Crop Coefficients and Irrigation Demand in Response to Climate-Change-Induced Alterations in Phenology and Growing Season of Vegetable Crops
Abstract
:1. Introduction
2. Materials and Methods
2.1. Simulation Framework
2.1.1. Climate Models and Data
2.1.2. Study Area and Model Crops
2.2. Thermal Growing Season
2.3. Determination of Sowing Dates and Crop Phenological Growth Stages
2.4. Computing Reference Evapotranspiration, Crop-Specific Evapotranspiration, and Crop-Specific Climate Water Balance
2.5. Statistical Analysis
3. Results
3.1. Temperature, Precipitation, and Dry Periods
3.2. Thermal Growing Season
3.3. Plant Phenological Development Stages
3.4. Crop-Specific Water Demand
3.5. Model and Crop Importance for Climate Signal
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dawson, T.P.; Perryman, A.H.; Osborne, T.M. Modelling impacts of climate change on global food security. Clim. Chang. 2016, 134, 429–440. [Google Scholar] [CrossRef]
- Lee, H.; Calvin, K.; Dasgupta, D.; Krinmer, G.; Mukherji, A.; Thorne, P.; Trisos, C.; Romero, J.; Aldunce, P.; Barret, K.; et al. Synthesis Report of the IPCC Sixth Assessment Report (AR6), Longer Report. IPCC; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2023. [Google Scholar]
- Monteleone, B.; Borzí, I.; Bonaccorso, B.; Martina, M. Quantifying crop vulnerability to weather-related extreme events and climate change through vulnerability curves. Nat. Hazards 2023, 116, 2761–2796. [Google Scholar] [CrossRef]
- Elias, E.H.; Flynn, R.; Idowu, O.J.; Reyes, J.; Sanogo, S.; Schutte, B.J.; Smith, R.; Steele, C.; Sutherland, C. Crop Vulnerability to Weather and Climate Risk: Analysis of Interacting Systems and Adaptation Efficacy for Sustainable Crop Production. Sustainability 2019, 11, 6619. [Google Scholar] [CrossRef]
- Krug, H.; Liebig, H.-P.; Stützel, H. Gemüseproduktion: Ein Lehr- und Nachschlagewerk für Studium und Praxis; Verlag Eugen Ulmer: Stuttgart, Germany, 2003; ISBN 978-3800135844. [Google Scholar]
- Zinkernagel, J.; Weinheimer, S.; Mayer, N. Wasserbedarf von Freilandgemüsekulturen. Available online: https://www.hortigate.de/bericht?nr=73862 (accessed on 26 September 2024).
- Cohen, I.; Zandalinas, S.I.; Huck, C.; Fritschi, F.B.; Mittler, R. Meta-analysis of drought and heat stress combination impact on crop yield and yield components. Physiol. Plant. 2021, 171, 66–76. [Google Scholar] [CrossRef] [PubMed]
- Kondinya, A.; Palash, S.; Pandit, M.K. Impact of Climate Change on Vegetable Cultivation—A Review. Int. J. Agric. Environ. Biotechnol. 2014, 7, 145. [Google Scholar] [CrossRef]
- Schmidt, N.; Zinkernagel, J. Model and Growth Stage Based Variability of the Irrigation Demand of Onion Crops with Predicted Climate Change. Water 2017, 9, 693. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Prueger, J.H. Temperature extremes: Effect on plant growth and development. Weather Clim. Extrem. 2015, 10, 4–10. [Google Scholar] [CrossRef]
- Oyebamiji, Y.O.; Abd Aziz Shamsudin, N.; Asmuni, M.I.; Yusop, M.R. Heat Stress in Vegetables: Impacts and Management Strategies—A Review. Sains Malays. 2023, 52, 1925–1938. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2022—Impacts, Adaptation and Vulnerability; Cambridge University Press: Cambridge, UK, 2023; ISBN 9781009325844. [Google Scholar]
- Tabari, H. Climate change impact on flood and extreme precipitation increases with water availability. Sci. Rep. 2020, 10, 13768. [Google Scholar] [CrossRef]
- Mirás-Avalos, J.; Rubio-Asensio, J.; Ramírez-Cuesta, J.; Maestre-Valero, J.; Intrigliolo, D. Irrigation-Advisor—A Decision Support System for Irrigation of Vegetable Crops. Water 2019, 11, 2245. [Google Scholar] [CrossRef]
- Rosa, L. Adapting agriculture to climate change via sustainable irrigation: Biophysical potentials and feedbacks. Environ. Res. Lett. 2022, 17, 63008. [Google Scholar] [CrossRef]
- Tian, X.; Dong, J.; Jin, S.; He, H.; Yin, H.; Chen, X. Climate change impacts on regional agricultural irrigation water use in semi-arid environments. Agric. Water Manag. 2023, 281, 108–239. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration guidelines for computing crop requirements. FAO Irrigation and Drainage. Report modeling and application. J. Hydrol. 1998, 285, 19–40. [Google Scholar]
- Zinkernagel, J.; Maestre-Valero, J.F.; Seresti, S.Y.; Intrigliolo, D.S. New technologies and practical approaches to improve irrigation management of open field vegetable crops. Agric. Water Manag. 2020, 242, 106404. [Google Scholar] [CrossRef]
- Le Page, M.; Fakir, Y.; Jarlan, L.; Boone, A.; Berjamy, B.; Khabba, S.; Zribi, M. Projection of irrigation water demand based on the simulation of synthetic crop coefficients and climate change. Hydrol. Earth Syst. Sci. 2021, 25, 637–651. [Google Scholar] [CrossRef]
- Conversa, G.; Bonasia, A.; Di Gioia, F.; Elia, A. A decision support system (GesCoN) for managing fertigation in vegetable crops. Part II-model calibration and validation under different environmental growing conditions on field grown tomato. Front. Plant Sci. 2015, 6, 495. [Google Scholar] [CrossRef]
- Olberz, M.; Kahlen, K.; Zinkernagel, J. Assessing the Impact of Reference Evapotranspiration Models on Decision Support Systems for Irrigation. Horticulturae 2018, 4, 49. [Google Scholar] [CrossRef]
- Potopová, V.; Trnka, M.; Vizina, A.; Semerádová, D.; Balek, J.; Chawdhery, M.; Musiolková, M.; Pavlík, P.; Možný, M.; Štěpánek, P.; et al. Projection of 21st century irrigation water requirements for sensitive agricultural crop commodities across the Czech Republic. Agric. Water Manag. 2022, 262, 107–337. [Google Scholar] [CrossRef]
- Allen, R.G.; Kilic, A.; Robison, C.W. Current frameworks for reference ET and crop coefficient calculation. In Proceedings of the 6th Decennial National Irrigation Symposium, San Diego, CA, USA, 6–8 December 2021; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2021. [Google Scholar]
- Gao, L.; Kantar, M.B.; Moxley, D.; Ortiz-Barrientos, D.; Rieseberg, L.H. Crop adaptation to climate change: An evolutionary perspective. Mol. Plant 2023, 16, 1518–1546. [Google Scholar] [CrossRef]
- Amani, S.; Shafizadeh-Moghadam, H. A review of machine learning models and influential factors for estimating evapotranspiration using remote sensing and ground-based data. Agric. Water Manag. 2023, 284, 108324. [Google Scholar] [CrossRef]
- Chia, M.Y.; Huang, Y.F.; Koo, C.H.; Fung, K.F. Recent Advances in Evapotranspiration Estimation Using Artificial Intelligence Approaches with a Focus on Hybridization Techniques—A Review. Agronomy 2020, 10, 101. [Google Scholar] [CrossRef]
- Islam, M.N.; Logofătu, D. Machine Learning Models to Predict Soil Moisture for Irrigation Schedule. In Proceedings of the 2022 24th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), Linz, Austria, 12–15 September 2022; pp. 226–232, ISBN 978-1-6654-6545-8. [Google Scholar]
- Peet, M.M.; Wolfe, D.W. Crop ecosystem responses to climatic change: Vegetable crops. In Climate Change and Global Crop Productivity; Reddy, K.R., Hodges, H.F., Eds.; CABI Publishing: Wallingford, UK, 2000; pp. 213–243. ISBN 9780851994390. [Google Scholar]
- Aalto, J.; Pirinen, P.; Kauppi, P.E.; Rantanen, M.; Lussana, C.; Lyytikäinen-Saarenmaa, P.; Gregow, H. High-resolution analysis of observed thermal growing season variability over northern Europe. Clim. Dyn. 2022, 58, 1477–1493. [Google Scholar] [CrossRef]
- Minoli, S.; Jägermeyr, J.; Asseng, S.; Urfels, A.; Müller, C. Global crop yields can be lifted by timely adaptation of growing periods to climate change. Nat. Commun. 2022, 13, 7079. [Google Scholar] [CrossRef] [PubMed]
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P.; et al. Climate Change 2014: Synthesis Report: [Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change]; Pachauri, R.K., Ed.; IPCC: Geneva, Switzerland, 2015; ISBN 978-92-9169-143-2. [Google Scholar]
- IPCC. Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; WMO IPCC: Geneva, Switzerland, 2014; ISBN 9781107057999. [Google Scholar]
- Kreienkamp, F.; Spekat, A.; Enke, W. The Weather Generator Used in the Empirical Statistical Downscaling Method, WETTREG. Atmosphere 2013, 4, 169–197. [Google Scholar] [CrossRef]
- Rockel, B.; Will, A.; Hense, A. The Regional Climate Model COSMO-CLM (CCLM). Meteorol. Z. 2008, 17, 347–348. [Google Scholar] [CrossRef]
- MPI fuer Meteorologie Hamburg. MPI-ESM. Available online: https://mpimet.mpg.de/en/science/models/mpi-esm (accessed on 21 July 2024).
- Hübener, H.; Bülow, K.; Fooken, C.; Früh, B.; Hoffmann, P.; Höpp, S.; Keuler, K.; Menz, C.; Mohr, V.; Radtke, K.; et al. ReKliEs-De—Regional Climate Projections Ensemble for Germany. Available online: https://www.umweltbundesamt.de/en/topics/climate-energy/climate-change-adaptation/adaptation-tools/project-catalog/reklies-de-regional-climate-projections-ensemble (accessed on 24 September 2024).
- ReKliES-De—English. Available online: https://www.dkrz.de/en/projects-and-partners/projects-1/reklies-de (accessed on 24 September 2024).
- Lovino, M.A.; Pierrestegui, M.J.; Müller, O.V.; Müller, G.V.; Berbery, E.H. The prevalent life cycle of agricultural flash droughts. npj Clim. Atmos. Sci. 2024, 7, 73. [Google Scholar] [CrossRef]
- Daymond, A.J.; Wheeler, T.R.; Hadley, P.; Ellis, R.H.; Morison, J.I.L. The growth, development and yield of onion (Allium cepa L.) in response to temperature and CO2. J. Hortic. Sci. 1997, 72, 135–145. [Google Scholar] [CrossRef]
- Ikeda, H.; Kinoshita, T.; Yamamoto, T.; Yamasaki, A. Sowing time and temperature influence bulb development in spring-sown onion (Allium cepa L.). Sci. Hortic. 2019, 244, 242–248. [Google Scholar] [CrossRef]
- Vargas, Y.; Mayor-Duran, V.M.; Buendia, H.F.; Ruiz-Guzman, H.; Raatz, B. Physiological and genetic characterization of heat stress effects in a common bean RIL population. PLoS ONE 2021, 16, e0249859. [Google Scholar] [CrossRef]
- Zinkernagel, J.; Weinheimer, S.; Herbst, M.; Kleber, J.; Mayer, N. Der Bewässerungsbedarf von Freilandgemüse Steigt. Berichte Über Landwirtsch.—Z. Agrarpolit. Landwirtsch. Aktuelle Beiträge 2022, 100. [Google Scholar] [CrossRef]
- Hessian State Bureau of Statistics. Statistische Berichte: Die Gemüseerhebung in Hessen. CI3 mit CII; 2016. Statistische Berichte: Die Gemüseerhebung in Hessen. Available online: www.statistik.hessen.de (accessed on 15 August 2024).
- Berthold, G. Sicherstellung der Landwirtschaftlichen Produktion mit Zusatzwasserbedarf bei Veränderten Klimatischen Bedingungen—Maßnahmen für ein Nachhaltiges Grundwassermanagement sowie Anbauempfehlungen für die Landwirtschaftliche Produktion im Hessischen Ried. Integriertes Klimaschutzprogramm Hessen INKLIM 2012. Projektbaustein II: Klimawandel und Seine Folgen, Issue 2, Volume 100, HLNUG. 2008. Available online: https://www.umweltbundesamt.de/themen/klima-energie/klimafolgen-anpassung/werkzeuge-der-anpassung/projekte-studien/sicherstellen-der-landwirtschaftlichen-produktion (accessed on 15 August 2024).
- Chmielewski, F.-M. Phenology in Agriculture and Horticulture. In Phenology: An Integrative Environmental Science; Schwartz, M.D., Ed.; Springer Netherlands: Dordrecht, The Netherlands, 2013; pp. 539–561. ISBN 978-94-007-6925-0. [Google Scholar]
- Feller, C.; Fink, M.; Laber, H.; Maync, A.; Paschold, P.; Scharpf, H.C.; Schlaghecken, J.; Strohmeyer, K.; Weier, U.; Ziegler, J. Düngung im Freilandgemüsebau; Schriftenreihe des Leibniz-Institutes für Gemüse-und Zierpflanzenbau Großbeeren und Erfurt (IGZ): Großbeeren, Germany, 2011. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- RStudio Team. RStudio: Integrated Development for R; RStudio, PBC: Boston, MA, USA, 2021. [Google Scholar]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis, 2nd ed.; Springer International Publishing: Cham, Switzerland, 2016; ISBN 9783319242774. [Google Scholar]
- Lee, H.; Calvin, K.; Dasgupta, D.; Krinner, G.; Mukherji, A.; Thorne, P.W.; Trisos, C.; Romero, J.; Aldunce, P.; Barrett, K.; et al. IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Lee, H., Romero, J., Eds.; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2023. [Google Scholar]
- European Environment Agency. Global and European Temperatures. Available online: https://www.eea.europa.eu/en/analysis/indicators/global-and-european-temperatures (accessed on 8 January 2024).
- Pasqui, M.; Di Giuseppe, E. Climate change, future warming, and adaptation in Europe. Anim. Front. Rev. Mag. Anim. Agric. 2019, 9, 6–11. [Google Scholar] [CrossRef]
- Vautard, R.; Cattiaux, J.; Happé, T.; Singh, J.; Bonnet, R.; Cassou, C.; Coumou, D.; D’Andrea, F.; Faranda, D.; Fischer, E.; et al. Heat extremes in Western Europe increasing faster than simulated due to atmospheric circulation trends. Nat. Commun. 2023, 14, 6803. [Google Scholar] [CrossRef] [PubMed]
- Trancoso, R.; Syktus, J.; Allan, R.P.; Croke, J.; Hoegh-Guldberg, O.; Chadwick, R. Significantly wetter or drier future conditions for one to two thirds of the world’s population. Nat. Commun. 2024, 15, 483. [Google Scholar] [CrossRef] [PubMed]
- Shiru, M.S.; Shahid, S.; Dewan, A.; Chung, E.-S.; Alias, N.; Ahmed, K.; Hassan, Q.K. Projection of meteorological droughts in Nigeria during growing seasons under climate change scenarios. Sci. Rep. 2020, 10, 10107. [Google Scholar] [CrossRef]
- Becker, R.; Schüth, C.; Merz, R.; Khaliq, T.; Usman, M.; aus der Beek, T.; Kumar, R.; Schulz, S. Increased heat stress reduces future yields of three major crops in Pakistan’s Punjab region despite intensification of irrigation. Agric. Water Manag. 2023, 281, 108243. [Google Scholar] [CrossRef]
- Ells, J.E.; McSay, A.E.; Soltanpour, P.N.; Schweissing, F.C.; Bartolo, M.E.; Kruse, E.G. Onion Irrigation and Nitrogen Leaching in the Arkansas Valley of Colorado 1990-1991. HortTechnology 1993, 3, 184–187. [Google Scholar] [CrossRef]
- Leskovar, D.I.; Agehara, S.; Yoo, K.; Pascual-Seva, N. Crop Coefficient-based Deficit Irrigation and Planting Density for Onion: Growth, Yield, and Bulb Quality. HortScience 2012, 47, 31–37. [Google Scholar] [CrossRef]
- Martín de Santa Olalla, F.; Domínguez-Padilla, A.; López, R. Production and quality of the onion crop (Allium cepa L.) cultivated under controlled deficit irrigation conditions in a semi-arid climate. Agric. Water Manag. 2004, 68, 77–89. [Google Scholar] [CrossRef]
- Matsunaga, W.K.; Da Silva, V.d.P.R.; Amorim, V.P.; Sales, E.S.G.; Dantas, S.M.; Oliveira, A.B. Evapotranspiration, crop coefficient and water use efficiency of onion cultivated under different irrigation depths. Rev. Bras. Eng. Agríc. Ambient. 2022, 26, 219–225. [Google Scholar] [CrossRef]
- Hessisches Landesamt für Naturschutz, Umwelt und Geologie. Gewässerkundlicher Jahresbericht; Hessisches Landesamt für Naturschutz Umwelt und Geologie: Wiesbaden, Germany, 2021; ISBN 9783890267234. [Google Scholar]
- Bhattarai, N.; Lobell, D.B.; Balwinder-Singh; Fishman, R.; Kustas, W.P.; Pokhrel, Y.; Jain, M. Warming temperatures exacerbate groundwater depletion rates in India. Sci. Adv. 2023, 9, eadi1401. [Google Scholar] [CrossRef]
- Kirby, J.M.; Mainuddin, M.; Mpelasoka, F.; Ahmad, M.D.; Palash, W.; Quadir, M.E.; Shah-Newaz, S.M.; Hossain, M.M. The impact of climate change on regional water balances in Bangladesh. Clim. Chang. 2016, 135, 481–491. [Google Scholar] [CrossRef]
- An, W.; Xu, C.; Marković, S.B.; Sun, S.; Sun, Y.; Gavrilov, M.B.; Govedar, Z.; Hao, Q.; Guo, Z. Anthropogenic warming has exacerbated droughts in southern Europe since the 1850s. Commun. Earth Environ. 2023, 4, 232. [Google Scholar] [CrossRef]
- Kumar, S.; Imtiyaz, M.; Kumar, A.; Singh, R. Response of onion (Allium cepa L.) to different levels of irrigation water. Agric. Water Manag. 2007, 89, 161–166. [Google Scholar] [CrossRef]
- Al-Jamal, M.S.; Ball, S.; Sammis, T.W. Comparison of sprinkler, trickle and furrow irrigation efficiencies for onion production. Agric. Water Manag. 2001, 46, 253–266. [Google Scholar] [CrossRef]
- Enciso, J.; Wiedenfeld, B.; Jifon, J.; Nelson, S. Onion yield and quality response to two irrigation scheduling strategies. Sci. Hortic. 2009, 120, 301–305. [Google Scholar] [CrossRef]
- Enciso, J.; Jifon, J.; Anciso, J.; Ribera, L. Productivity of Onions Using Subsurface Drip Irrigation versus Furrow Irrigation Systems with an Internet Based Irrigation Scheduling Program. Int. J. Agron. 2015, 2015, 178180. [Google Scholar] [CrossRef]
- Calinger, K.; Curtis, P. A century of climate warming results in growing season extension: Delayed autumn leaf phenology in north central North America. PLoS ONE 2023, 18, e0282635. [Google Scholar] [CrossRef]
- Kukal, M.S.; Irmak, S.U.S. Agro-Climate in 20th Century: Growing Degree Days, First and Last Frost, Growing Season Length, and Impacts on Crop Yields. Sci. Rep. 2018, 8, 6977. [Google Scholar] [CrossRef]
- Marklein, A.; Elias, E.; Nico, P.; Steenwerth, K. Projected temperature increases may require shifts in the growing season of cool-season crops and the growing locations of warm-season crops. Sci. Total Environ. 2020, 746, 140–918. [Google Scholar] [CrossRef]
- Acevedo, M.; Pixley, K.; Zinyengere, N.; Meng, S.; Tufan, H.; Cichy, K.; Bizikova, L.; Isaacs, K.; Ghezzi-Kopel, K.; Porciello, J. A scoping review of adoption of climate-resilient crops by small-scale producers in low- and middle-income countries. Nat. Plants 2020, 6, 1231–1241. [Google Scholar] [CrossRef]
- Pixley, K.V.; Cairns, J.E.; Lopez-Ridaura, S.; Ojiewo, C.O.; Dawud, M.A.; Drabo, I.; Mindaye, T.; Nebie, B.; Asea, G.; Das, B.; et al. Redesigning crop varieties to win the race between climate change and food security. Mol. Plant 2023, 16, 1590–1611. [Google Scholar] [CrossRef] [PubMed]
- Shah, I.H.; Manzoor, M.A.; Jinhui, W.; Li, X.; Hameed, M.K.; Rehaman, A.; Li, P.; Zhang, Y.; Niu, Q.; Chang, L. Comprehensive review: Effects of climate change and greenhouse gases emission relevance to environmental stress on horticultural crops and management. J. Environ. Manag. 2024, 351, 119978. [Google Scholar] [CrossRef] [PubMed]
- Brewster, J. Onions and Other Vegetable Alliums, 2nd ed.; CABI: Wallingford, UK, 2008; ISBN 9781845936228. [Google Scholar]
- Tolossa, T.T. Onion yield response to irrigation level during low and high sensitive growth stages and bulb quality under semi- arid climate conditions of Western Ethiopia. Cogent Food Agric. 2021, 7, 1859665. [Google Scholar] [CrossRef]
- Kalbarczyk, R. The Effect of Climate Change in Poland on the Phenological Phases of Onion (Allium cepa L.) between 1966 and 2005. Agric. Conspec. Sci. ACS 2009, 74, 297–304. [Google Scholar]
- Pelter, G.Q.; Mittelstadt, R.; Leib, B.G.; Redulla, C.A. Effects of water stress at specific growth stages on onion bulb yield and quality. Agric. Water Manag. 2004, 68, 107–115. [Google Scholar] [CrossRef]
- Pérez Ortolá, M.; Knox, J.W. Water Relations and Irrigation Requirements of Onion (Allium cepa L.): A Review of Yield and Quality Impacts. Exp. Agric. 2015, 51, 210–231. [Google Scholar] [CrossRef]
- Alessi, M.J.; DeGaetano, A.T. A comparison of statistical and dynamical downscaling methods for short-term weather forecasts in the US Northeast. Meteorol. Appl. 2021, 28, e1976. [Google Scholar] [CrossRef]
- Holzkämper, A.; Calanca, P.; Fuhrer, J. Statistical crop models: Predicting the effects of temperature and precipitation changes. Clim. Res. 2012, 51, 11–21. [Google Scholar] [CrossRef]
- Lobell, D.B.; Burke, M.B. On the use of statistical models to predict crop yield responses to climate change. Agric. For. Meteorol. 2010, 150, 1443–1452. [Google Scholar] [CrossRef]
- Manzanas, R.; Gutiérrez, J.M.; Fernández, J.; van Meijgaard, E.; Calmanti, S.; Magariño, M.E.; Cofiño, A.S.; Herrera, S. Dynamical and statistical downscaling of seasonal temperature forecasts in Europe: Added value for user applications. Clim. Serv. 2018, 9, 44–56. [Google Scholar] [CrossRef]
- Drastig, K.; Prochnow, A.; Libra, J.; Koch, H.; Rolinski, S. Irrigation water demand of selected agricultural crops in Germany between 1902 and 2010. Sci. Total Environ. 2016, 569–570, 1299–1314. [Google Scholar] [CrossRef] [PubMed]
- Bettolli, M.L.; Solman, S.A.; da Rocha, R.P.; Llopart, M.; Gutierrez, J.M.; Fernández, J.; Olmo, M.E.; Lavin-Gullon, A.; Chou, S.C.; Rodrigues, D.C.; et al. The CORDEX Flagship Pilot Study in southeastern South America: A comparative study of statistical and dynamical downscaling models in simulating daily extreme precipitation events. Clim. Dyn. 2021, 56, 1589–1608. [Google Scholar] [CrossRef]
- Hernanz, A.; Correa, C.; Domínguez, M.; Rodríguez-Guisado, E.; Rodríguez-Camino, E. Comparison of machine learning statistical downscaling and regional climate models for temperature, precipitation, wind speed, humidity and radiation over Europe under present conditions. Int. J. Climatol. 2023, 43, 6065–6082. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, L.; Yang, N.; Huth, N.; Wang, E.; van der Werf, W.; Evers, J.B.; Wang, Q.; Zhang, D.; Wang, R.; et al. Optimized sowing time windows mitigate climate risks for oats production under cool semi-arid growing conditions. Agric. For. Meteorol. 2019, 266–267, 184–197. [Google Scholar] [CrossRef]
- Gao, C.; Booij, M.J.; Xu, Y.-P. Assessment of extreme flows and uncertainty under climate change: Disentangling the uncertainty contribution of representative concentration pathways, global climate models and internal climate variability. Hydrol. Earth Syst. Sci. 2020, 24, 3251–3269. [Google Scholar] [CrossRef]
- Caya, D.; Biner, S. Internal variability of RCM simulations over an annual cycle. Clim. Dyn. 2004, 22, 33–46. [Google Scholar] [CrossRef]
- Gaur, S.; Bandyopadhyay, A.; Singh, R. Modelling potential impact of climate change and uncertainty on streamflow projections: A case study. J. Water Clim. Chang. 2021, 12, 384–400. [Google Scholar] [CrossRef]
- Gampe, D.; Schmid, J.; Ludwig, R. Impact of Reference Dataset Selection on RCM Evaluation, Bias Correction, and Resulting Climate Change Signals of Precipitation. J. Hydrometeorol. 2019, 20, 1813–1828. [Google Scholar] [CrossRef]
- Wing, I.S.; de Cian, E.; Mistry, M.N. Global vulnerability of crop yields to climate change. J. Environ. Econ. Manag. 2021, 109, 102462. [Google Scholar] [CrossRef]
- Bayissa, Y.; Melesse, A.; Bhat, M.; Tadesse, T.; Shiferaw, A. Evaluation of Regional Climate Models (RCMs) Using Precipitation and Temperature-Based Climatic Indices: A Case Study of Florida, USA. Water 2021, 13, 2411. [Google Scholar] [CrossRef]
- Kakouei, K.; Domisch, S.; Kiesel, J.; Kail, J.; Jähnig, S.C. Climate model variability leads to uncertain predictions of the future abundance of stream macroinvertebrates. Sci. Rep. 2020, 10, 2520. [Google Scholar] [CrossRef] [PubMed]
- Aryal, A.; Shrestha, S.; Babel, M.S. Quantifying the sources of uncertainty in an ensemble of hydrological climate-impact projections. Theor. Appl. Climatol. 2019, 135, 193–209. [Google Scholar] [CrossRef]
- Saikanth DR, K.; Kumar, S.; Rani, M.; Sharma, A.; Srivastava, S.; Vyas, D.; Singh, G.A.; Kumar, S. A Comprehensive Review on Climate Change Adaptation Strategies and Challenges in Agriculture. Int. J. Environ. Clim. Chang. 2023, 13, 10–19. [Google Scholar] [CrossRef]
- Gebre, G.G.; Amekawa, Y.; Ashebir, A. Can farmers’ climate change adaptation strategies ensure their food security? Evidence from Ethiopia. Agrekon 2023, 62, 178–193. [Google Scholar] [CrossRef]
- Xiao, D.; Zhang, Y.; Bai, H.; Tang, J. Trends and Climate Response in the Phenology of Crops in Northeast China. Front. Earth Sci. 2021, 9, 811621. [Google Scholar] [CrossRef]
- Challinor, A.J.; Ewert, F.; Arnold, S.; Simelton, E.; Fraser, E. Crops and climate change: Progress, trends, and challenges in simulating impacts and informing adaptation. J. Exp. Bot. 2009, 60, 2775–2789. [Google Scholar] [CrossRef]
- Timlin, D.; Paff, K.; Han, E. The role of crop simulation modeling in assessing potential climate change impacts. Agrosyst. Geosci. Environ. 2024, 7, 20453. [Google Scholar] [CrossRef]
Phenological Stage | Bush Bean | Onion | Root Zone | ||||
---|---|---|---|---|---|---|---|
Kc Stage | |||||||
Stage 0 | after sowing (bare ground) | 0–30 cm | |||||
0.15 | |||||||
Stage 1 | initial | 0.4 | 171 °Cd | initial | 0.7 | 269 °Cd | 0–60 cm |
(after emergence) | (after emergence) | ||||||
Stage 2 | development | 0.65 | 816 °Cd | development | 0.85 | 1036 °Cd | |
(after flowering) | (≥five leaves) | ||||||
Stage 3 | mid-season | 1.05 | 985 °Cd | mid-season | 1.05 | 1475 °Cd | |
(pod development) | (≥eight leaves) | ||||||
Stage 4 | late season | 0.9 | 1210 °Cd | late season | 0.75 | 1909 °Cd | 0–90 cm |
(full-length pods) | (bending leaves) |
GHG Emission Scenario | Regional Climate Model | Period 2031–2060 | Period 2071–2100 | ||||
---|---|---|---|---|---|---|---|
∆ Start | ∆ End | ∆ Length | ∆ Start | ∆ End | ∆ Length | ||
RCP 2.6 | C-CLM | −9 | 9 | 18 | −9 | 2 | 11 |
WR13 | −12 | 9 | 21 | −14 | 13 | 27 | |
RCP 8.5 | C-CLM | −12 | 10 | 22 | −37 | 31 | 68 |
WR13 | −16 | 10 | 26 | −32 | 28 | 60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schmidt, N.; Zinkernagel, J. Crop Coefficients and Irrigation Demand in Response to Climate-Change-Induced Alterations in Phenology and Growing Season of Vegetable Crops. Climate 2024, 12, 161. https://doi.org/10.3390/cli12100161
Schmidt N, Zinkernagel J. Crop Coefficients and Irrigation Demand in Response to Climate-Change-Induced Alterations in Phenology and Growing Season of Vegetable Crops. Climate. 2024; 12(10):161. https://doi.org/10.3390/cli12100161
Chicago/Turabian StyleSchmidt, Nadine, and Jana Zinkernagel. 2024. "Crop Coefficients and Irrigation Demand in Response to Climate-Change-Induced Alterations in Phenology and Growing Season of Vegetable Crops" Climate 12, no. 10: 161. https://doi.org/10.3390/cli12100161
APA StyleSchmidt, N., & Zinkernagel, J. (2024). Crop Coefficients and Irrigation Demand in Response to Climate-Change-Induced Alterations in Phenology and Growing Season of Vegetable Crops. Climate, 12(10), 161. https://doi.org/10.3390/cli12100161