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Abstract: The Severe Acute Respiratory Syndrome Coronavirus Disease 2019 (COVID-19) pandemic
has presented unprecedented challenges to global health and economic stability. Intriguingly, the
necessary lockdown measures, while disruptive to human society, inadvertently led to environmental
rejuvenation, particularly noticeable in decreased air pollution and improved vegetation health.
This study investigates the lockdown’s impact on vegetation health in Jharkhand, India, employing
the Google Earth Engine for cloud-based data analysis. MODIS-NDVI data were analyzed using
spatio-temporal NDVI analyses and time-series models. These analyses revealed a notable increase
in maximum vegetation greenery of 19% from April 2019 to 2020, with subsequent increases of
13% and 3% observed in March and May of the same year, respectively. A longer-term analysis
from 2000 to 2020 displayed an overall 16.7% rise in vegetation greenness. While the maximum
value remained relatively constant, it demonstrated a slight increment during the dry season. The
Landsat data Mann–Kendall trend test reinforced these findings, displaying a significant shift from a
negative NDVI trend (1984–2019) to a positive 17.7% trend (1984–2021) in Jharkhand’s north-west
region. The precipitation (using NASA power and Merra2 data) and NDVI correlation were also
studied during the pre- and lockdown periods. Maximum precipitation (350–400 mm) was observed
in June, while July typically experienced around 300 mm precipitation, covering nearly 85% of
Jharkhand. Interestingly, August 2020 saw up to 550 mm precipitation, primarily in Jharkhand’s
southern region, compared to 400 mm in the same month in 2019. Peak changes in NDVI value
during this period ranged between 0.6–0.76 and 0.76–1, observed throughout the state. Although
the decrease in air pollution led to improved vegetation health, these benefits began to diminish
post-lockdown. This observation underscores the need for immediate attention and intervention
from scientists and researchers. Understanding lockdown-induced environmental changes and their
impact on vegetation health can facilitate the development of proactive environmental management
strategies, paving the way towards a sustainable and resilient future.

Keywords: COVID-19 pandemic; lockdown; vegetation health; Mann–Kendall; NDVI; Jharkhand

1. Introduction

Forests cover approximately one third of the Earth’s total land area, and play a vital
role in providing essential services to human societies [1]. Besides acting as a natural habitat
and supplying raw materials for various industries, forests also regulate the environmental
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setup by balancing climatic parameters, conserving soil quality, maintaining water quality,
facilitating pollination, controlling diseases, and preventing floods [2]. The global forest
cover has faced significant challenges, with the Asia-Pacific region experiencing notable
forest loss [3]. This region encompasses a vast area, and is home to diverse ecosystems, rich
biodiversity, and millions of people who depend on forests for their livelihoods.

The emergence of the COVID-19 pandemic in 2019 has had profound and far-reaching
effects on social and economic activities worldwide, leading to a severe health crisis in
numerous countries. On 11 March 2020, the World Health Organization (WHO) declared
the COVID-19 outbreak a global pandemic, highlighting the urgent need for international
cooperation and coordinated responses [4,5]. The pandemic has caused widespread disrup-
tions across various sectors, including travel, tourism, manufacturing, retail, and services,
resulting in a significant impact on the global economy. Governments around the world
have implemented various measures such as lockdowns, social distancing guidelines, and
travel restrictions to contain the spread of the virus and mitigate its impact on public health
systems.

India experienced a relatively low number of COVID-19 cases and deaths in the early
stages of the pandemic compared to some other countries [6,7]. The Indian government
took proactive measures to prevent the rapid spread of the virus and protect its citizens. On
24 March 2020, India implemented a nationwide lockdown, one of the most extensive and
stringent measures taken globally at the time [8]. The lockdown aimed to break the chain
of transmission by imposing restrictions on movement, suspending non-essential activities,
and promoting social distancing. The nationwide lockdown in India had significant impli-
cations for the country’s economy and society. Industries and businesses, especially those
in non-essential sectors, faced disruptions in their operations, leading to layoffs, reduced
incomes, and economic contraction. Daily wage workers and informal sector workers were
particularly affected, as they often lacked social security benefits and faced challenges in
meeting their basic needs.

As the initial phase of the lockdown brought the number of COVID-19 cases under
control to some extent, the Indian government began implementing phased unlocking
measures from 8 June 2020 [9,10]. The unlocking process aimed to balance the need to
revive economic activities with the necessity of continuing precautionary measures to
prevent a resurgence of the virus. The unlocking phases were implemented gradually, with
the government providing guidelines and protocols for different sectors to ensure safety
and prevent the spread of the virus.

During the unlocking phases, various sectors started resuming their operations, with
businesses adopting preventive measures such as sanitization protocols, social distancing
norms, and work-from-home arrangements wherever possible. The unlocking process
faced challenges as localized outbreaks occurred in different parts of the country, leading
to localized lockdowns and restrictions to contain the spread of the virus.

During the COVID-19 lockdown, when industrial activities halted and travel restric-
tions were implemented worldwide, there were significant changes observed in the global
environment, particularly in terms of air pollution reduction [11]. Forests play a crucial
role in mitigating air pollution, as they act as natural filters, absorbing and sequestering
pollutants. Therefore, they serve as important bio-indicators of air quality [12].

The period of lockdown witnessed notable changes in forest ecosystems due to the
reduction in air pollutants such as sulfur (S) and nitrogen (N) deposition, as well as
surface ozone [12,13]. These pollutants, emitted primarily from industrial processes and
transportation, have detrimental effects on both human health and the environment. High
levels of sulfur and nitrogen deposition can lead to acidification of soil and water bodies,
negatively impacting plant and aquatic life. During the lockdown, the reduced emission of
air pollutants resulted in improvements in forest soil recovery and overall environmental
health. Long-term monitoring and analysis are essential to assess the movement of acid
radicals and subsequent precipitation and acidification in the environment, particularly in
transboundary regions where pollution can travel across borders [14]. These studies help



Climate 2023, 11, 187 3 of 20

in understanding the complex interactions between air pollution, forest ecosystems, and
the broader environment.

Air quality monitoring conducted in the Jharkhand state during the lockdown period
revealed positive changes in forest soil recovery. There were notable declines in carbon
monoxide (CO) and fine particulate matter (PM 2.5) levels, indicating a reduction in
combustion-related pollutants and airborne particles [15]. Additionally, there were slight
reductions in sulfur dioxide (SO2) levels, a major contributor to acid rain and air pollution.
These improvements in air quality can have beneficial effects on the health and well-being
of both humans and ecosystems, which has been observed in the many regions of India,
especially in the Himalayan region [16,17].

It is important to note that the positive changes observed during the lockdown were
temporary and influenced by the specific circumstances of reduced human activity. As
restrictions eased and economic activities resumed, the levels of air pollutants gradually
returned to pre-lockdown levels in many regions. Therefore, sustained efforts are required
to address the long-term challenges of air pollution and promote sustainable practices in
industries, transportation, and energy production to maintain improved air quality and
support the recovery of forest ecosystems.

The Normalized Difference Vegetation Index (NDVI) has widely been used throughout
the world in the geospatial method which helps to understand the periodical changes in
health and spatial extent of vegetation [18–20]. Previous studies have harnessed NDVI
for evaluating forest cover changes, including global-scale assessments using Landsat
7 data (30 m spatial resolution) on the Google Earth Engine platform [21]. While some
research has indicated a consistent negative trend in NDVI for various Indian forest types,
utilizing MODIS/TERRA-derived data [22,23], the Eastern Indian Himalayan region has
exhibited a significant NDVI increase [24]. Worldwide assessments have determined that
approximately 34% of continents have experienced greening, primarily in the Sahel, Europe,
India, and South China. Conversely, a mere 10% of global land regions have experienced
browning, most notably in Canada, South America, Central Africa, and Central Asia [25].
The ongoing monitoring of vegetation’s evolutionary patterns through NDVI is crucial for
the development of robust conservation and restoration practices.

The major cities of India like Delhi, Kolkata, Mumbai, and Chennai also represented
improvement in their vegetation quality index [26]. Numerous studies are currently in
progress to evaluate COVID-19’s impact on various environmental aspects [27,28]. In this
paper, we investigate the significant NDVI changes from 2000 to 2020 and from 2019 to 2020
using MODIS data. Additionally, we apply the Mann–Kendall correlation test (Kendall
Tau) to the Landsat time series for the periods 1984 to 2019 and 1984 to 2021, in order to
understand the variation in Jharkhand state’s vegetation.

2. Materials and Methods
2.1. Study Area

Jharkhand, the state considered for this study, covers a total area of 79,710 km2 and
lies between 21◦58′02′′ N to 25◦08′32′′ N latitude and 83◦19′05′′ E to 87◦55′03′′ E longitude
(Figure 1). A significant portion of Jharkhand is situated on the Chota Nagpur plateau. The
state is renowned for the Saranda forest, which is Asia’s largest Sal forest [29]. Jharkhand is
a landlocked state bordered by five other states: Bihar, Uttar Pradesh, Chhattisgarh, and
West Bengal. Ranchi is the capital of Jharkhand, while Jamshedpur is its major industrial
city. Key rivers flowing through the state include the Damodar, Barakar, Son, North Koel,
South Koel, Subarnarekha, and Sankh. The state receives an average annual rainfall of
1386 mm, which is predominantly erratic and temporal, observed mainly from June to
September [30]. May is the hottest month, with daily temperatures reaching a maximum of
38 ◦C and a minimum of 25 ◦C, while winter temperatures can drop to a minimum of 6 ◦C.
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Figure 1. Location of study area (starred) in the Jharkhand state of India represented using Landsat
8 OLI satellite images (November–December 2020), along with the district boundaries.

2.2. Methodology and Data Used

In this study, time series modelling was performed using MODIS-NDVI (MOD13Q1)
and Landsat data for vegetation change analysis. The Google Earth Engine (GEE) platform
was utilized for this analysis, providing a cloud computing environment capable of storing
and processing vast amounts of geographic information on a petabyte scale [31]. MODIS
data were downloaded from GEE and processed using ArcGIS software, thereby enabling
spatial analysis and visualization. Further, the Power global data, which has a resolution
of 0.5 × 0.5 degree, was obtained from NASA’s online public database (https://power.
larc.nasa.gov, accessed on 21 December 2021) [32] to understand the relationship between
NDVI and precipitation. This data has been used by researchers to understand climatic
impact, and in this research, the Inverse Distance Weightage (IDW) interpolation method
was applied to observe precipitation variability in Jharkhand [17,33].

The MODIS vegetation index (MOD13Q1) employed in this study provides informa-
tion on vegetation greenness based on leaf area, chlorophyll content, and canopy structure.
The index is derived from 16-day composites at a spatial resolution of 250 m, enabling both
spatial and temporal analysis of vegetation dynamics. Linear trend calculation (Mean and
Max) for the period of 2000–2020 and NDVI during the period of 2019–2020 was performed
using these data.

https://power.larc.nasa.gov
https://power.larc.nasa.gov
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For further assessment of vegetation change trends, the Mann–Kendall test was ap-
plied on the retrieved NDVI values from Landsat data for the period of 1984–2019 and
1984–2021. NDVI is indicative of greenness and density and, thus, is useful for evaluating
the health of vegetation on the Earth’s surface [18–20,34]. The Mann–Kendall test is a
non-parametric statistical test used to identify monotonic trends in data [35]. It calculates
the Kendall Tau, reflecting the strength and direction of the trend, and the Sen’s Slope,
quantifying the magnitude of temporal change [36–38]. Calculations of the Kendall Tau
and Sen’s Slope were performed using the Google Earth Engine, leveraging the capabil-
ities provided by the platform (https://developers.google.com/earth-engine/tutorials/
community/nonparametric-trends, accessed on 15 January 2022). The formula of calculat-
ing the NDVI is:

NDVI =
Near IR− Red
Near IR + Red

(1)

where Near IR is the reflectance value in the near-infrared band and Red is the reflectance
value in the red band.

The use of Kendall Tau in trend analysis offers certain advantages compared to linear
regression and developed by Kendall represented in Equation (2) [39]. Unlike linear
regression, Kendall Tau is not affected by the presence of outliers and data errors, making
it robust for detecting monotonic patterns in the data [36–38]. The formula of calculating
Kendall Tau is:

τ = (P − Q)/
√

((P + Q + T) × (P + Q + U)) (2)

where τ represents the Kendall Tau coefficient, P denotes the number of concordant pairs
(pairs that have the same order in both variables), Q denotes the number of discordant
pairs (pairs that have different orders in the two variable), T denotes the number of tied
pairs in the first variable, and U denotes the number of tied pairs in the second variable. It
must be noted that tied pairs occur when there are multiple instances of the same value in
either variable. The formula considers both the concordant and discordant pairs, as well
as the tied pairs, to compute the Kendall Tau coefficient. The coefficient ranges between
−1 and 1, where −1 indicates a perfect negative correlation, 1 indicates a perfect positive
correlation, and 0 indicates no correlation between the variables.

The slope estimator method is used to calculate the magnitude of the trend anticipated
by Theil [40] and Sen [41], represented as Sen’s slope (Ti) mentioned in Equation (3).

Ti =
xj− xk

j− k
f or i = 1, 2, . . . ., N, (3)

where (xj− xk) represents the data values at time j, k (j > k) consequently.
The flow chart of the present work, illustrating the methodology and steps followed

in the study, is presented in Figure 2. This flow chart provides a visual representation of the
process undertaken to analyze vegetation change using MODIS-NDVI and Landsat data,
with the support of the Google Earth Engine platform.

https://developers.google.com/earth-engine/tutorials/community/nonparametric-trends
https://developers.google.com/earth-engine/tutorials/community/nonparametric-trends
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3. Results
3.1. Long Term Changes in Vegetation of Jharkhand

The state land in Jharkhand is full of greenery, with 27% of the area being forest and
the majority (52%) being cropland, as studied here. The p–resent analysis showed that there
was an accelerated increase in forest greenness during the COVID-19 lockdown period
(2019–2020) (Figure 3, Table 1). Interestingly, it has been observed that many areas of the
forest have improved in health since the year 2000, while a substantial portion remained
unchanged during the period from 2000 to 2020 (Figure 4).

The vegetation in Jharkhand has been steadily increasing since 2000, with a significant
growth observed in 2019–2020 due to the COVID-19 lockdown and subsequent restrictions.
Though, the vegetation returned to its previous levels in 2019 after the lockdown measures
were lifted, indicating a reversion to the original environmental conditions. The analysis
indicated that all areas with the highest NDVI values remained unchanged from 2000 to
2020 during the months of November and October (Figure 4). These months, following
the end of the rainy season, exhibit the highest level of vegetation vigor. Additionally,
the maximum NDVI value during other seasons has also shown an increasing trend,
particularly from 2016 to 2020, with a notable acceleration between 2019 and 2020. This
finding suggests that areas with already high vegetation quality maintained their status
over the two-decade period.
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Table 1. Data used and sources mentioned as below used in this study.

Data Used Characteristics Sources Resolution Date Acquisition Path/Row

MODIS-NDVI
(MOD13Q1) NDVI USGS 250 m 18 February 2000 to

31 January 2022 103/54, 103/55,
104/54, 104/55,
104/56, 105/54,
105/55, 105/56,
105/57, 106/54,
106/55, 106/56,
106/57, 107/54,

107/55

Landsat 5 TM Mann–Kendall Tau USGS 30 m 1 January 1985 to 1
January 2012

Landsat 7 ETM+ Mann–Kendall Tau USGS 30 m 28 May 1999 to 31
December 2021

Landsat 8 OLI Mann–Kendall Tau USGS 30 m 18 March 2013 to 31
January 2022

Vector data Map Preparation https://www.igismap.com,
accessed on 10 January 2022 30 m -

Sentinel 2A/ESRI
10 m land cover

Land Use and Land
cover ESRI [42] 10 m 2021
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3.2. COVID-19 Lockdown and Unlock Impacts on Vegetation

The analysis presented herein explores the state of vegetation in both forests and
croplands in Jharkhand, using various figures for illustration. The mean NDVI value, a
measure of vegetation greenness, corresponds to croplands with scant forest cover, while
the highest NDVI value is attributed to forest vegetation. These figures offer insights into
the shifts in vegetative greenness during different periods, with particular emphasis on the
impact of the COVID-19 pandemic and the ensuing lockdown measures [43–46].

In April 2020, compared to April 2019, there was a 19% increase in the maximum
vegetative greenness and a 9% increase across half of the area (Figure 5), suggesting a
significant rise in vegetation during that period. Likewise, in May 2020, a 13% increase in
maximum vegetative greenness was observed compared to May 2019, and a substantial
27% increase across approximately 35,872.2 km2 of Jharkhand. These findings indicate a
noteworthy boost in vegetation during May 2020.
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Figure 5. Representation of statistical chart of NDVI (A) mean and (B) maximum values during 2019
and 2020 period.

In June 2020, a 3% rise in maximum vegetative greenness was observed compared to
June 2019, but a more significant 26% increase was seen across 39,858 km2 of Jharkhand
(Figure 6). Although there was a slight dip in maximum greenness from Unlock 2.0 to
Unlock 5.0, it is important to note that approximately half of Jharkhand still experienced a
modest increase in vegetation greenness (Figures 7 and 8).
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(c,d), and December (e,f) during 2019 and 2020, respectively, of pre-lockdown period and during
Unlock 5.0 to 7.0.
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During Unlock phases 5.0 to 7.0, there was a minor drop in the maximum percentage
of greenness across 39,858 km2 of the area, except in November, when a slight rise in the
highest value of greenness was observed, albeit with a small decrease in nearly half of the
Jharkhand area (Figure 8). These findings suggest that while overall greenness experienced
some fluctuations during the unlocking phases, certain periods exhibited slight increases
or decreases in vegetative greenness across various parts of Jharkhand [47–53].

To further comprehend the spatial distribution of NDVI during the COVID-19 phase,
NDVI spatial maps are depicted in Figures 6–8. These maps offer visual representations
of changes in vegetation greenness across the region during specific periods, facilitating a
more detailed analysis of vegetation dynamics.

3.3. Precipitation and NDVI Relationship during Pre and Post Lockdown Period

The precipitation analysis was conducted for the months of April through Novem-
ber during the pre-lockdown and lockdown periods from 2019 to 2020, to establish a
relationship between precipitation and vegetation. This study reveals that during the pre-
lockdown and lockdown months of April to June (2019 and 2020), maximum precipitation
of 350–400 mm was primarily observed in the southwestern and north-eastern regions of
Jharkhand in June 2020 (Figure 9a–f). Conversely, the maximum rainfall recorded in June
2019 was only 150 mm. Furthermore, vegetation conditions were found to be favorable
during the lockdown, as per NDVI observations. In April and May, the western region
received less precipitation (0–50 mm) in 2019. In 2020, precipitation up to 100 mm was
observed in most parts of Jharkhand.

In July, rainfall of about 300 mm dominated approximately 85% of Jharkhand’s area,
whereas the north-eastern part received up to 450 mm. Interestingly, in 2020, the central
region recorded the highest precipitation of 400 mm. The month of August saw precipitation
of 400 mm in 2019, whereas up to 550 mm of rainfall was observed in 2020, primarily in the
southern part of Jharkhand (Figure 9g–l). Coinciding with this, NDVI values also peaked
during this month, ranging between 0.6–0.76 and 0.76–1 throughout Jharkhand.

In September, precipitation ranged between 350–400 mm, observed in the southern
and north-eastern regions during 2019, whereas up to 550 mm was recorded in the north-
western region. The most significant increases in NDVI were observed in the western,
eastern, and southern parts of Jharkhand. In October 2019, 200 mm of rainfall was recorded,
a similar observation was made in 2020, NDVI values were exceptionally higher in many
parts in 2019 compared to 2020 (Figure 9m–p). The month of November recorded precipi-
tation ranging from 0–50 mm only in 2019 and 2020. These observations suggest that the
most significant impact on vegetation health occurred in June, July, August, and September,
as these months received ample rainfall during the lockdown period.

As seen in Figure 10, the north western part of Jharkhand demonstrated significant
improvement during the lockdown. The relationship between NDVI and precipitation
during the pre-lockdown period (1984–2019) reveals a positive linear relationship across
all vegetation regions. Figure 11 depicts the COVID-19 era, where a stronger positive
relationship is observed between rainfall and NDVI values. This is because rainfall has
increased, leading to an increase in NDVI values. Extrapolating these observations to the
entire area of Jharkhand revealed similar scenarios throughout the region.
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3.4. Mann–Kendall Trend Analysis during 1984–2021

The application of the Mann–Kendall test was used to analyze multi-temporal Landsat
data spanning from 1984 to 2019 in Jharkhand (Figure 12). The Mann–Kendall test is a
statistical test used to detect trends in data over time. In this case, it was employed to assess
the trend of vegetation based on the NDVI, which is a measure of vegetation greenness.
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At a 95% confidence level with a significance level of 0.05 (p-value), the Mann–Kendall
test was performed on the Landsat data. The Kendall Tau statistic, derived from this test,
represents the trend of the NDVI values over time. The analysis revealed that the majority
of Jharkhand exhibited an increasing trend in NDVI values, indicating an improvement in
vegetation cover. The northwestern part of the region showed a decreasing trend in NDVI
values, suggesting a decline in vegetation.

Furthermore, when analyzing the data from 1984 to 2021, it was observed that there
was an acceleration and negative trend in most parts of the northwestern region. This
indicates a worsening vegetation condition in that particular area over the analyzed period.

Moreover, the passage mentions that there was a difference in the correlation of trend
values between two periods. Specifically, the Tau value, which represents the strength and
direction of the trend, increased by 0.03 due to the COVID-19 phases. This suggests that the
COVID-19 pandemic and associated lockdowns might have had a slight positive impact on
vegetation, leading to a small improvement in NDVI values.

4. Discussion

The research findings shed light on the profound influence of human activities on the
health and vitality of vegetation and ecosystems on a larger scale [54–59]. This emphasizes
the urgency of adopting comprehensive and sustainable practices to mitigate environmen-
tal damage, while also potentially enabling nature’s recovery [60–62]. By illuminating
the temporary yet significant positive impacts resulting from reduced pollution during
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the COVID-19 lockdown, this study offers invaluable insights that can be harnessed in
the development of proactive environmental policies. These revelations underscore the
immediate need for well-planned and strategic action, informing both local and global
efforts aimed at achieving a sustainable future [63,64]. In this way, this research stands as
a critical contribution to our comprehension of ecosystem dynamics, serving as a pivotal
foundation for crafting effective and sustainable strategies for environmental management.

To delve into the research results, the study explores the effects of the COVID-19
lockdown measures on vegetation health in Jharkhand, particularly in relation to reduced
human activity and industrial operations. These measures led to a significant reduction
in air pollution levels, subsequently yielding positive effects on the region’s forests and
vegetation. This positive impact was notably manifested by a distinct greening effect
observed in both forested and cultivated lands. The greening phenomenon in Jharkhand’s
croplands can be attributed to a combination of advanced agricultural practices, such as
enhanced irrigation, hybrid cultivation, efficient pest management, and the use of high-
quality seeds [44–46]. Financial support, crop insurance, and agricultural automation also
played contributing roles.

The research reveals a nuanced picture across different regions of Jharkhand, with
some areas exhibiting positive ecological shifts, while others necessitate focused conserva-
tion efforts [47]. Remarkably, the lockdown measures had a discernible positive influence
on the health of Jharkhand’s forests, leading to visible greening effects [48]. However,
the study observes that with the cessation of lockdown in 2020, the vegetation levels in
Jharkhand reverted to their pre-lockdown state, mainly due to the resumption of human
activities that tend to escalate air pollution levels [49,50].

The research’s reliance on spatial representations of the Normalized Difference Vegeta-
tion Index (NDVI) provided critical insights into the fluctuations in vegetation greenery
during the COVID-19 lockdown, which was subsequently followed by observable incre-
ments and subsequent decrements during the unlocking phases [49]. This approach aligns
with various studies that have addressed the environmental impact of lockdown mea-
sures [52–55]. Notably, similar improvements in vegetation health and productivity were
observed across India, even in mining areas [51]. Nonetheless, divergent outcomes were
noted in certain countries like Egypt, where adverse effects on agricultural production were
reported [20]. The utilization of NDVI was crucial in highlighting the improvements in air
quality and vegetation resulting from reduced pollution [56].

The study conducted Mann–Kendall trend tests on Landsat data, uncovering temporal
vegetation trends in Jharkhand [58]. Most of the region exhibited an increasing NDVI trend,
except for the north western part, which displayed a decline. Notably, the analysis revealed
an increase in the Tau value during the COVID-19 lockdown period, hinting at potential
positive effects of the pandemic-related restrictions on Jharkhand’s vegetation. However,
the researchers emphasize the necessity for further extensive research to substantiate this
assumption.

Furthermore, the research delves into the relationship between precipitation and
vegetation, as measured by NDVI, during the pre-lockdown and lockdown periods of 2019
and 2020. The study identifies significant impacts on vegetation health during the lockdown
months of June, July, August, and September, which coincide with periods of high rainfall.
An affirmative correlation is noted between NDVI and precipitation across Jharkhand.
Notably, the increment in NDVI was more pronounced post-COVID, potentially attributable
to increased global atmospheric circulation and decreased atmospheric pollution resulting
in unforeseen consequences.

In conclusion, the research effectively navigates the nexus between human activities,
vegetation health, and ecosystem dynamics in Jharkhand. By focusing on the tangible
impacts of COVID-19 lockdown measures, the study provides a basis for proactive envi-
ronmental policies and strategies. It underscores the significance of sustainable practices in
mitigating environmental degradation and propelling the restoration of natural systems.
Through the exploration of NDVI data and a comprehensive analysis of long-term vege-
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tation changes, the research contributes valuable insights that resonate both locally and
globally, guiding efforts towards a sustainable future [63,64].

5. Conclusions

This study represents a novel endeavor that harnesses MODIS and Landsat data to
deliver a comprehensive assessment of vegetation health dynamics in Jharkhand from 2000
to 2020. Leveraging the Normalized Difference Vegetation Index (NDVI), our analysis
unveils a substantial increase in vegetation health within this timeframe. Particularly
during the 2019–2020 period, our investigation spotlights remarkable improvements in
vegetation health during May and June, with significant enhancements also observed in
April. These NDVI fluctuations closely align with periods of peak precipitation, yielding
intriguing insights into the intricate connection between precipitation and vegetation
health. Of significant note is the positive impact of the COVID-19 lockdown measures on
vegetation health, owing to reduced pollution levels. This observation underscores the
potential effectiveness of strategically timed reductions in human activity as a means of
environmental rejuvenation. However, it is important to recognize the transient nature of
these improvements as vegetation reverted to its pre-lockdown state after restrictions were
lifted.

While our findings hold profound environmental implications, certain limitations
must be acknowledged. Factors such as local agricultural practices and varying weather
conditions, which can influence vegetation health, were not fully considered. Moreover,
we did not delve into the specific effects of different types of pollution reductions during
the lockdown on vegetation health. These limitations notwithstanding, our research under-
scores the critical need for robust pollution control strategies, holistic water management
policies that account for vegetation’s pivotal role, and comprehensive air quality regula-
tions. This study also highlights the instrumental role of remote sensing data in shaping
environmental policies. Despite its constraints, our research points to the potential for
enhancing vegetation health and mitigating air pollution through evidence-based envi-
ronmental measures, not only in Jharkhand but on a global scale. Future research should
delve deeper into the distinct influences of various pollution types on vegetation health
and explore how shifts in these pollutants impact ecosystems more broadly.
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