Local-scale climate variability and trends in a vulnerable rural landscape, northwest

Ethiopia. Malays. J. Trop. Geogr. 2022, 48, 19–44.
22. Bazezew, A.; Bewket, W.; Nicolau, M. Rural households’ livelihood assets, strategies and outcomes in drought-prone areas of the

Amhara Region, Ethiopia: Case Study in Lay Gaint District. Afr. J. Agric. Res. 2013, 8, 5716–5727. [CrossRef]
23. Tizazu, G.Z. Food Security Status of Rural Households in Lay Gayint Woreda of South Gondar Zone, Amhara Region, Ethiopia.

Int. J. African Asian Stud. 2019, 57, 12–26. [CrossRef]
24. Srivastava, P.K.; Pradhan, R.K.; Petropoulos, G.P.; Pandey, V.; Gupta, M.; Yaduvanshi, A.; Jaafar, W.Z.W.; Mall, R.K.; Sahai, A.K.

Long-term trend analysis of precipitation and extreme events over Kosi River Basin in India. Water 2021, 13, 1695. [CrossRef]
25. Vondou, D.A.; Guenang, G.M.; Djiotang, T.L.A.; Kamsu-Tamo, P.H. Trends and interannual variability of extreme rainfall indices

over Cameroon. Sustainability 2021, 13, 6803. [CrossRef]
26. Salameh, A.A.M.; Ojeda, M.G.-V.; Esteban-Parra, M.J.; Castro-Díez, Y.; Gámiz-Fortis, S.R. Extreme rainfall indices in southern

levant and related large-scale atmospheric circulation patterns: A spatial and temporal analysis. Water 2022, 14, 3799. [CrossRef]

https://doi.org/10.1016/j.jhydrol.2021.126641
https://doi.org/10.1016/j.atmosres.2019.104673
https://doi.org/10.1016/j.atmosres.2019.104679
https://doi.org/10.1016/j.heliyon.2020.e03867
https://doi.org/10.1016/j.atmosres.2021.105772
https://doi.org/10.1002/joc.6840
https://doi.org/10.1002/joc.5777
https://doi.org/10.1016/j.jenvman.2021.113551
https://doi.org/10.1007/s00704-020-03383-1
https://doi.org/10.1038/s41598-019-52277-4
https://doi.org/10.1029/2018WR024067
https://doi.org/10.1016/j.scitotenv.2018.10.425
https://www.ncbi.nlm.nih.gov/pubmed/30448674
https://doi.org/10.1080/23311932.2019.1613770
https://doi.org/10.1007/s40808-020-00749-2
https://doi.org/10.11648/j.ajme.20200603.11
https://doi.org/10.1002/2016RG000544
https://doi.org/10.1016/j.wace.2019.100237
https://doi.org/10.1016/j.heliyon.2022.e11684
https://doi.org/10.1080/09640568.2020.1764840
https://doi.org/10.5897/AJAR2013.7747
https://doi.org/10.7176/jaas/57-03
https://doi.org/10.3390/w13121695
https://doi.org/10.3390/su13126803
https://doi.org/10.3390/w14233799


Climate 2023, 11, 164 17 of 18

27. Obada, E.; Alamou, E.A.; Biao, E.I.; Zandagba, E.B.J. Interannual variability and trends of extreme rainfall indices over Benin.
Climate 2021, 9, 160. [CrossRef]

28. Berhane, A.; Hadgu, G.; Worku, W.; Abrha, B. Trends in extreme temperature and rainfall indices in the semi-arid areas of Western
Tigray, Ethiopia. Environ. Syst. Res. 2020, 9, 1–20. [CrossRef]

29. Beyene, T.K.; Jain, M.K.; Yadav, B.K.; Agarwal, A. Multiscale investigation of precipitation extremes over Ethiopia and teleconnec-
tions to large-scale climate anomalies. Stoch. Environ. Res. Risk Assess. 2022, 36, 1503–1519. [CrossRef]

30. Damtew, A.; Teferi, E.; Ongoma, V.; Mumo, R.; Esayas, B. Spatiotemporal Changes in Mean and Extreme Climate: Farmers’
Perception and Its Agricultural Implications in Awash River Basin, Ethiopia. Climate 2022, 10, 89. [CrossRef]

31. Degefu, M.A.; Tadesse, Y.; Bewket, W. Observed changes in rainfall amount and extreme events in southeastern Ethiopia,
1955–2015. Theor Appl Clim. 2021, 144, 967–983. [CrossRef]

32. Dendir, Z.; Birhanu, B.S. Analysis of Observed Trends in Daily Temperature and Precipitation Extremes in Different Agroecologies
of Gurage Zone, Southern Ethiopia. Adv. Meteorol. 2022, 2022. [CrossRef]

33. Esayas, B.; Simane, B.; Teferi, E.; Ongoma, V.; Tefera, N. Trends in extreme climate events over three agroecological zones of
Southern Ethiopia. Adv. Meteorol. 2018, 2018, 1–17. [CrossRef]

34. Gedefaw, M.; Yan, D.; Wang, H.; Qin, T.; Girma, A.; Abiyu, A.; Batsuren, D. Innovative trend analysis of annual and seasonal
rainfall variability in Amhara Regional State, Ethiopia. Atmosphere 2018, 9, 326. [CrossRef]

35. Worku, G.; Teferi, E.; Bantider, A.; Dile, Y.T. Observed changes in extremes of daily rainfall and temperature in Jemma Sub-Basin,
Upper Blue Nile Basin, Ethiopia. Theor. Appl. Climatol. 2019, 135, 839–854. [CrossRef]

36. Kendall, M.G. Rank Correlation Methods, 4th ed.; Charles Griffin & Company Limited: London, UK, 1975.
37. Mann, H.B. Nonparametric tests against trend. Econom. J. Econom. Soc. 1945, 13, 245–259. [CrossRef]
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