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Abstract: This study investigates the effects of climate change on the irrigation demand of vegetable
crops caused by alteration of climate parameters affecting evapotranspiration (ET), plant development,
and growing periods in Central Europe. Utilizing a model framework comprising two varying climate
scenarios (RCP 2.6 and RCP 8.5) and two regional climate models (COSMO C-CLM and WETTREG
2013), we calculate the daily crop water balance (CWBc) as a measure for irrigation demand based on
reference ET and the temperature-driven duration of crop coefficients until 2100. Our findings for
onion show that rising temperatures may shorten cultivation periods by 5 to 17 days; however, the
irrigation demand may increase by 5 to 71 mm due to higher ET. By reaching the base temperatures
for onion growth earlier in the year, cultivation start can be advanced by up to 30 days. Greater
utilization of winter soil moisture reduces the irrigation demand by up to 21 mm, though earlier
cultivation is restricted by frost risks. The cultivation of thermophilic crops, however, cannot be
advanced to the same extent, as shown for bush beans, and plants will transpire more strongly due
to longer dry periods simulated for summer. The results underscore the need for adaptive crop
and water management strategies to counteract the simulated changes in phenology and irrigation
demand of vegetable crops. Therefore, special consideration must be given to the regional-specific
and model- and scenario-dependent simulation results.

Keywords: regional climate models; greenhouse gas emission scenarios; crop water balance; thermal
growing season; irrigation scheduling

1. Introduction

Climate change is the primary global challenge in the 21st century, particularly for
vulnerable horticultural systems. The effects of climate change are location-specific and
show large variations, which are associated with significant consequences for living beings
and the environment [1,2]. Vegetable crops are highly sensitive to variations in temperature
and precipitation [3]. While warming trends may extend growing seasons in some regions,
increased occurrences of extreme heat and erratic rainfall patterns jeopardize vegetable
production and quality [4]. These challenges are exacerbated by the specific water and
temperature requirements of different vegetable types [5,6]. For instance, high temper-
atures can accelerate development in thermophilic crops like tomatoes and cucumbers,
potentially leading to shorter growing periods and reduced yields. Conversely, cool-season
vegetables such as leafy greens and broccoli are vulnerable to heat stress, which disrupts
essential physiological processes and ultimately impacts productivity. Irregular precipi-
tation patterns, including both excessive moisture and drought, can adversely affect crop
growth and quality [7]. Excessive moisture can lead to root diseases and poor crop quality,
while drought can reduce seed germination and yield [8,9]. Understanding how these
changing climatic conditions will affect vegetable production at a regional scale is crucial
for developing effective adaptation strategies and ensuring food security [10,11].
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While global climate models project an overall increase in annual precipitation by
2100, regional and temporal variations are anticipated. Specifically, regions like the Mediter-
ranean, southern Africa, and parts of Australia and Central America may experience drier
conditions, while increased precipitation is predicted near the equator, in the Indian sub-
continent, and northern China [12]. Furthermore, many regions face the threat of more
frequent and severe precipitation events interspersed with longer dry periods, highlighting
the need for regionally adapted irrigation strategies [13]. Advanced irrigation scheduling
systems and incorporating dynamic crop models, weather forecasts, and soil moisture data
offer potential solutions for mitigating both water and heat stress [14–16].

The widening gap between agricultural water demand and natural water supply,
driven by shifting precipitation patterns [3], can be assessed using climate water balance
(CWB). This metric considers precipitation and air temperature in relation to evapotran-
spiration (ET). Crop-specific CWB calculations further incorporate the FAO56 Penman–
Monteith reference ET (ET0) and crop coefficients (Kc) that reflect the evolving water
needs of different crop growth stages [17,18]. Critically, future irrigation requirements are
influenced by both CWB fluctuations and the duration of these temperature-dependent
Kc-stages [19]. Previous studies underscore the significant impact of climate change on
CWB variables, particularly precipitation, air temperature, and evapotranspiration. These
findings emphasize the importance of locally calibrated models, integrating ET0 calcula-
tions, for accurately simulating crop responses and informing effective irrigation strategies
in diverse horticultural settings [20–22].

Accurate estimation of evapotranspiration is crucial for determining crop water require-
ments and optimizing irrigation management. Inaccurate ET estimations can lead to inefficient
water use, reduced yields, and heightened vulnerability to climate change impacts [23,24].

Advanced modeling techniques, particular hybrid models integrating mechanistic and
machine learning approaches, offer improved accuracy and robustness in ET prediction.
These models leverage diverse data sources, such as remote sensing and meteorological
data, and employ sophisticated algorithms to enhance predictive capabilities. For instance,
the ANFIS–FA model, a hybrid approach, has demonstrated superior performance com-
pared to standalone models in ET0 estimation [25,26]. While these advanced models hold
significant promise for informing irrigation strategies and crop selection under changing cli-
mate conditions, their computational demands and data requirements may pose challenges
for widespread adoption, particularly in resource-limited horticultural settings [27].

Temperature fluctuations directly influence crop development, as numerous plant
physiological processes are temperature-dependent [10]. This sensitivity to temperature
varies throughout a plant’s life cycle, with certain phenological stages triggered only after
exposure to a minimum accumulation of heat, quantified as growing degree days above
a specific base temperature, known as temperature sum (TSum) [28]. This temperature-
driven annual cycle of plant growth, known as the thermal growing season, is projected to
shift under climate change, altering the timing of key phenological events [29]. Adjusting
sowing or planting dates, a key element of crop management, offers a potential strategy
for adapting to these [30]. For instance, earlier cultivation starts, coupled with potentially
shorter growing seasons, could capitalize on redistributed precipitation patterns, enhancing
water availability during critical germination and early growth [28]. However, any shift in
cultivation timing requires careful consideration of crop-specific thermal requirements for
germination and growth. Simulating the potential range of changes in thermal growing
seasons, crop development, and water demand under various climate and cultivation
scenarios can inform the development of more resilient irrigation strategies, particularly
in the face of increased risks of dry periods [15]. This study proposes a temperature-
sum-based approach, offering a robust and straightforward method for predicting crop
phenological development and water needs across diverse climate scenarios, effectively
balancing accuracy with simplicity and accessibility.

This research aims to evaluate the impact of climate change on the vulnerability of
open-field vegetable crops in temperate climates. To achieve this, we utilize a modeling
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framework that integrates dynamic and statistical models at both global and regional
scales. Our analysis focuses on two contrasting greenhouse gas emission (GHG) scenar-
ios: Representative Concentration Pathways (RCPs) 2.6 and 8.5, representing a range of
potential future climate conditions. We employ two distinct regional climate models, the
COnsortium for Small-scale MOdeling (COSMO)—Climate Limited-area Modeling Com-
munity (abbreviated as C-CLM) and the WEtterlagen-basierte REGionalisierungsmethode
(abbreviated as WR13), both driven by the global climate model MPIESM-LR (Max Planck
Institute Earth System Model—Low Resolution). While both are driven by the same global
model, they employ different modeling approaches, allowing for a more comprehensive
assessment of potential climate change impacts. Plant-specific data are utilized to simulate
the crop-specific development and water demand in response to climate parameters in
a high temporal and spatial resolution. This approach allows us to (1) simulate future
changes of climate parameters driving the crop responses and (2) identify temporal patterns
of dry periods and assess their potential impact on crop water stress. Furthermore, we can
(3) simulate the impacts of climate change on thermal growing seasons and phenological
development, ultimately (4) exploring future CWBC, irrigation water demands, and their
temporal variability under different climate scenarios. Finally, to (5) evaluate the sensitivity
of our model framework and highlight the importance of crop-specific responses to climate
change, we compare the results for two contrasting vegetable crops: onion and bush bean,
which differ significantly in their phenology, temperature, and water requirements.

2. Materials and Methods
2.1. Simulation Framework
2.1.1. Climate Models and Data

The RCP scenarios serve as the basis for simulating potential future climate conditions
in our study. The RCPs describe different possible climate futures depending on the volume
of greenhouse gas concentrations emitted and are consistent with certain socio-economic
assumptions. The RCPs are labeled after a possible range of radiative forcing values in
the year 2100—2.6, 4.5, 6.0, and 8.5 W/m2, respectively [31]. We chose RCP 2.6 and 8.5,
with the former being an ‘optimistic’ and the latter a ‘pessimistic’ pathway. The RCP 2.6
requires that carbon dioxide emissions begin to decline by 2020 and approach zero by 2100.
In RCP 8.5, emissions continue to rise throughout the 21st century, and this represents the
worst-case scenario for climate change [32].

Projections of possible future climate were derived from output data of two regional
climate models: COSMO-CLM (C-CLM) and WETTREG 2013 (WR13). The C-CLM is a
dynamical and WR13 an empirical statistical downscaling [33,34]. Both RCMs are driven by
the global climate model (GCM) MPIESM-LR. The MPI-ESM couples the atmosphere, ocean,
and land surface through the exchange of energy, momentum, water, and carbon dioxide [35].
Climate variables derived from simulation data output of the RCMs are simulated on a daily
basis. The selection of C-CLM and WR13 was based on their complementary strengths in
capturing regional climate dynamics. C-CLM, with its dynamical downscaling approach,
is well-suited for simulating complex atmospheric processes and providing detailed spatial
resolution, while WR13, through empirical statistical downscaling, efficiently captures local
climate variability and extremes. This combination ensures a comprehensive assessment
of potential climate impacts on crop cultivation. For this study, datasets were obtained
from the ReKliEs-De project [36], specifically selecting grid points that cover the model
area. In the ReKliEs-De project, regional climate projections for Germany were developed
by systematically evaluating EURO-CORDEX simulations, supplemented with additional
dynamic and statistical methods; model validation was conducted using high-resolution
observational data, with results standardized for comparative analysis [36,37].

Precipitation-free periods refer to consecutive days without any measurable rainfall
and are used as an indicator to highlight the frequency and duration of dry spells, and
therefore to assess potential irrigation needs. While precipitation-free periods do not
necessarily equate to agricultural drought, which is defined as insufficient soil moisture



Climate 2024, 12, 161 4 of 23

to meet crop needs, they can contribute to soil moisture deficits and stress on crops,
particularly during critical growth stages [38].

2.1.2. Study Area and Model Crops

The Hessian Reed (49.55◦ to 49.95◦ latitude/8.15◦ to 8.75◦ longitude) is located in the
south of the federal state Hesse, Germany and represents an important vegetable growing
region. It is approximately 60 km long and 15 to 20 km wide and covers an area of ca.
110,000 ha. The annual average of precipitation is about 600 mm and of temperature 10 ◦C.
The region is characterized by predominantly sandy soils.

Approximately 5100 ha of the Hessian Reed are dedicated to vegetable production,
with onions (Allium cepa L.) and bush beans (Phaseolus vulgaris L.) being the most significant
crops by area, reflecting their economic importance and widespread cultivation in local
agricultural practices. Onion is used as the model crop for estimating the impact of climate
change on growth and water demand, while bush bean—a thermophilic plant—provides
data to assess how various crops respond to climate change. Agro-meteorologically, the
crops differ in temperature requirements and frost sensitivity. Onions are adapted to a
wide range of temperatures and are frost-tolerant. Leaf, root, and bulb development occurs
in cool temperatures between 10 and 20 ◦C with a growth threshold of 15 ◦C. Optimal
leaf growth of onion occurs at 20 to 25 ◦C. Once bulbing has begun, onion easily tolerates
temperatures higher than 25 ◦C [39]. For onions, a Tmax of 35 ◦C was chosen, as growth
rates decline significantly above 30 ◦C and can be detrimental beyond 35 ◦C [40]. The
progression of these developmental stages can be predicted by calculating the TSum (in
◦Cd), which is the accumulated temperature above a base level at which growth occurs
over a period of time. As bush beans do not tolerate cold temperatures, sowing should be
done not before the end of frost risk. Optimum soil temperature for germination ranges
between 21 and 32 ◦C. A mean air temperature (Tmean) of 20 to 25 ◦C is optimal for overall
growth and yield, with a threshold of at least 12 ◦C for germination. Temperatures below
10 ◦C during the flowering period may affect fertilization or result in small and misshapen
pods [41]. For bush beans, a Tmax of 30 ◦C was used, since optimal growth conditions
range between 20 and 25 ◦C, with growth inhibition occurring above 30 ◦C. Furthermore,
bush bean is characterized by shorter growth duration and less water demand (69 mm)
compared to onion (194 mm) [42].

Currently, 95% of the agricultural land is irrigated, covering around 30,000 ha and
requiring an average of 18 million m3 of water annually. Most irrigation water is sourced
from groundwater. Onions represent 14% of the irrigated area in the Hessian Reed [43].
The irrigation season extends from late March to early October. Due to insufficient regional
precipitation, an average annual irrigation of 70 mm is necessary, leading to increasing
demands on irrigated areas and water supply [44].

2.2. Thermal Growing Season

Thermal growing season is defined as the part of the year during which tempera-
tures are consistently high enough for horticultural activity [45]. The length of thermal
growing season accounts for the number of frost-free days between the first day with
average temperatures above 5 ◦C and the first day with temperatures below 5 ◦C, in
which temperature-driven growth processes occur. The beginning (Equation (1)) and the
end (Equation (2)) of the thermal growing season within a calendar year were simulated
as follows:

Start of thermal growing season ∑
i
(Ti − 5 ◦C) > 0 ◦C (i = 2, 3, . . . , 30) (1)

End of thermal growing season ∑
i
(Ti − 5 ◦C) < 0 ◦C (i = 2, 3, . . . , end of year) (2)

Both the start and end of the thermal growing season of each year within the corre-
sponding 30-year periods 1971–2000 (reference), 2031–2060, and 2071–2100 were simulated.
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2.3. Determination of Sowing Dates and Crop Phenological Growth Stages

To assess the impact of climate change on sowing dates and the duration of crop
phenological growth stages, we compared two cultivation scenarios based on different
sowing dates (SD). In the first scenario, termed ‘standardized SD’, traditional sowing
dates from the reference period were used: 15 March for onion and 15 May for bush
bean. In the second scenario, ‘thermal SD’, sowing dates were determined by the first day
within the simulated thermal growing season when the specific thermal threshold was
exceeded. For onion, this threshold was set at 5 ◦C, while for bush beans it was 12 ◦C.
These thresholds were calculated using Equations (3) and (4), which identify the day of
year (DOY) when these temperature conditions are met. Additionally, to ensure plant
growth without frost damage, a frost-free period of up to 30 days was required following
the thermal threshold exceedance.

Sowing date of onion n (DOYi = (Ti ≥ 5 ◦C)) with n = 1 and i = (1, 2, 3, . . .) (3)

Sowing date of bush bean n (DOYi = (Ti ≥ 12 ◦C)) with n = 1 and i = (1, 2, 3, . . .) (4)

We employed a TSum approach to determine the onset, duration, and end of phe-
nological growth stages. This method calculates growing degree-days and pauses TSum
accumulation when daily temperatures exceed predetermined Tmax or fall below Tmin
values, resuming only when temperatures return within these thresholds. This ensures
accurate modeling of phenological stages under varying climate conditions. The TSum
thresholds for each growth stage were derived from 12 years of phenological and meteoro-
logical data from open-field trials in Geisenheim, Hesse, Germany (49◦59′ N, 7◦58′ E). These
data provide information on sowing and harvest dates, individual phenological stages,
and daily weather conditions. The FAO 56 approach [17] was used to categorize crop
development into four main stages: initial, development, mid-season, and late season. For
onions, the stages are as follows: (i) sowing (bare ground); (ii) initial stage (after emergence);
(iii) development stage (until ≥five leaves); (iv) mid-season stage (until ≥eight leaves); and
(v) late-season stage (bending leaves). Bush bean is described by the following five stages:
(i) sowing (bare ground); (ii) initial stage (after emergence); (iii) development stage (after
flowering); (iv) mid-season stage (pod development); and (v) late-season stage (full-length
pods). TSum calculations started at sowing date and continued throughout the thermal
growing season until harvest. The average TSum for each phenological stage was calculated
over multiple trials to establish mean threshold values for progression to subsequent stages.
These values formed the basis for simulating future cultivation periods and predicting
growth stage durations for both model crops under ‘standardized SD’ and ‘thermal SD’
scenarios. The simulations utilized the model framework described in Section 2.1.1, which
outlines the climate models and data used in this study.

2.4. Computing Reference Evapotranspiration, Crop-Specific Evapotranspiration, and Crop-Specific
Climate Water Balance

Daily reference evapotranspiration (ET0) is calculated with daily means of climate
variables from RCMs output by using FAO-56-modified Penman–Monteith equation. For
crop-specific evapotranspiration (ETC), ET0 is adjusted by a the ‘single-crop coefficient
approach’ that expresses both plant transpiration and soil evaporation combined into a
single Kc [17]. The ETC over the growing period was calculated (Equation (5)) by gradually
adjusting Kc according to the simulated phenological stage.

ETC = ET0Kc (5)

The balance of the calculated ETC with simulated precipitation (P) in daily increments
over cultivation period represents the crop-specific climate water balance (CWBc) and is
equivalent to crop water requirements (Equation (6)).

CWBc = ETC − P = ET0Kc − P (6)
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Each phenological stage and the corresponding Kc value are assigned to a specific rooted soil
depth, based on [46], to allow the calculation of irrigation thresholds for each plant growth
stage (Table 1).

Table 1. Crop coefficients (Kc) of the FAO 56 guidelines as a function of temperature sum (◦Cd) for
the phenological stages of onion and bush bean based on BBCH code with corresponding root zone.

Phenological
Stage

Bush Bean Onion
Root Zone

Kc Stage

Stage 0 after sowing (bare ground)
0–30 cm0.15

Stage 1 initial
0.4 171 ◦Cd

initial
0.7 269 ◦Cd

0–60 cm

(after emergence) (after emergence)

Stage 2 development
0.65 816 ◦Cd

development
0.85 1036 ◦Cd(after flowering) (≥five leaves)

Stage 3 mid-season
1.05 985 ◦Cd

mid-season
1.05 1475 ◦Cd(pod development) (≥eight leaves)

Stage 4 late season
0.9 1210 ◦Cd

late season
0.75 1909 ◦Cd 0–90 cm(full-length pods) (bending leaves)

2.5. Statistical Analysis

Statistical analysis of temporal climate trends and crop-specific climate water balance
trends was conducted using analysis of variance (ANOVA) in the Comprehensive R Archive
Network (CRAN) [47], facilitated by the user interface RStudio [48]. The Shapiro–Wilk test
was used for normality, and Levene’s test assessed homogeneity of variances. For non-
parametric data, the Kruskal–Wallis test was employed instead of ANOVA. Additionally, we
utilized the ggplot2 package [49] to generate visualizations, including plots and heatmaps.

3. Results
3.1. Temperature, Precipitation, and Dry Periods

Mean air temperature (∆Tmean) is simulated to increase across most months, with
a slight decrease observed in May under the C-CLM-RCP 2.6 scenario for the period
2071–2100 (Figure 1). Under C-CLM-RCP 2.6, winter months exhibit more pronounced
warming compared to summer (Figure 1a). The model framework C-CLM-RCP 8.5 exhibits
substantial temperature increases, particularly during summer months, reflecting a strong
response to higher emissions (Figure 1b). Temperature increases by up to 1.5 ◦C under
RCP 2.6 and 4.5 ◦C under RCP 8.5, indicating considerable differences between emission
scenarios rather than between regional climate models. The combination WR13-RCP 2.6
shows consistent warming with less pronounced seasonal variation. Under WR13-RCP 8.5,
significant warming is simulated across all months, with peaks observed in late summer
and early autumn, respectively. The range of temperature changes spans from 0.4 ◦C to
2.3 ◦C for 2031–2060 and −0.1 ◦C to 4.5 ◦C for 2071–2100, reflecting substantial variability
across both time periods and model framework. Overall, the data reveal a clear trend
of increasing temperatures over time, with the most significant changes occurring under
higher-emission scenarios and with evident seasonal variations.

Changes in monthly precipitation (∆Psum) in 2031–2060 and 2071–2100 compared to the
reference period of 1971–2000 have been projected (Figure 2). Under C-CLM-RCP 2.6, there is
a slight increase in summer precipitation, while winter and spring months tend to be drier.
The model combination C-CLM-RCP 8.5 shows the most significant decrease in precipitation,
particularly in September, with reductions up to 29 mm. Simulations with WR13-RCP 2.6
indicate minimal differences across the three time periods, suggesting stable precipitation
patterns. In contrast, WR13-RCP 8.5 demonstrates a redistribution of precipitation towards
winter months, with increases up to 8.5 mm from October to December. Overall, for the three
periods, the data reveal variability in precipitation trends across both RCPs and RCMs: the
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range of ∆Psum differs between WR13 and C-CLM models, independent of the RCP used,
with WR13 showing a broader range of changes compared to C-CLM.
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Figure 1. Predicted difference of monthly (I to XII) air temperature (∆Tmean) in the 30-year time
periods 2031–2060 and 2071–2100 compared to 1971–2000 in the model region, simulated with
(a) C-CLM-RCP 2.6, (b) C-CLM-RCP 8.5, (c) WR13-RCP 2.6, and (d) WR13-RCP 8.5.

Changes in the frequency of precipitation-free periods, categorized into 5-day intervals,
are simulated for the two future periods compared to a reference period across different
RCP/RCM model combinations (Figure 3). For C-CLM under RCP 2.6, there is a decrease
in shorter dry periods (1 to 10 days) with a notable reduction of 18 occurrences for the 1- to
5-day category by 2071–2100. For longer dry periods (26 to 30 days), little change is simulated.
Under WR13 and RCP 2.6, similar patterns are observed, with a decrease in shorter periods
and minimal change in longer ones. For C-CLM under RCP 8.5, there is a significant decrease
in shorter dry periods, particularly a reduction of 116 occurrences for the 1- to 5-day category
by 2071–2100. For longer dry periods (26 to 30 days), however, an increase is calculated by
up to 31 occurrences. WR13 under RCP 8.5 shows a similar trend, with a decrease in shorter
periods and an increase in longer ones by up to 35 occurrences. Especially under the scenario
of higher emissions, shorter dry periods become less frequent and longer dry periods more
frequent. In contrast, longer precipitation-free periods (26 to 30 days) do not occur significantly
more frequently compared to the reference, contrary to initial expectations. This suggests that
precipitation-free intervals will become longer in future climate scenarios.
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Figure 3. Predicted differences in the frequency of dry periods per month (in days) for the 30-year
periods 2031–2060 and 2071–2100 compared to the reference period during growing season from
March until October in the model region. Periods are grouped in 5d-classes.
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3.2. Thermal Growing Season

Higher Tmean during the thermal growing season may accelerate plant development,
while temperature above the threshold, particularly during spring and winter months
(Figure 1), may induce both earlier onset and delayed end of plant growth. The latter alters
the duration of thermal growing seasons. Simulations of thermal growing seasons, using
Equations (1) and (2) (Section 2.2), result in longer thermal growing seasons in 2031–2060 and
2071–2100 compared to 1971–2000 for all RCPs and RCMs, respectively. This is attributed to
an earlier start and later end of the thermal growing season.

Using RCP 2.6, the thermal growing season lasts longer compared to the reference
period, with 18 d (C-CLM) to 21 d (WR13) in 2031–2060 and 11 d (C-CLM) to 27 d (WR13)
in 2071–2100. With RCP 8.5, the thermal growing season is prolonged by 22 d (C-CLM) to
26 d (WR13) in 2031–2060 and by 60 d (WR13) to 68 d (C-CLM) in 2071–2100. Overall, the
largest differences are observed between the RCPs in the period 2071–2100 (Table 2).

Table 2. Predicted changes in start, end, and length of thermal growing seasons in days in the 30-year
periods 2031–2060 and 2071–2100 compared to 1971–2000 for the four climate model combinations.

GHG
Emission
Scenario

Regional
Climate
Model

Period
2031–2060

Period
2071–2100

∆ Start ∆ End ∆ Length ∆ Start ∆ End ∆ Length

RCP 2.6 C-CLM −9 9 18 −9 2 11
WR13 −12 9 21 −14 13 27

RCP 8.5 C-CLM −12 10 22 −37 31 68
WR13 −16 10 26 −32 28 60

3.3. Plant Phenological Development Stages

The duration of onion phenological stages (Figure 4) reveals distinct impacts of the
climate signal of the C-CLM and WR13 models under both RCP scenarios when comparing
the periods 2031–2060 and 2071–2100 with the reference period. The duration of all stages
is slightly shorter under RCP 2.6 (Figure 4a). The C-CLM model simulates a decrease in
the initial stage from 36 to 32 days, with similar trends observed in subsequent stages. The
WR13 model follows this pattern, with reductions from 31 to 28 days. More pronounced
changes in the phenological characteristics occur with the C-CLM model under RCP 8.5: the
initial stage remains stable, while later stages become significantly longer (Figure 4b). The
WR13 model shows an increase from 41 to 48 days for the initial stage and similar extensions
for subsequent stages. These findings suggest that while the thermal growing season may
generally extend, all phenological stages are influenced by temperature dynamics, albeit
to different extents. This can be explained by the fact that it takes longer for temperatures
to accumulate (TSum) sufficiently to reach the threshold for transition between stages,
particularly in spring. The entire cultivation period is shortened to varying degrees: by 5 d
(C-CLM) and 6 d (WR13) under RCP 2.6, and by 14 d (C-CLM) and 17 d (WR13) under RCP
8.5. Earlier start of cultivation may lead to prolonged phenological stages due to slower
temperature accumulation in spring in the period 2071–2100.
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Figure 4. Predicted duration of cultivation period and length of single growing stages of onion (a) with standardized SD on 15 March and (b) varying thermal SD
based on temperature sum in the 30-year periods 1971–2000, 2031–2060, and 2071–2100 for all climate model combinations, calculated in days of year.
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3.4. Crop-Specific Water Demand

To explore the impact of climate change on crops’ water demand, the crop-specific climate
water balance is calculated taking the simulated impact on crop growth into account. By
comparing simulation results of CWBC between adjusted and non-adjusted cultivation period
to ‘thermal shift’ of growing seasons, a common pattern of CWBC development was observed
irrespective of the simulation framework (Figure 5). Regardless of cultivation with or without
thermal shift, the simulated CWBC of onion differs significantly between the RCMs and
RCPs. Under RCP 2.6 without thermal shift, the CWBC using C-CLM is positive, whereas it is
negative under WR13. Nevertheless, comparing ∆CWBC in 2031–2060 and 2071–2100, C-CLM
simulates an increasing water deficit, while WR13 simulates a decrease by 2100. Under RCP
8.5, both C-CLM and WR13 show an increasing water deficit due to more negative CWBC
from 2031–2600 until 2100. In detail, WR13 simulates negative CWBC for all growth stages
and C-CLM for all growth stages except stage 2 in the 30-year periods compared to reference.

The shift of sowing date results in ∆CWBC moving into a more positive value range
and increasing in future (Figure 5b), compared to cultivation without thermal shift
(Figure 5a). Regardless of model and scenario, mainly the CWBC of stage 3 becomes
increasingly positive until 2071–2100, leading to an overall decrease in the future water
deficit. The deficit of growing stages 1 and 2 decreases by 2071–2100, implying that the
combination of higher spring precipitation (up to 7% on average), lower evapotranspiration
due to lower spring temperatures, and the shift in the growing season by up to 37 days
results in lower negative CWBC and thus lower crop water deficit.

Adjusting the sowing date of onion to growth temperature requirements (‘thermal SD’)
will result in less negative CWBC in future. Overall, the shift in the cultivation period may
lower water requirements compared to the standardized cultivation period. The model
combination C-CLM-RCP 2.6 is an exception. Although the CWBC values with thermal
SD are more positive than with standardized SD, shifting the cultivation period does not
prevent an increasing deficit from 2031–2060 until 2100 compared with the reference.
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Figure 5. Predicted changes in the specific climate water balance (∆CWBC) of onion for cultivation
(a) with ‘standardized SD’ and (b) with ‘thermal SD’ in the 30-year periods 2031–2060 and 2071–2100
compared to reference 1971–2000 for the four climate model combinations, calculated in mm.

3.5. Model and Crop Importance for Climate Signal

To test the importance of the model framework against crop-specific responses to
climate change projections, we compare our key findings for onion with simulations
for bush bean, a species with plant traits and climatic requirements different to onion.
Considering higher base temperature and frost sensitivity, we demonstrate whether and
how a thermal shift in the growing season affects the phenology, growing conditions, and
consequently irrigation demand of bush bean differently to onion. As a result of the future
shift of the thermal growing season, the length of the cultivation period for bush bean is
prolonged, but not to the same extent in percent as for onion until 2100 compared to the
reference period, irrespective of the simulation framework (Figure 6). Differences in the
extension of the growing season are more attributed to the regional climate model and
GHG emission scenario than to the crop. With WR13, the extension of the growing period
increases more compared to C-CLM. The RCPs show different extensions of the cultivation
period in 2071–2100, which are due to higher temperatures under RCP 8.5.

In all model combinations across both future periods (Figure 7), the cultivation start
of bush bean is later than that of onion. The climate signal associated with the more
severe RCP 8.5 scenario has a more pronounced impact than that of the less severe RCP 2.6
scenario. The regional climate model exerts varying influences on the timing of cultivation
start across different crops. For onion, all model combinations project an increasingly
early start of cultivation. In contrast, no consistent pattern emerges among the four model
combinations for bush bean. Consequently, while the magnitude of the change in day
of year (∆DOY) differs between the crops, the trend variations across the four model
combinations are similar for both.
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Figure 6. Predicted differences in length of cultivation period with ‘standardized SD’ and ‘thermal
SD’ for onion (bold colors) and bush bean (striped) in the 30-year periods 1971–2000, 2031–2060, and
2071–2100 for all used climate model combinations, shown in days and percent (%).
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Crop-specific cultivation start and duration are expected to have effects on CWBC. The
climate signal affects the difference in CWBC using standardized and thermal SD differently
for onion and bush bean (Figure 8). For both crops, three of four model combinations
simulate an increasing effect of the thermal shift on ∆CWBC in future. The regional
climate models simulate divergent trends for both crops with RCP 2.6. While WR13 shows
insignificant change in ∆CWBC for bush bean, exclusively this model simulates an increase
of ∆CWBC for onion. For both crops, the climate signal of RCP8.5 becomes more apparent
with C-CLM than with WR13. Since the effect of the thermal shift on CWBC is calculated as
difference in CWBC with standardized and thermal SD, these values cannot be interpreted
as potential saving of irrigation water demand (Figure 8).
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Figure 8. Predicted changes of specific climate water balance (∆CWBC) of onion (bold colors)
and bush bean (striped) between standardized and thermal SD in the 30-year periods 1971–2000,
2031–2060, and 2071–2100 for all used climate model combinations, calculated in mm.

The comparison of simulated trends between bush bean and onion across the model
ensemble for the three characteristics i. length of cultivation period, ii. start of cultivation
period, and iii. climate water balance illustrates that the crop-specific response determines
the extent of the simulated climate change impact. Crop-specific differences are due to
either frost sensitivity, which is taken into account in the simulation of growing seasons,
or temperature requirement of individual phenological stages and thus duration of the
crop. As a result, a much wider range of climate-induced temporal adjustment emerges
for onion than for bush bean under identical climate signal. This has implications for the
crop’s resource requirements. Irrigation demand, derived from CWBC under the thermal
shift scenario, is reduced for crops with high earliness potential in the future.

The impact of regional climate models on the change in crop water balance compo-
nents reveals significant differences beyond the crop-specific responses. The WR13 model
indicates a reduction in water demand for onions, but this trend is not observed for bush
beans, which show increased demand. Similarly, the C-CLM model predicts increased
water demand for both onions and bush beans in future scenarios. This indicates that
RCM outcomes are highly dependent on the spatial and temporal characteristics of crop
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development. Additionally, greenhouse gas emission scenarios do not alter the conclusions
for either crops or RCMs due to the uniformly simulated temperature increases.

4. Discussion

This study reveals that impacts of climate change on future crop conditions can be
attributed to crop phenology and the selected climate model combination by small-scale
modeling with empirical phenological data at high temporal resolution. Temperature-
driven duration and onset of Kc-stages vary individually for phenological stages and
influence the irrigation demand depending on the simulated cultivation date within the
thermal season of onion and bush bean under future Central European conditions.

A significant temperature increase is simulated for the model region, consistent with
various studies and climate models. According to the Coupled Model Intercomparison
Project Phase 6, a collaborative framework coordinated by the World Climate Research
Programme, which uses Shared Socioeconomic Pathways (SSPs) based on the IPCC Sixth
Assessment Report [50], land temperatures in Europe are expected to rise further by 1.2 to
3.4 ◦C under the SSP1–2.6 scenario and by 4.1 to 8.5 ◦C under the SSP5–8.5 scenario [51].
Recent studies with SSP scenarios affirm an increase in extreme heat across Western Europe,
surpassing model predictions and indicating a likely rise in heat waves [52,53]. Our
model region shows distinct meteorological patterns across various projected scenarios,
particularly for seasonal dynamics of temperature variations, with a consistent trend of
overall Tmean increases for most months, except May. Winter temperatures are expected
to rise more significantly than summer temperatures, especially highlighted in the C-
CLM-RCP 2.6 combination. Despite varying regional climate models, all simulate similar
temperature trends, though greenhouse gas emission scenarios significantly affect the
magnitude of projections, emphasizing the importance of emission pathways.

Significant variations in future precipitation patterns are also identified. All models
simulate increased precipitation in spring and winter, with drier summer conditions for our
study area. Global projections show that areas in the northern hemisphere may experience
more winter and spring precipitation, while areas in the southern hemisphere may become
drier [54]. Such shifts may lead to more frequent and longer dry periods during growing
seasons, significantly impacting crop cultivation. Dry periods reduce soil moisture [55] and
can cause plant drought stress, which inhibits crop growth and lowers yield. Coupling
drought stress with elevated temperature may intensify the stress level, particularly during
critical growth stages like the reproductive phase, causing significant yield declines as
observed in several crops [7,56].

The anticipated rise in precipitation variability and dry periods potentially increases
the vulnerability of onion production in the Hessian Reed, due to higher requirements for
water supply, leading to a higher and more variable demand for irrigation water in the
future. This vulnerability is already evident in the current irrigation demand of 228 mm
(for sandy soil) in the period 1991 to 2020, which has risen by 53 mm compared to 1961 to
1990 [42]. This requires both an optimized as well as enlarged irrigation infrastructure to
accommodate these changes [57–60]. Groundwater is the primary source of irrigation in the
Hessian Reed, but increasingly limited. In this region, groundwater levels have declined by
an average of 0.5–1 m over the past two decades, with some areas experiencing declines of
up to 2 m [61]. Current groundwater extraction for irrigation is estimated at 20–25 million
cubic meters annually, with projections suggesting that this could increase by 30–40% by
2050 under current climate change scenarios [44]. This increasing demand is likely to exceed
local groundwater availability; similar trends of groundwater depletion due to extensive
agricultural use have been observed globally [62–64]. While enhanced winter precipitation
could recharge aquifers adequately, intensified agricultural irrigation combined with more
arid conditions may cause groundwater withdrawal surpassing natural replenishment rates.
This imbalance could result in further decreases in groundwater reserves or significant
fluctuations in groundwater levels [44]. These scenarios do not yet fully account for future
variations in cultivation periods and practices, which could further impact water demand
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and availability. Maximum irrigation requirements during peak dry periods may reach
up to 40–50 mm per week for onions, placing higher demands on irrigation technology
regarding efficiency, frequency, and simultaneity, while also highlighting the importance of
inter-farm water management considerations to ensure equitable distribution of limited
resources during these critical periods [65]. Research on onion irrigation has demonstrated
significant differences in water use efficiency and crop yield between various irrigation
techniques. Drip irrigation reduced water consumption by up to 45% compared to furrow
irrigation while maintaining or even improving yield [65]. Sprinkler irrigation systems
can lead to 20–30% water losses due to evaporation and wind drift in onion fields despite
their widespread use, emphasizing the need for more efficient irrigation methods [66].
Drip irrigation is considered more beneficial for onion production due to better water
distribution uniformity, reduced evaporation losses, and deep percolation despite requiring
higher management levels [67]. It provides precise water distribution directly to the
root zone, particularly beneficial for onions with shallow root systems sensitive to water
stress, and can increase water use efficiency by up to 90%, compared to less than 50%
for surface irrigation methods. Furthermore, it allows for more frequent and smaller
irrigation applications ideal for maintaining consistent soil moisture levels crucial for onion
bulb development and is able to meet future requirements for irrigation frequency [68].
While drip systems require higher initial investment and management, they can lead to
improved onion yield and quality, making them a valuable consideration for addressing
future irrigation challenges in the Hessian Reed.

Our study projects a significant extension of thermal growing seasons in various
scenarios, driven by the Representative Concentration Pathway scenarios. Similar changes
have been observed, with Central and northern Europe expected to experience prolonged
growing seasons. Southern Europe faces more variable lengths, posing challenges de-
spite potential extensions [69,70]. Unpredictability in growing season length can disrupt
planting and harvesting schedules, affecting crop planning and yield predictability in
southern Europe. While prolonged periods present opportunities and complexities for
horticulture [29], increased heat stress and potential water scarcity may compromise these
benefits [4]. Thus, impacts of warming scenarios vary across Europe, with northern Europe
potentially benefiting from prolonged growing seasons, while southern Europe may suffer
from intensified heat and drought [30,71]. Adapting to extended growing seasons will
require farmers to modify crop varieties, adjust planting/sowing schedules, and improve
irrigation practices. Some farmers have adapted by choosing tolerant varieties and altering
planting/sowing dates [72,73]. Evolving strategies, such as breeding heat-resistant crop va-
rieties and precision planting techniques [24,74], remain pivotal for sustaining productivity
amidst shifting climate patterns.

Elevated temperatures enhance crop growth and development until they become
stress-inducing. For onion, the phenological stages of bulb initiation, bulb development,
and maturity are temperature-dependent [39,75]. Higher temperatures accelerate these
stages, shortening the cultivation period, particularly under the RCP 8.5 emission scenario,
which predicts significant temperature increases. Under the milder RCP 2.6 scenario, only
bulb initiation is shortened. Earlier thermal growing seasons extend phenological stages’
duration due to later attainment of the temperature baseline for growth, more pronounced
under RCP 8.5, significantly shifting bulb initiation, development, and maturity timing.
Adjustments in sowing dates may be necessary, potentially advancing by 8 to 37 days in
2071–2100. Aligning the cultivation period with crop-specific temperature requirements
generally prolongs phenological stages due to later temperature threshold attainment, as
future spring temperatures are expected to remain too low, delaying TSum attainment.

Shortening of specific phenological stages in onions could reduce associated water con-
sumption but increase vulnerability to water shortages. Elevated temperatures, especially
under the RCP 8.5 scenario, accelerate phenological stages such as bulb initiation, develop-
ment, and maturity in onions. This acceleration is primarily due to temperature changes,
which significantly influence crop coefficients by affecting plant physiological processes
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such as transpiration and photosynthesis in onions. As temperatures rise, the onion crop
experiences increased transpiration rates, leading to higher daily water demand. Onion
water demand increases gradually during leaf formation and bulb development, peaking
at advanced bulb growth stages, especially in hot weather [76]. Stages like emergence,
leaf formation, and bulb formation are particularly sensitive to water shortages [77,78].
Under RCP 2.6, the bulb formation stage, with the highest water consumption [76], is
shortened, which could potentially reduce overall water demand despite weak climate
signals. To address these challenges, future temperature effects on Kc-stage duration should
be considered in irrigation scheduling for higher accuracy [17]. Irrigation scheduling ac-
cording to the accelerated phenological phases with elevated water demand would result
in more frequent irrigation recommendations and avoid drought stress. In addition, water
amount of the irrigation events must be modified to meet the higher daily requirements
resulting from increased evapotranspiration. Overall, these adjustments highlight the need
for more frequent and higher irrigation events to support onion growth under changing
climate conditions. Effective future water demand of onions will vary greatly depending
on location, season, and the agro-climate [9,79]. This variability, coupled with predicted
climate change impacts on water availability and precipitation-free periods, underscores
the complexity of predicting future crop water demand and the importance of adaptive
irrigation strategies in the face of climate change.

Projections of onion’s crop water balance under both standardized sowing dates
and adapted sowing dates (‘thermal SD’), the latter accounting for the thermal shift in
growing seasons, reveal significant impacts of model characteristics on water demand
estimates [80–83]. The dynamic C-CLM model, which integrates detailed physical pro-
cesses such as soil–water–plant–atmosphere interactions, photosynthesis, and energy bal-
ance, suggests possible decreases in water demand, resonating with the adaptive thermal
SD strategy. This aligns with the hypothesis that climate change will exacerbate fluctuations
in precipitation and water supply, impacting crop growth [22,84]. In contrast, the statistical
WR13 model, extrapolating from historical data, simulates increased water deficits, particu-
larly under thermal SD, highlighting potential challenges posed by climate change. These
contrasting projections underscore the models’ sensitivity to regional climatic variations
and their intrinsic methodological differences [85,86]. Application of thermal SD shows
promise in modifying the crop water balance positively [87], especially in the long term, as
indicated by the more favorable projections for the period 2071–2100. Adjusting SD has
already been observed in various onion-growing areas, where changing rainfall patterns
have prompted farmers to postpone cultivation [76,79]. C-CLM’s capacity for dynamic
simulation may allow for better climate change adaptation, while WR13’s dependency on
historical data could constrain predictive power when past trends do not match future
conditions. The outcomes of these simulations emphasize the importance of model se-
lection in agricultural planning under the specter of climate change. The strengths and
limitations of both dynamical and statistical models play a crucial role in shaping results,
and the choice between them should be informed by the specific context of the system being
modeled, available data, and research objectives. Both models offer important perspectives
for horticultural decision-making in the context of climate change, but their respective
strengths and limitations should be carefully weighed for informed application.

Our simulations reveal significant variations due to interaction between Regional
Climate Model frameworks and Representative Concentration Pathway scenarios. While
temperature projections show considerable discrepancies between RCM outputs across
Europe, the precipitation patterns exhibit relatively consistent projections [88]. This di-
vergence in variability can be attributed to several factors that each model simulates.
Temperature projections can be more variable due to differences in how climate models
simulate factors like greenhouse gas concentrations, solar radiation, and atmospheric and
oceanic circulation patterns, which can particularly affect smaller-scale regions [89,90]. In
contrast, precipitation patterns may show more consistency owing to their dependence on
larger-scale factors like atmospheric moisture content and wind patterns, although there
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can still be notable differences in details at the regional or local level due to factors like
convective processes and moisture transport [4,91,92]. The observed changes in temper-
ature and precipitation patterns underscore the sensitivity of crop-specific responses to
different climate models and greenhouse gas concentration pathways [93,94]. To address
these uncertainties, the use of ensemble modeling approaches, which incorporate multiple
models with diverse structures, can help capture a range of potential outcomes and provide
a more comprehensive understanding of climate impacts [95].

Adapting irrigation strategies to climate change requires a nuanced understanding
of regional climate variations and insights from regional climate models and Represen-
tative Concentration Pathways [76]. These models are instrumental in forecasting how
climate change could alter temperature patterns and precipitation regimes at a regional
level, affecting crop water requirements and irrigation needs [77]. Variability captured by
different RCMs and RCPs underscores the complexity of predicting future agricultural
water demand [76]. For instance, RCMs can project how regional climate shifts might
extend or shorten crop growing seasons, influencing irrigation timing and amounts [77].
Similarly, the choice of RCPs, ranging from milder to more extreme changes, has distinct
implications for water management and irrigation scheduling [76]. Integrating temperature-
sum-based crop coefficients into irrigation management allows for dynamic adjustment
in response to temperature-driven crop growth changes [23]. The effectiveness of such
strategies is contingent upon the accuracy and resolution of RCM projections, highlighting
the importance of selecting models that reflect specific regional climate dynamics [77]. This
approach facilitates more precise and adaptive irrigation strategies, emphasizing the need
for ongoing refinement as new climate data and model projections become available. Opti-
mizing irrigation strategies, including advanced scheduling systems that integrate weather
forecasts and soil moisture data, is essential for efficient water management [96,97]. The
integration of climate models in irrigation scheduling or estimations of regional irrigation
requirements enables agricultural stakeholders to develop adaptive strategies that enhance
resilience against future climate conditions despite uncertainties.

We believe that our findings highlight the importance of inherent crop characteristics,
particularly temperature thresholds in combination with regional climate variations and
model framework choices, to determine the degree to which the cultivation period can
be shifted under changing climate conditions. This shift can potentially help mitigate
increased water demand. The cultivation start of thermophilic crops will generally be later
than that of frost-tolerant crops due to higher base temperatures. However, frost-tolerant
crops may experience a narrower range of climate-induced temporal adjustment compared
to thermophilic crops, as they are already adapted to cooler conditions and may have less
flexibility in their growing season. Regional climate variations play a significant role in
this context. Changes in crop phenology, including the length and start of the cultivation
period, are closely related to regional climate variability and change [98]. This implies
that the potential for shifting the cultivation period will vary across different regions due
to their distinct climate characteristics, offering opportunities to optimize water use by
aligning crop growth with more favorable climate conditions. The model framework
used plays a pivotal role in determining how regional temperatures are simulated, which
can subsequently shift the timing of crop growth. It was found that the influence of
Regional Climate Models (RCMs) and Representative Concentration Pathways (RCPs) on
lengthening the cultivation period was more pronounced than the influence of the crop
type itself. Despite these differences, the study confirms the broad applicability of the
temperature-based cultivation period shifting approach to various crops. This suggests
that while the extent of the shift may vary, the method can be applied broadly to account
for the impacts of climate change on different crops.

These results emphasize the complexity of modeling climate change impacts and
emphasize the crucial consideration of simulation inputs and underlying assumptions. The
study underscores that while RCMs are valuable for regional-level insights into future
climate conditions, their projections can significantly vary, especially for temperature,
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at smaller scales due to local influencing factors [99]. Despite these challenges, RCMs
remain instrumental in informing adaptation strategies and understanding potential climate
changes at the regional and local level [92,100].

5. Conclusions

Rising temperatures will affect crop phenology and water demand, leading to signifi-
cant changes in agricultural practices. Our findings suggest that shorter cultivation periods
and extended thermal growing seasons may allow for more crop cycles, but this also
increases vulnerability to water scarcity and higher irrigation needs. The differing adap-
tation potentials among crops indicate potential shifts in crop distribution and selection.
Farmers will need to adjust their strategies to optimize production under changing climate
conditions. Regional climate variations will significantly influence these changes, high-
lighting the importance of localized adaptation strategies. Increased water demand due to
higher evapotranspiration rates and more frequent droughts will require advancements in
irrigation technologies and efficient water management practices. These consequences call
for a transformative approach in agricultural research and policy, focusing on developing
climate-resilient crop varieties and validating adaptation strategies across diverse contexts.
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