Statistical Downscaling of Precipitation in the South and Southeast of Mexico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Zone
2.2. Statistical Downscaling
2.3. Data
3. Results
3.1. Linear Adjustment
3.2. Bias-Correction Performance
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V.P., Zhai, A., Pirani, S.L., Connors, C., Péan, S., Berger, N., Caud, Y., Chen, L., Goldfarb, M.I., Gomis, M., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; p. 2391. [Google Scholar] [CrossRef]
- World Meteorological Organization (WMO). 2022. Available online: https://public.wmo.int/en/resources/world-meteorological-day/world-meteorological-day-2022-early-warning-early-action/climate-change-and-extreme-weather (accessed on 21 August 2023).
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef]
- Balaji, V.; Taylor, K.E.; Juckes, M.; Lawrence, B.N.; Durack, P.J.; Lautenschlager, M.; Blanton, C.; Cinquini, L.; Denvil, S.; Elkington, M.; et al. Requirements for a global data infrastructure in support of CMIP6. Geosci. Model Dev. 2018, 11, 3659–3680. [Google Scholar] [CrossRef]
- Meinshausen, M.; Vogel, E.; Nauels, A.; Lorbacher, K.; Meinshausen, N.; Etheridge, D.M.; Fraser, P.J.; Montzka, S.A.; Rayner, P.J.; Trudinger, C.M.; et al. Historical greenhouse gas concentrations for climate modelling (CMIP6). Geosci. Model Dev. 2017, 10, 2057–2116. [Google Scholar] [CrossRef]
- Hoesly, R.; O’Rourke, P.; Braun, C.; Feng, L.; Smith, S.J.; Pitkanen, T.; Seibert, J.J.; Vu, L.; Presley, M.; Bolt, R.; et al. Zenodo, Version 23 December 2019, Community Emissions Data System; CERN: Genève, Switzerland, 2019. [Google Scholar] [CrossRef]
- Pascoe, C.; Lawrence, B.N.; Guilyardi, E.; Juckes, M.; Taylor, K.E. Documenting numerical experiments in support of the Coupled Model Intercomparison Project Phase 6 (CMIP6). Geosci. Model Dev. 2020, 13, 2149–2167. [Google Scholar] [CrossRef]
- McGuffie, K.; Henderson-Sellers, A. The Climate Modelling Primer, 4th ed.; Wiley-Blackwell: Chichester, UK, 2014; p. 464. [Google Scholar]
- Fan, X.; Miao, C.; Duan, Q.; Shen, C.; Wu, Y. The performance of CMIP6 versus CMIP5 in simulating temperature extremes over the global land surface. J. Geophys. Res. Atmos. 2020, 125, e2020JD033031. [Google Scholar] [CrossRef]
- Keeble, J.; Hassler, B.; Banerjee, A.; Checa-Garcia, R.; Chiodo, G.; Davis, S.; Eyring, V.; Griffiths, P.T.; Morgenstern, O.; Nowack, P.; et al. Evaluating stratospheric ozone and water vapour changes in CMIP6 models from 1850 to 2100. Atmos. Chem. Phys. 2021, 21, 5015–5061. [Google Scholar] [CrossRef]
- Hirabayashi, Y.; Tanoue, M.; Sasaki, O.; Zhou, X.; Yamazaki, D. Global exposure to flooding from the new CMIP6 climate model projections. Sci. Rep. 2021, 11, 3740. [Google Scholar] [CrossRef]
- Srivastava, A.; Grotjahn, R.; Ullrich, P.A. Evaluation of historical CMIP6 model simulations of extreme precipitation over contiguous US regions. Weather. Clim. Extrem. 2020, 29, 100268. [Google Scholar] [CrossRef]
- Almazroui, M.; Saeed, F.; Saeed, S.; Nazrul Islam, M.; Ismail, M.; Klutse, N.A.B.; Siddiqui, M.H. Projected change in temperature and precipitation over Africa from CMIP6. Earth Syst. Environ. 2020, 4, 455–475. [Google Scholar] [CrossRef]
- Mekonnen, D.G.; Moges, M.A.; Mulat, A.G.; Shumitter, P. The impact of climate change on mean and extreme state of hydrological variables in Megech watershed, Upper Blue Nile Basin, Ethiopia. In Extreme Hydrology and Climate Variability; Elsevier: Amsterdam, The Netherlands, 2019; pp. 123–135. [Google Scholar] [CrossRef]
- Šeparović, L.; Alexandru, A.; Laprise, R.; Martynov, A.; Sushama, L.; Winger, K.; Tete, K.; Valin, M. Present climate and climate change over North America as simulated by the fifth-generation Canadian regional climate model. Clim. Dyn. 2013, 41, 3167–3201. [Google Scholar] [CrossRef]
- Huth, R. Statistical downscaling of daily temperature in central Europe. J. Clim. 2002, 15, 1731–1742. [Google Scholar] [CrossRef]
- Christensen, J.H.; Boberg, F.; Christensen, O.B.; Lucas-Picher, P. On the need for bias correction of regional climate change projections of temperature and precipitation. Geophys. Res. Lett. 2008, 35, L20709. [Google Scholar] [CrossRef]
- Ehret, U.; Zehe, E.; Wulfmeyer, V.; Warrach-Sagi, K.; Liebert, J. HESS Opinions “Should we apply bias correction to global and regional climate model data?”. Hydrol. Earth Syst. Sci. 2012, 16, 3391–3404. [Google Scholar] [CrossRef]
- Maraun, D.; Widmann, M. Statistical Downscaling and Bias Correction for Climate Research; Cambridge University Press: Cambridge, UK, 2018; p. 341. [Google Scholar] [CrossRef]
- Soriano, E.; Mediero, L.; Garijo, C. Selection of Bias Correction Methods to Assess the Impact of Climate Change on Flood Frequency Curves. Water 2019, 11, 2266. [Google Scholar] [CrossRef]
- Bedia, J.; Baño-Medina, J.; Legasa, M.N.; Iturbide, M.; Manzanas, R.; Herrera, S.; Casanueva, A.; San-Martín, D.; Cofiño, A.S.; Gutiérrez, J.M. Statistical downscaling with the downscaleR package (v3.1.0): Contribution to the VALUE intercomparison experiment. Geosci. Model Dev. 2020, 13, 1711–1735. [Google Scholar] [CrossRef]
- Lopez-Cantu, T.; Prein, A.F.; Samaras, C. Uncertainties in future U.S. extreme precipitation from downscaled climate projections. Geophys. Res. Lett. 2020, 47, e2019GL086797. [Google Scholar] [CrossRef]
- Andrade-Velázquez, M.; Montero-Martínez, M.J. Historical and Projected Trends of the Mean Surface Temperature in South-Southeast Mexico Using ERA5 and CMIP6. Climate 2023, 11, 111. [Google Scholar] [CrossRef]
- Wilby, R.L.; Charles, S.P.; Zorita, E.; Timbal, B.; Whetton, P.; Mearns, L.O. Guidelines for Use of Climate Scenarios Developed from Statistical Downscaling Methods. Supporting Material of The Intergovernmental Panel on Climate Change, DDC of IPCC TGCIA, 27, 2004. Available online: https://www.academia.edu/download/31092390/dgm_no2_v1_09_2004.pdf (accessed on 21 August 2023).
- Vrac, M.; Stein, M.; Hayhoe, K. Statistical downscaling of precipitation through nonhomogeneous stochastic weather typing. Clim. Res. 2007, 34, 169–184. [Google Scholar] [CrossRef]
- Tavakolifar, H.; Shahghasemi, E.; Nazif, S. Evaluation of climate change impacts on extreme rainfall events characteristics using a synoptic weather typing-based daily precipitation downscaling model. J. Water Clim. Chang. 2017, 8, 388–411. [Google Scholar] [CrossRef]
- Lee, T.; Singh, V.P. Statistical Downscaling for Hydrological and Environmental Applications; Taylor & Francis Group, LLC.: Boca Raton, FL, USA, 2019; p. 159. [Google Scholar]
- Hewitson, B.C.; Crane, R.G. Climate downscaling: Techniques and application. Clim. Res. 1996, 7, 85–95. [Google Scholar] [CrossRef]
- Benestad, R.E.; Chen, D.; Hanssen-Bauer, I. Empirical-Statistical Downscaling; World Scientific Publishing Company: Hackensack, NJ, USA, 2008; p. 228. [Google Scholar] [CrossRef]
- Jakob Themeßl, M.; Gobiet, A.; Leuprecht, A. Empirical-statistical downscaling and error correction of daily precipitation from regional climate models. Int. J. Climatol. 2011, 31, 1530–1544. [Google Scholar] [CrossRef]
- Hewitson, B.C.; Daron, J.; Crane, R.G.; Zermoglio, M.F.; Jack, C. Interrogating empirical-statistical downscaling. Clim. Chang. 2014, 122, 539–554. [Google Scholar] [CrossRef]
- Wilks, D.S. Adapting stochastic weather generation algorithms for climate change studies. Clim. Chang. 1992, 22, 67–84. [Google Scholar] [CrossRef]
- Rozoff, C.M.; Alessandrini, S. A Comparison between Analog Ensemble and Convolutional Neural Network Empirical-Statistical Downscaling Techniques for Reconstructing High-Resolution Near-Surface Wind. Energies 2022, 15, 1718. [Google Scholar] [CrossRef]
- Cawley, G.C.; Janacek, G.J.; Haylock, M.R.; Dorling, S.R. Predictive uncertainty in environmental modelling. Neural Netw. 2007, 20, 537–549. [Google Scholar] [CrossRef]
- Karamouz, M.; Falahi, M.; Nazif, S.; Rahimi Farahani, M. Long lead rainfall prediction using statistical downscaling and artificial neural network modeling. Trans. A Civ. Eng. 2009, 16, 165–172. Available online: https://www.sid.ir/EN/VEWSSID/J_pdf/95520092A07.pdf (accessed on 21 August 2023).
- Laddimath, R.S.; Patil, N.S. Artificial Neural Network Technique for Statistical Downscaling of Global Climate Model. MAPAN 2019, 34, 121–127. [Google Scholar] [CrossRef]
- Chaudhuri, C.; Robertson, C. CliGAN: A Structurally Sensitive Convolutional Neural Network Model for Statistical Downscaling of Precipitation from Multi-Model Ensembles. Water 2020, 12, 3353. [Google Scholar] [CrossRef]
- Hosseini Baghanam, A.; Norouzi, E.; Nourani, V. Wavelet-based predictor screening for statistical downscaling of precipitation and temperature using the artificial neural network method. Hydrol. Res. 2022, 53, 385–406. [Google Scholar] [CrossRef]
- Hempel, S.; Frieler, K.; Warszawski, L.; Schewe, J.; Piontek, F. A trend-preserving bias correction–the ISI-MIP approach. Earth Syst. Dyn. 2013, 4, 219–236. [Google Scholar] [CrossRef]
- Li, C.; Sinha, E.; Horton, D.E.; Diffenbaugh, N.S.; Michalak, A.M. Joint bias correction of temperature and precipitation in climate model simulations. J. Geophys. Res.-Atmos. 2014, 119, 13–153. [Google Scholar] [CrossRef]
- Cannon, A.J.; Sobie, S.R.; Murdock, T.Q. Bias correction of GCM precipitation by quantile mapping: How well do methods preserve changes in quantiles and extremes? J. Clim. 2015, 28, 6938–6959. [Google Scholar] [CrossRef]
- Mehrotra, R.; Sharma, A. A Multivariate Quantile-Matching Bias Correction Approach with Auto- and Cross-Dependence across Multiple Time Scales: Implications for Downscaling. J. Clim. 2016, 29, 3519–3539. [Google Scholar] [CrossRef]
- Gupta, R.; Bhattarai, R.; Mishra, A. Development of Climate Data Bias Corrector (CDBC) Tool and Its Application over the Agro-Ecological Zones of India. Water 2019, 11, 1102. [Google Scholar] [CrossRef]
- Jaiswal, R.; Mall, R.K.; Singh, N.; Lakshmi Kumar, T.V.; Niyogi, D. Evaluation of bias correction methods for regional climate models: Downscaled rainfall analysis over diverse agroclimatic zones of India. Earth Space Sci. 2022, 9, e2021EA001981. [Google Scholar] [CrossRef]
- Ines, A.V.; Hansen, J.W. Bias correction of daily GCM rainfall for crop simulation studies. Agric. For. Meteorol. 2006, 138, 44–53. [Google Scholar] [CrossRef]
- Qian, W.; Chang, H.H. Projecting Health Impacts of Future Temperature: A Comparison of Quantile-Mapping Bias-Correction Methods. Int. J. Environ. Res. Public Health 2021, 18, 1992. [Google Scholar] [CrossRef]
- Wehner, M.; Easterling, D.R.; Lawrimore, J.H.; Heim, R.R.; Vose, R.S.; Santer, B.D. Projections of future drought in the continental United States and Mexico. J. Hydrometeorol. 2011, 12, 1359–1377. [Google Scholar] [CrossRef]
- Mendez, M.; Maathuis, B.; Hein-Griggs, D.; Alvarado-Gamboa, L.F. Performance evaluation of bias correction methods for climate change monthly precipitation projections over Costa Rica. Water 2020, 12, 482. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 Hourly Data on Pressure Levels from 1940 to Present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). 2023. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.bd0915c6?tab=overview (accessed on 21 August 2023). [CrossRef]
- García, E. Modificaciones al Sistema de Clasificación Climática de Köppen (Para Adaptarlo a Las Condiciones de La República Mexicana, 5th ed.; Instituto de Geografía, UNAM: Ciudad de México, México, 2004; Available online: http://www.publicaciones.igg.unam.mx/index.php/ig/catalog/book/83 (accessed on 21 August 2023).
- Fideicomiso para el Desarrollo Regional del Sur Sureste (FIDESUR). Estrategia Nacional para el Desarrollo Integral de la región Sur Sureste (ENDIRSSE). 2021. Available online: https://sursureste.org.mx/sites/default/files/ENDRSSE-2-RSSE-y-contexto-geografico-v1.pdf (accessed on 1 September 2023).
- Dominguez, C.; Jaramillo, A.; Cuéllar, P. Are the socioeconomic impacts associated with tropical cyclones in Mexico exacerbated by local vulnerability and ENSO conditions? Int. J. Climatol. 2021, 41, E3307–E3324. [Google Scholar] [CrossRef]
- Andrade-Velázquez, M. Visión climática de la precipitación en la cuenca del Río Usumacinta. In La Cuenca del Río Usumacinta desde la Perspectiva del Cambio Climático; Soares, D., García, G.A., Eds.; Instituto Mexicano de Tecnología del Agua: Jiutepec, México, 2017; pp. 1–417. [Google Scholar]
- Magaña, V.; Vázquez, J.L.; Pérez, J.L.; Pérez, J.B. Impact of El Niño on precipitation in Mexico. Geofis. Int. 2003, 42, 313–330. [Google Scholar] [CrossRef]
- Sáenz, F.; Hidalgo, H.G.; Muñoz, Á.G.; Alfaro, E.J.; Amador, J.A.; Vázquez-Aguirre, J.L. Atmospheric circulation types controlling rainfall in the Central American Isthmus. Int. J. Climatol. 2023, 43, 197–218. [Google Scholar] [CrossRef]
- Straffon, A.; Zavala-Hidalgo, J.; Estrada, F. Preconditioning of the precipitation interannual variability in southern Mexico and Central America by oceanic and atmospheric anomalies. Int. J. Climatol. 2020, 40, 3906–3921. [Google Scholar] [CrossRef]
- Andrade-Velázquez, M.; Medrano-Pérez, O.R. Precipitation patterns in Usumacinta and Grijalva basins (southern Mexico) under a changing climate. Rev. Bio Cienc. 2020, 7, 1–22. [Google Scholar] [CrossRef]
- INEGI. Cuentame, Información por Entidad. Instituto Nacional de Estadística y Geografía. 2023. Available online: https://cuentame.inegi.org.mx/monografias/default.aspx?tema=me (accessed on 1 September 2023).
- Andrade-Velázquez, M.; Medrano-Pérez, O.R. Historical precipitation patterns in the South-Southeast region of Mexico and future projections. Earth Sci. Res. J. 2021, 25, 69–84. [Google Scholar] [CrossRef]
- Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO). “Atlas de naturaleza y Sociedad”. CONABIO, México, D.F. Atlas de Naturaleza y Sociedad. 2015. Available online: https://www.biodiversidad.gob.mx/atlas/ (accessed on 21 August 2023).
- Centro Mexicano de Derecho Ambiental, A.C. (CEMDA). Todo lo Que Tienes Que Saber Sobre el Tren Maya. 2023. Available online: https://www.cemda.org.mx/tren-maya/ (accessed on 21 August 2023).
- Kauffer, E. El Agua en la Frontera Sur de México: Una Aproximación a la Problemática de las Cuencas Compartidas Con Guatemala y Belice. Boletín del Archivo Histórico del Agua, no. 33, Año 11, Mayo-Agosto, México, AHA/CIESAS/CNA. 2006. Available online: https://biblat.unam.mx/hevila/Boletindelarchivohistoricodelagua/2006/vol11/no33/3.pdf (accessed on 21 August 2023).
- Tren Maya. Secretaria de Turismo y Fonatur. Gobierno de México. 2023. Available online: https://www.gob.mx/trenmaya (accessed on 21 August 2023).
- Corredor Interoceánico-Istmo de Tehuantepec (CIIT). Gobierno de México. 2023. Available online: https://www.gob.mx/ciit (accessed on 21 August 2023).
- Andrade-Velázquez, M.; Medrano-Pérez, O.R.; Montero-Martínez, M.J.; Alcudia-Aguilar, A. Regional Climate Change in Southeast Mexico-Yucatan Peninsula, Central America and the Caribbean. Appl. Sci. 2021, 11, 8284. [Google Scholar] [CrossRef]
- Bruyère, C.L.; Done, J.M.; Holland, G.J.; Fredrick, S. Bias corrections of global models for regional climate simulations of high-impact weather. Clim. Dynam. 2014, 43, 1847–1856. [Google Scholar] [CrossRef]
- Zhao, T.; Bennett, J.C.; Wang, Q.J.; Schepen, A.; Wood, A.W.; Robertson, D.E.; Ramos, M.H. How suitable is quantile mapping for postprocessing GCM precipitation forecasts? J. Clim. 2017, 30, 3185–3196. [Google Scholar] [CrossRef]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Taylor, K.E. Taylor Diagram Primer. 2005. Available online: https://pcmdi.llnl.gov/staff/taylor/CV/Taylor_diagram_primer.pdf (accessed on 1 September 2023).
- Séférian, R.; Nabat, P.; Michou, M.; Saint-Martin, D.; Voldoire, A.; Colin, J.; Decharme, B.; Delire, C.; Berthet, S.; Chevallier, M.; et al. Evaluation of CNRM Earth System Model, CNRM-ESM2-1: Role of Earth system processes in present-day and future climate. J. Adv. Model. Earth Syst. 2019, 11, 4182–4227. [Google Scholar] [CrossRef]
- Boucher, O.; Servonnat, J.; Albright, A.L.; Aumont, O.; Balkanski, Y.; Bastrikov, V.; Bekki, S.; Bonnet, R.; Bony, S.; Bopp, L.; et al. Presentation and evaluation of the IPSL-CM6A-LR climate model. J. Adv. Model. Earth Syst. 2020, 12, e2019MS002010. [Google Scholar] [CrossRef]
- Tatebe, H.; Ogura, T.; Nitta, T.; Komuro, Y.; Ogochi, K.; Takemura, T.; Sudo, K.; Sekiguchi, M.; Abe, M.; Saito, F.; et al. Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6. Geosci. Model Dev. 2019, 12, 2727–2765. [Google Scholar] [CrossRef]
- Yukimoto, S.; Kawai, H.; Koshiro, T.; Oshima, N.; Yoshida, K.; Urakawa, S.; Tsujino, H.; Deushi, M.; Tanaka, T.; Hosaka, M.; et al. The Meteorological Research Institute Earth System Model version 2.0, MRI-ESM2. 0: Description and basic evaluation of the physical component. J. Meteorol. Soc. Jpn. Ser. II 2019, 97, 931–965. [Google Scholar] [CrossRef]
Number | Data | Resolution | Reference |
---|---|---|---|
1 | ERA5 | 25 km × 25 km | [49] |
2 | CNRM-ESM2-1 | 250 km × 250 km | [70] |
3 | IPSL-CM6A-LR | 250 km × 250 km | [71] |
4 | MIROC6 | 250 km × 250 km | [72] |
5 | MRI-ESM2-0 | 100 km × 100 km | [73] |
Number | Data | (South) | (South) | (Southeast) | (Southeast) |
---|---|---|---|---|---|
1 | CNRM-ESM2-1 | 7.743 | 0.762 | 10.609 | 0.281 |
2 | IPSL-CM6A-LR | 6.365 | 0.427 | 10.896 | −0.003 |
3 | MIROC6 | 15.420 | −0.114 | 9.061 | 0.236 |
4 | MRI-ESM2-0 | 12.398 | 0.195 | 9.757 | 0.087 |
Data | South rmsd Orig | South rmsd Corr | South rmsd Corr/Orig | Southeast 1 rmsd Orig | Southeast 1 rmsd Corr | Southeast 1 rmsd Corr/Orig | Southeast 2 rmsd Orig | Southeast 2 rmsd Corr | Southeast 2 rmsd Corr/Orig |
---|---|---|---|---|---|---|---|---|---|
CNRM-ESM2-1 | 12.155 | 6.756 | 0.556 | 12.928 | 9.735 | 0.753 | 9.870 | 8.535 | 0.865 |
IPSL-CM6A-LR | 12.639 | 6.322 | 0.500 | 10.951 | 9.934 | 0.907 | 10.066 | 8.704 | 0.865 |
MIROC6 | 12.600 | 7.126 | 0.566 | 12.940 | 9.323 | 0.720 | 9.823 | 7.782 | 0.792 |
MRI-ESM2-0 | 11.260 | 6.998 | 0.621 | 12.620 | 9.389 | 0.744 | 9.649 | 8.411 | 0.872 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrade-Velázquez, M.; Montero-Martínez, M.J. Statistical Downscaling of Precipitation in the South and Southeast of Mexico. Climate 2023, 11, 186. https://doi.org/10.3390/cli11090186
Andrade-Velázquez M, Montero-Martínez MJ. Statistical Downscaling of Precipitation in the South and Southeast of Mexico. Climate. 2023; 11(9):186. https://doi.org/10.3390/cli11090186
Chicago/Turabian StyleAndrade-Velázquez, Mercedes, and Martín José Montero-Martínez. 2023. "Statistical Downscaling of Precipitation in the South and Southeast of Mexico" Climate 11, no. 9: 186. https://doi.org/10.3390/cli11090186
APA StyleAndrade-Velázquez, M., & Montero-Martínez, M. J. (2023). Statistical Downscaling of Precipitation in the South and Southeast of Mexico. Climate, 11(9), 186. https://doi.org/10.3390/cli11090186