Associations of Climatic Variables with Health Problems in Dairy Sheep Farms in Greece
Abstract
:1. Introduction
2. Materials and Methods
2.1. Visits to Sheep Farms and Interviews of Farmers
2.2. Data Management and Analysis
3. Results
3.1. Descriptive Findings
3.2. Predictors
4. Discussion
4.1. Preamble
4.2. Significance of Climatic Variables
4.3. Role of Management Practices
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Variables Used |
---|
Variables related to animals in farms |
Management system applied in farm (EFSA classification: shepherding/intensive/semi-intensive/semi-extensive/extensive/very extensive/mixed) |
Altitude at the location of farm (m) |
Availability of a separate barn for lambs (yes/no) |
Availability of a dedicated lambing area (yes/no) |
Proximity to industrial sites (10 km) (yes/no) |
Total grazing land by the farm animals (acres) |
Availability of a milking parlor (yes/no) |
Variables related to animals in farms |
No. of ewes on farms (no.) |
Breed of animals (description) |
Variables related to production characteristics in farms |
Month of the start of the lambing season (description) |
Total milk quantity obtained during the preceding milking period (liters) |
Average number of lambs born per ewe during the preceding lambing season (no.) |
Presence of cats on farm (yes/no) |
No. of cats on farm (no.) |
Variables related to health management in farms |
Common grazing of sheep with wildlife ruminants (yes/no) |
Duration of grazing annually (no. of months) |
Average age of culling ewes (years) |
Application of reproductive management (no hormonal control/administration of melatonin/administration of progestagens) |
Collaboration with a veterinarian (yes/no) |
Total visits made annually by veterinarians to the farm during the preceding season (no.) |
Use of laboratory diagnostic examinations in samples of milk (yes/no) |
Administration of oxytetracycline to pregnant animals (yes/no) |
Administration of selenium to pregnant animals (yes/no) |
Administration of selenium to newborn animals (yes/no) |
Source of replacement animals (own animals/purchase) |
Daily number of milking sessions (no.) |
Use of teat disinfection after milking (yes/no) |
Method for drying-off at the end of the lactation period (abrupt/progressive) |
Administration of ‘dry-ewe’ treatment at the end of the lactation period (yes/no) |
Duration of the dry-period (months) |
Newborn care and specific monitoring (yes/no) |
Maintenance of a colostrum bank (yes/no) |
Lamb fostering to female animals other than their dams (yes/no) |
Age for lamb removal from their dams (days) |
Administration of milk replacer to lambs (yes/no) |
Routine prophylactic administration of antibiotics to newborn lambs (yes/no) |
Vaccination against staphylococcal mastitis (yes/no) |
Vaccination against contagious agalactia (yes/no) |
Vaccination against Chlamydia infection (yes/no) |
Vaccination against bacterial respiratory infections (yes/no) |
Vaccination against clostridial infections (yes/no) |
Annual frequency of systemic disinfections in the farm (no. of occasions) |
Variables related to human resources in farms |
Age of farmer (years) |
Length of previous animal farming experience (years) |
Highest general education level achieved (primary/secondary/tertiary) |
Farmer by profession (yes/no) |
Daily period of presence at the farm (hours) |
Family tradition in farming (yes/no) |
Presence of working staff at the farm (yes/no) |
Variables related to climatic conditions at the locations of farms |
Temperature at 2 m for the year preceding the visit (°C) |
Temperature of Earth skin for the year preceding the visit (°C) |
Minimum temperature at 2 m for the year preceding the visit (°C) |
Maximum temperature at 2 m for the year preceding the visit (°C) |
Temperature range at 2 m for the year preceding the visit (°C) |
Relative humidity at 2 m for the year preceding the visit (%) |
Precipitation for the year preceding the visit (kg m−2 s−1) |
Wind speed at 10 m for the year preceding the visit (m s−1) |
References
- Joy, A.; Dunshea, F.R.; Leury, B.J.; Clarke, I.J.; DiGiacomo, K.; Chauhan, S.S. Resilience of small ruminants to climate change and increased environmental temperature: A review. Animals 2020, 10, 867. [Google Scholar] [CrossRef]
- Ramachandran, N.; Sejian, V. Climate resilience of goat breeds in India: A review. Small Rumin. Rev. 2022, 208, 106630. [Google Scholar] [CrossRef]
- Mazlishah, M.S.H.; Fauzi, N.M.; Nor, M.F.F.M.; Hashim, N.H. Influence of management systems on severity of heat stress on reproductive performance of rams in the tropics—A review. Ann. Anim. Sci. 2023. [Google Scholar] [CrossRef]
- Peana, I.; Fois, G.; Cannas, A. Effects of heat stress and diet on milk production and feed and energy intake of sarda ewes. Ital. J. Anim. Sci. 2007, 6, 577–579. [Google Scholar] [CrossRef]
- Pacheco-Pappenheim, S.; Yener, S.; Heck, J.M.L.; Dijkstra, J.; van Valenberg, H.J.F. Seasonal variation in fatty acid and triacylglycerol composition of bovine milk fat. J. Dairy Sci. 2021, 104, 8479–8492. [Google Scholar] [CrossRef]
- Toghdory, A.; Ghoorchi, T.; Asadi, M.; Bokharaeian, M.; Najafi, M.; Nejad, J.G. Effects of environmental temperature and humidity on milk composition, microbial load, and somatic cells in milk of Holstein dairy Cows in the northeast regions of Iran. Animals 2022, 12, 2484. [Google Scholar] [CrossRef]
- Vachon, M.; Morel, R.; Cinq-Mars, D. Effects of raising lambs in a cold or a warm environment on animal performance and carcass traits. Can. J. Anim. Sci. 2007, 87, 29–34. [Google Scholar] [CrossRef]
- Zhang, M.; Warner, R.D.; Dunshea, F.R.; DiGiacomo, K.; Joy, A.; Abhijith, A.; Osei-Amponsah, R.; Hopkins, D.L.; Ha, M.; Chauhan, S.S. Impact of heat stress on the growth performance and retail meat quality of 2nd cross (Poll Dorset×(Border Leicester× Merino)) and Dorper lambs. Meat Sci. 2021, 181, 108581. [Google Scholar] [CrossRef]
- Chauhan, S.S.; Zhang, M.; Osei-Amponsah, R.; Clarke, I.; Sejian, V.; Warner, R.; Dunshea, F.R. Impact of heat stress on ruminant livestock production and meat quality, and strategies for amelioration. Anim. Front. 2023, 13, 60–68. [Google Scholar] [CrossRef]
- Arsenopoulos, A.V.; Fthenakis, G.C.; Katsarou, E.I.; Papadopoulos, E. Haemonchosis: A challenging parasitic infection of sheep and goats. Animals 2021, 11, 363. [Google Scholar] [CrossRef]
- Tóth, M.; Oláh, J.; Farkas, R. Trichostrongylidosis of sheep: Literature review. Magy. Allatorvosok Lapja 2021, 143, 741–751. [Google Scholar]
- Egerton, J.R. Foot-rot and other foot conditions. In Diseases of Sheep, 3rd ed.; Martin, W.B., Aitken, I.D., Eds.; Blackwell Science: Oxford, UK, 2000; pp. 243–249. [Google Scholar]
- Gaviglio, A.; Corradini, A.; Marescotti, M.E.; Demartini, E.; Filippini, R. A theoretical framework to assess the impact of flooding on dairy cattle farms: Identification of direct damage from an animal welfare perspective. Animals 2021, 11, 1586. [Google Scholar] [CrossRef]
- Feknous, N.; Hanon, J.B.; Tignon, M.; Khaled, H.; Bouyoucef, A.; Cay, B. Seroprevalence of border disease virus and other pestiviruses in sheep in Algeria and associated risk factors. BMC Vet. Res. 2018, 14, 339. [Google Scholar] [CrossRef]
- Hartlaub, J.; Gutjahr, B.; Fast, C.; Mirazimi, A.; Keller, M.; Groschup, M.H. Diagnosis and pathogenesis of Nairobi Sheep Disease Orthonairovirus infections in sheep and cattle. Viruses 2021, 13, 1250. [Google Scholar] [CrossRef]
- Condoleo, R.; Rombolà, P.; Palumbo, R.; Santori, D.; Serra, S.; Tonon, S.; Bosco, A.; Sezzi, E. Toxoplasma gondii in sheep: Serological occurrence at slaughterhouse level in Italy and environmental risk factors. Fr. Vet. Sci. 2023, 10, 1057277. [Google Scholar] [CrossRef]
- Bohach, M.V.; Bolotin, V.I.; Bohach, D.M.; Piven, O.T.; Pyvovarova, I.V. Influence of natural and climatic conditions on the distribution and forms of contagious agalactia in sheep in Bessarabia, Ukraine. J. Vet. Res. 2022, 66, 345–351. [Google Scholar] [CrossRef]
- Javed, M.T.; Irfan, M.; Mukhtar, N.; Sajjad-ur-Rahman; Hussain, R. An outbreak of enterotoxaemia at livestock farm during subtropical summer. Acta Trop. 2009, 112, 225–227. [Google Scholar] [CrossRef]
- Stuen, S. Anaplasma phagocytophilum: The most widespread tick-borne infection in animals in Europe. Vet. Res. Comm. 2006, 31, 79–84. [Google Scholar] [CrossRef]
- Scott, P.R. Treatment and control of respiratory disease in sheep. Vet. Clin. N. Am. Food Anim. Pract. 2011, 27, 175–186. [Google Scholar] [CrossRef]
- Jones, B.A.; Muhammed, A.; Ali, E.T.; Homewood, K.M.; Pfeiffer, D.U. Pastoralist knowledge of sheep and goat disease and implications for peste des petits ruminants virus control in the Afar Region of Ethiopia. Prev. Vet. Med. 2020, 174, 104808. [Google Scholar] [CrossRef]
- Pulina, G.; Milan, M.J.; Lavin, M.P.; Theodoridis, A.; Morin, E.; Capote, J.; Thomas, D.L.; Francesconi, A.H.D.; Caja, G. Current production trends, farm structures, and economics of the dairy sheep and goat sector. J. Dairy Sci. 2018, 101, 6715–6729. [Google Scholar] [CrossRef] [PubMed]
- Dennett, C. Key ingredients of the Mediterranean diet: The nutritious sum of delicious parts. Today’s Dietit. 2016, 18, 28–33. [Google Scholar]
- Skapetas, B.; Kalaitzidou, M. Current status and perspectives of sheep sector in the world. Liv. Res. Rural Dev. 2017, 29, 21. [Google Scholar]
- Caja, G. L’ évolution des systèmes de production ovin-lait dans le Bassin Méditerranéen. Opt. Médit. A 1990, 12, 31–38. [Google Scholar]
- Ministry of Agricultural Development & Food. Greek Agriculture—Animal Production; Ministry of Agricultural Development & Food, General Directorate for Animal Production: Athens, Greece, 2018; 16p.
- Lianou, D.T.; Chatziprodromidou, I.P.; Vasileiou, N.G.C.; Michael, C.K.; Mavrogianni, V.S.; Politis, A.P.; Kordalis, N.G.; Billinis, C.; Giannakopoulos, A.; Papadopoulos, E.; et al. A detailed questionnaire for the evaluation of health management in dairy sheep and goats. Animals 2020, 10, 1489. [Google Scholar] [CrossRef]
- Katsarou, E.I.; Lianou, D.T.; Papadopoulos, E.; Fthenakis, G.C. Long-term climatic changes in small ruminant farms in Greece and potential associations with animal health. Sustainability 2022, 14, 1673. [Google Scholar] [CrossRef]
- Catley, A.; Alders, R.G.; Wood, J.L.N. Participatory epidemiology: Approaches, methods, experiences. Vet. J. 2012, 191, 151–160. [Google Scholar] [CrossRef]
- Alders, R.G.; Ali, S.N.; Ameri, A.A.; Bagnol, B.; Cooper, T.L.; Gozali, A.; Hidayat, M.M.; Rukambile, E.; Wong, J.T.; Catley, A. Participatory epidemiology: Principles, practice, utility, and lessons learnt. Front. Vet. Sci. 2020, 7, 532763. [Google Scholar] [CrossRef]
- Mariner, J.C. Manual on Participatory Epidemiology—Method for the Collection of Action-Oriented Epidemiological Intelligence; Food and Agriculture Organization of the United Nations: Rome, Italy, 2001; p. 81. [Google Scholar]
- Jost, C.C.; Mariner, J.C.; Roeder, P.L.; Sawitri, E.; Macgregor-Skinner, G.J. Participatory epidemiology in disease surveillance and research. Rev. Sci. Tech. 2007, 26, 537–549. [Google Scholar] [CrossRef] [PubMed]
- Ebata, A.; Hodge, C.; Braam, D.; Waldman, L.; Sharp, J.; MacGregor, H.; Moore, H. Power, participation and their problems: A consideration of power dynamics in the use of participatory epidemiology for one health and zoonoses research. Prev. Vet. Med. 2020, 177, 104940. [Google Scholar] [CrossRef]
- Alcala-Canto, Y.; Figueroa-Castillo, J.A.; Ibarra-Velarde, F.; Vera-Montenegro, Y.; Cervantes-Valencia, M.E.; Alberti-Navarro, A. First database of the spatial distribution of Eimeria species of cattle, sheep and goats in Mexico. Parasitol. Res. 2020, 119, 1057–1074. [Google Scholar] [CrossRef]
- Lax, S.; Abreu, C.I.; Gore, J. Higher temperatures generically favour slower-growing bacterial species in multispecies communities. Nat. Ecol. Evol. 2020, 4, 560–567. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Zhou, Y.; Chang, Y.; Liang, X.; Zhang, H.; Lin, X.; Qing, K.; Zhou, X.; Luo, Z. The effects of ventilation, humidity, and temperature on bacterial growth and bacterial genera distribution. Int. J. Environ. Res. Public Health 2022, 19, 15345. [Google Scholar] [CrossRef]
- Geng, H.L.; Yan, W.L.; Wang, J.M.; Meng, J.X.; Zhang, M.; Zhao, J.X.; Shang, K.M.; Liu, J.; Liu, W.H. Meta-analysis of the prevalence of Giardia duodenalis in sheep and goats in China. Microb. Pathog. 2023, 179, 106097. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.-X.; Liang, Q.-L.; Hu, X.-H.; Li, Z.; Yang, J.-F.; Zou, F.-C.; Zhu, X.-Q. First report of Chlamydia seroprevalence and risk factors in domestic black-boned sheep and goats in China. Front. Vet. Sci. 2020, 7, 363. [Google Scholar] [CrossRef]
- Qin, S.Y.; Yin, M.Y.; Cong, W.; Zhou, D.H.; Zhang, X.X.; Zhao, Q.; Zhu, X.Q.; Zhou, J.Z.; Qian, A.I. Seroprevalence and risk factors of Chlamydia abortus infection in Tibetan sheep in Gansu Province, Northwest China. Sci. World J. 2014, 2014, 193464. [Google Scholar] [CrossRef] [PubMed]
- Meerburg, B.G.; Kijlstra, A. Changing climate-changing pathogens: Toxoplasma gondii in north-western Europe. Parasitol. Res. 2009, 105, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Khademi, S.Z.; Ghaffarifar, F.; Dalimi, A.; Dayer, M.S.; Abdoli, A. Toxoplasma gondii in slaughtered sheep in high- and low-humidity regions in the south of Iran: Molecular prevalence and genotype identification. Vet. Med. Int. 2021, 2021, 5576771. [Google Scholar] [CrossRef]
- López-Gatius, F.; García-Ispierto, I.; Santolaria, P.; Yániz, J. Relationship between rainfall and Neospora caninum-associated abortion in two dairy herds in a dry environment. J. Vet. Med. B 2005, 52, 147–152. [Google Scholar] [CrossRef]
- Dubey, J.P. Toxoplasmosis of Animals and Humans, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2021; p. 564. [Google Scholar]
- Cheng, M.; McCarl, B.; Fei, C. Climate change and livestock production: A literature review. Atmosphere 2022, 13, 140. [Google Scholar] [CrossRef]
- Rojas-Downing, M.M.; Nejadhashemi, A.P.; Harrigan, T.; Woznicki, S.A. Climate change and livestock: Impacts, adaptation, and mitigation. Clim. Risk Manag. 2017, 16, 145–163. [Google Scholar] [CrossRef]
- Finocchiaro, R.; van Kaam, J.B.C.H.M.; Portolano, B.; Misztal, I. Effect of heat stress on production of mediterranean dairy sheep. J. Dairy Sci. 2005, 88, 1855–1864. [Google Scholar] [CrossRef]
- Sevi, A.; Caroprese, M. Impact of heat stress on milk production, immunity and udder health in sheep: A critical review. Small Rumin. Res. 2012, 107, 1–7. [Google Scholar] [CrossRef]
- Rhoads, R.; La Noce, A.; Wheelock, J.; Baumgard, L. Alterations in expression of gluconeogenic genes during heat stress and exogenous bovine somatotropin administration. J. Dairy Sci. 2011, 94, 1917–1921. [Google Scholar] [CrossRef] [PubMed]
- Mehaba, N.; Coloma-Garcia, W.; Such, X.; Caja, G.; Salama, A.A.K. Heat stress affects some physiological and productive variables and alters metabolism in dairy ewes. J. Dairy Sci. 2021, 104, 1099–1110. [Google Scholar] [CrossRef]
- Mioč, B.; Antunović, Z.; Širić, I.; Novoselec, J.; Kasap, A.; Šalavardić, Z.K.; Ramljak, J.; Držaić, V. The influence of different stress factors on the production and quality of sheep milk. Mljekarstvo 2024, 74, 169–184. [Google Scholar] [CrossRef]
- Gonzalo, C.; Juárez, M.T.; García-Jimeno, M.C.; De La Fuente, L.F. Bulk tank somatic cell count and total bacterial count are affected by target practices and milking machine features in dairy sheep flocks in Castilla y Leon region, Spain. Small Rumin. Res. 2019, 178, 22–29. [Google Scholar] [CrossRef]
- Lafi, S.Q.; Al-Majali, A.M.; Rousan, M.D.; Alawneh, J.M. Epidemiological studies of clinical and subclinical ovine mastitis in Awassi sheep in northern Jordan. Prev. Vet. Med. 1998, 33, 171–181. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, M.Y.; Liu, C.; Huang, L.H.; Gao, Y.; Yu, M.; Zhao, S.H.; Li, X.P. Ammonia exposure induced cilia dysfunction of nasal mucosa in the piglets. Biomed Res. Int. 2020, 2020, 1705387. [Google Scholar] [CrossRef]
- Lianou, D.T.; Fthenakis, G.C. Use of antibiotics against bacterial infections on dairy sheep and goat farms: Patterns of usage and associations with health management and human resources. Antibiotics 2022, 11, 753. [Google Scholar] [CrossRef]
- Landers, T.F.; Cohen, B.; Wittum, T.E.; Larson, E.L. A review of antibiotic use in food animals: Perspective, policy, and potential. Public Health Rep. 2012, 127, 4–22. [Google Scholar] [CrossRef] [PubMed]
- Sargison, N. Sheep Flock Health—A Planned Approach; Blackwell: Oxford, UK, 2008; p. 465. [Google Scholar]
All Flocks (n = 325) | Flocks with Intensive or Semi-Intensive Management (n = 184) | Flocks with Semi-Extensive or Extensive Management (n = 141) | |
---|---|---|---|
Abortion | 2.0% (1.9–2.1%) | 2.3% (2.1–2.4%) a | 1.5% (1.4–1.6%) a |
Clinical mastitis | 3.9% (3.8–4.0%) | 4.0% (3.9–4.2%) a | 3.7% (3.5–3.9%) a |
Lamb pneumonia | 1.4% (1.3–1.4%) | 1.5% (1.4–1.5%) a | 1.2% (1.1–1.3%) a |
Lamb diarrhoea | 7.9% (7.8–8.1%) | 7.7% (7.6–7.9%) a | 8.2% (7.8–8.3%) a |
All Flocks (n = 325) | 25% of Flocks with Higher Incidence Rate (n = 81) | |
---|---|---|
Abortion | 2.7% (2.7%) | 4.7% (4.5%) |
Clinical mastitis | 0.0% (4.4%) | 9.6% (7.6%) |
Lamb pneumonia | 0.0% (0.8%) | 3.3% (5.8%) |
Lamb diarrhoea | 2.2% (10.0%) | 22.2% (21.6%) |
Variables | Odds Risk (±se) 1 | p |
---|---|---|
Annual precipitation at farm location | 0.024 | |
Per unit (kg m−2 s−1) increase | 1.020 ± 1.009 | 0.024 |
Variables | Odds Risk (±se) 1 | p |
---|---|---|
Number of ewes in flock | 0.009 | |
Per unit (animal) decrease | 1.00006 ± 1.00002 | 0.005 |
Variables | Odds Risk (±se) 1 | p |
---|---|---|
Availability of separate barn for lambs | 0.0003 | |
Yes (0.0% (0.5%)) 2 | reference | - |
No (0.0% (2.4%)) | 1.014 ± 1.004 | 0.0008 |
Proximity of the farm to industrial sites | 0.012 | |
Yes (0.0% (2.2%)) 2 | 1.013 ± 1.005 | 0.008 |
No (0.0% (0.5%)) | reference | - |
Age of removing lambs from their dam | 0.020 | |
Per unit (day) decrease | 1.0002 ± 1.0001 | 0.008 |
Variables | Odds Risk (±se) 1 | p |
---|---|---|
Average annual temperature range at farm location | <0.0001 | |
Per unit (°C) increase | 1.005 ± 1.001 | 0.0001 |
Category of Variables Assessed | Adults | Lambs |
---|---|---|
Infrastructure | 0.0% | 33.3% |
Production characteristics | 0.0% | 0.0% |
Health management practices | 14.3% | 8.8% |
Human resources | 7.1% | 21.4% |
Climatic variables | 6.3% a | 38.9% a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katsarou, E.I.; Lianou, D.T.; Michael, C.K.; Vasileiou, N.G.C.; Papadopoulos, E.; Petinaki, E.; Fthenakis, G.C. Associations of Climatic Variables with Health Problems in Dairy Sheep Farms in Greece. Climate 2024, 12, 175. https://doi.org/10.3390/cli12110175
Katsarou EI, Lianou DT, Michael CK, Vasileiou NGC, Papadopoulos E, Petinaki E, Fthenakis GC. Associations of Climatic Variables with Health Problems in Dairy Sheep Farms in Greece. Climate. 2024; 12(11):175. https://doi.org/10.3390/cli12110175
Chicago/Turabian StyleKatsarou, Eleni I., Daphne T. Lianou, Charalambia K. Michael, Natalia G. C. Vasileiou, Elias Papadopoulos, Efthymia Petinaki, and George C. Fthenakis. 2024. "Associations of Climatic Variables with Health Problems in Dairy Sheep Farms in Greece" Climate 12, no. 11: 175. https://doi.org/10.3390/cli12110175
APA StyleKatsarou, E. I., Lianou, D. T., Michael, C. K., Vasileiou, N. G. C., Papadopoulos, E., Petinaki, E., & Fthenakis, G. C. (2024). Associations of Climatic Variables with Health Problems in Dairy Sheep Farms in Greece. Climate, 12(11), 175. https://doi.org/10.3390/cli12110175