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Abstract: Coastal flooding poses a significant threat to coastal communities, adversely affecting
both safety and economic stability. This threat is exacerbated by factors such as sea level rise, rapid
urbanization, and inadequate coastal infrastructure, as noted in recent climate change reports. Early
warning systems (EWSs) have proven to be effective tools in coastal planning and management,
offering a high cost-to-benefit ratio. Recent advancements have integrated operational numerical
models with machine learning techniques to develop near-real-time EWSs, leveraging data obtained
from reputable databases that provide reliable hourly sea-state and sea level data. Despite these
advancements, a stepwise methodology for selecting representative events, akin to wave input
reduction methods used in morphological modeling, remains undeveloped. Moreover, existing
methodologies often overlook the significance of compound extreme events and their potential
increased occurrence under climate change projections. This research addresses these gaps by
introducing a novel input schematization method that combines efficient hydrodynamic modeling
with clustering algorithms. The proposed methodology, implemented in the coastal area of Pyrgos,
Greece, aims to select an optimal number of representative sea-state and water level combinations to
develop accurate EWSs for coastal flooding risk prediction. A key innovation of this methodology is
the incorporation of weights in the clustering algorithm to ensure adequate representation of extreme
compound events, also taking into account projections for future climate scenarios. This approach
aims to enhance the accuracy and reliability of coastal flooding EWSs, ultimately improving the
resilience of coastal communities against imminent flooding threats.

Keywords: coastal flooding; climate change; clustering; numerical modeling; early warning system;
input schematization; compound events

1. Introduction

Coastal flooding is an imminent threat for coastal areas, compromising the safety of
communities and having adverse impacts on the economy [1] and causing damage to infras-
tructure. This threat is further intensified due to sea level rise, rapid urbanization of coastal
areas, and inadequate protection of coastal structures, as highlighted in the published report
of the Intergovernmental Panel on Climate Change [2]. In this context, compound extreme
weather events refers to the simultaneous occurrence of extreme wave heights and increased
water level elevations due to storm surges and astronomical tides [3–5]. Consequently, the
increase in their frequency of occurrence may substantially increase the associated risk [6].
Understanding the mechanisms that drive coastal flooding [7–9] and enhancing the resilience
of coastal communities against climate change impacts [10,11] have been a focal point for
coastal engineering research in recent years.

To protect livelihoods and properties of coastal communities at risk, administrative
efforts should focus on anticipating and alerting citizens in advance to the imminent threat
of coastal flooding. To this end, early warning systems (EWSs) are a promising tool for
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coastal planning and management, with a demonstrated high cost-to-benefit ratio [12].
Various research efforts have focused on the development of EWSs for coastal flooding
risk, utilizing operational numerical modeling predictions [13–15], often combining them
with machine learning techniques [16–18]. Machine learning techniques are especially
alluring for the development of near-real-time EWSs considering the high computational re-
sources required by hydrodynamic models that are tasked with predicting coastal flooding
inundation due to compound extreme events.

Lately, with the prevalence of metocean databases (e.g., [19–21]) which offer reliable
predictions of sea-state offshore wave characteristics and sea level data at hourly inter-
vals, there is an abundance of data to be considered in the framework of carrying out
hydrodynamic simulations, and subsequently, training a machine learning algorithm. In
other coastal engineering applications, the concept of schematizing the forcing input for
numerical models is widespread, with the development of various wave input reduction or
wave schematization methods [22–26] to accelerate the interannual predictions of coastal
bed evolution.

In a similar manner, research efforts that focus on the development of EWSs for coastal
flood events usually follow a procedure of discretizing sea-state wave characteristics and
water level variations in bins of fixed intervals to reduce the required computational effort.
Chondros et al. [16] trained an artificial neural network (ANN) to predict the coastal
flooding risk for the coastal area of Rethymno Port in Crete. To train the ANN, the authors
utilized a parabolic mild slope wave model [27] for wave propagation to provide boundary
conditions for coastal inundation modeling using the HEC-RAS 2D [28] hydrodynamic
model. By dividing the significant wave height, peak wave period, and mean wave
direction into constant bins of 1 m, 1 s, and 30◦ intervals, respectively, and considering three
water level elevations with a constant incremental step of 0.5 m (lowest, mean, and highest
water level), a total of 303 sea states were utilized to train an ANN. Garzon et al. [17]
trained a Bayesian network with numerical modeling simulations nesting SWAN [29]
and XBeach model [30] to develop an EWS for the coastal area of Praia de Faro, Portugal.
Since Bayesian networks cannot extrapolate beyond the parameter space in which they are
constructed, the authors schematized the offshore sea-state wave characteristics by dividing
the wave heights into bins with 0.5 m intervals and 1 s for the peak wave period. They
separately considered synthetic storm events as well as large swell events when training
the Bayesian network. Epsejo et al. [14] developed an EWS for coastal flooding of low-lying
atoll islands in Tarawa, Kiribati. Differently from the previous studies, the authors utilized
the maximum dissimilarity selection algorithm (MDA) [31], which focuses on maximizing
the dissimilarity or diversity among the chosen parameters, to define 500 representative sea-
state scenarios, also considering the wind speed and wind direction as input variables in
their analysis. Thereafter, they performed simulations utilizing the SWAN wave model [29]
coupled with ADCIRC [32] to define the threshold for coastal flooding risk to be used in
the operational EWS.

In light of the above, to the best of the authors’ knowledge a stepwise methodology
to select schematized events (i.e., a predefined number of representative events) for EWSs
for coastal flooding, similar to wave input reduction methods for morphological modeling
applications, has not been realized yet. Moreover, the respective methodologies to select
schematized events do not consider the presence of compound extreme events of wave
height and water level elevation in the analysis, and exclude climate change projections
altogether, which may lead to an insufficient training of the machine learning algorithm
and compromise the predictions of the EWS. The scope of this research is to present a novel
input schematization method combining efficient hydrodynamic modeling and clustering
algorithms to select an optimal number of representative sea-state wave characteristics
and water level combinations that can be utilized to develop an accurate EWS for coastal
flooding risk prediction. One of the central innovative aspects of the proposed methodology
is the attention on compound events, that can potentially lead to the inundation of coastal
areas, by introducing weights in the clustering algorithm to ensure a good representation of
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extreme compound events in the schematized dataset, as well as including climate change
projections for wave characteristics and water levels. The methodology was conceptualized
with the intent to be easily replicable in other coastal areas but also to provide a framework
for selecting representative events in other physics-based applications (e.g., urban or fluvial
flooding EWSs, or EWSs for forest fires).

2. Materials and Methods
2.1. Study Area and Available Data

The area of interest is the coastal zone of Pyrgos, the capital city of the regional unit of
Elis in Western Peloponnese, Greece. Pyrgos is the administrative and commercial center of
the region, with a population of around 25,000 residents, and is located around 30 km from
the archaeological site of Olympia, a prominent tourist attraction. The area historically
has been subjected to various flood events both fluvial (due to the presence of the Alfios
river) as well as coastal, with notable flood events occurring in February 2012, October
2019, and November 2021, with the latter two exclusively attributed to coastal flooding.
Consequently, flood protection in the form of interventions along the riverbed of Alfios, as
well as EWSs for prevention and evacuation, have been at the forefront of administrative
policies and research endeavors.

The latter lies within the scope of the present research, with the ultimate goal to
develop an EWS for coastal flood events. The study area where coastal flooding risk will
be assessed extends around 4.5 km from both sides of the Alfios river’s mouth. A general
outline of the study area is illustrated with a purple rectangle in Figure 1. Interestingly,
the hinterland is equipped with a means of physical protection against coastal flooding
with sand dunes situated at an average distance of 32 m from the coastline with an average
height of 2.3 m above the mean sea level. Two indicative coastal profiles, showing the
above-mentioned sand dunes are also shown in Figure 2, utilizing information from a
recently conducted topo-bathymetric survey and the DEM file with horizontal spacing
of 2 m from the National Cadastre of Greece [33]. It is important to note that if waves
overtop the sand dunes, it poses a significant threat due to the proximity of residential
areas near the shoreline north of the Alfios river’s mouth. Additionally, the dried-out Lake
Agoulinitsa to the south is a potential flooding hotspot.

The first step in developing an EWS for coastal flooding is the collection of input
data, particularly those related to sea-state wave characteristics and sea level elevation.
In this research, data from the historical period, along with a future period incorporat-
ing the impacts of climate change, were obtained from the Copernicus Climate Change
Service [34]. The future projections of the variables of interest are based on two Repre-
sentative Concentration Pathway (RCP) scenarios. The first, RCP4.5, corresponds to an
optimistic emission scenario, where emissions start declining beyond 2040. The second,
RCP8.5, represents a pessimistic scenario, where emissions continue to rise throughout
the century. The offshore sea-state wave characteristics (wave height, Hmo; peak wave
period, Tp; and mean wave direction, MWD) were extracted from the “Ocean surface
wave time series for the European coast from 1976 to 2100 derived from climate projections”
package, whereas total water level data, containing the contributions of residual storm
surges and astronomical tides were extracted from the package “Water level change time
series for the European coast from 1977 to 2100 derived from climate projections”. In this
package, sea level data are obtained through an implementation of the Deltares Global
Tide and Surge Model (GTSM) version 3.0 forced with regional climate forcing and sea
level rise initial conditions based on the high-resolution regional climate change ensemble
developed for Europe within the World Climate Research Program Coordinated Regional
Downscaling Experiment (EUROCORDEX) initiative. Wave characteristics are calculated
with the pan-European wave initiative, a refined version of the WAM model [35] utilized
in the premises of ECMWF. Finally, metocean data were obtained for three distinct periods:

• Time period 1977–2005, hereafter denoted as the historical dataset.



Climate 2024, 12, 178 4 of 28

• Time period 2041–2070 with forcing input based on RCP 8.5, hereafter denoted as RCP
8.5 dataset.

• Time period 2071–2100 with forcing input based on RCP 4.5, hereafter denoted as RCP
4.5 dataset.
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Figure 3 presents wave rose plots for each dataset offshore from the study area.
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Figure 3. Wave rose plot offshore of the study area for the (a) historical, (b) RCP 8.5, and (c) RCP
4.5 datasets.

As can be seen from Figure 3, the wave regime is similar between the historical
period and the two periods corresponding to the RCP 8.5 and RCP 4.5 projections. In
particular, two dominant wave directions are identified, namely, from the west (270◦) and
west-southwest (240◦) sectors. Compared to the historical period, the maximum projected
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spectral wave height offshore decreases for both RCP scenarios, with values of 7.89 m,
6.24 m, and 6.35 m for the historical, RCP 8.5, and RCP4.5 datasets, respectively. It is noted
that waves propagating from the west-southwest direction are not subjected to intense
refraction as they propagate nearshore, due to the mean shoreline orientation, since the
shore normal is positioned at 225◦ compared to the true north position.

The total water level elevation, including the contribution of residual storm surges
and astronomical tides, along with mean sea level rise for the climate change projections is
plotted in Figure 4.
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For the historical dataset, the mean water level is located at −0.019 m, with the
maximum water level elevation being 0.45 m. As shown in Figure 4, for the period between
1977 and 2005, there is a relatively constant trend for the total water level in the study area.
In contrast, for the RCP 8.5 dataset, at the start of 2041 the mean sea level lies at 0.16 m,
signifying a sea level rise of about 6 mm/year between the end of the historical period and
the start of 2041. From that point, an upward trend is identified for the total water, reaching
a maximum projected value of 0.75 m at the end of 2070. Finally, for the RCP 4.5 dataset,
covering the period 2071–2100, the mean sea level is located at 0.28 m, signifying a sea level
rise of about 4.5 mm/year, with an upward trend for the upcoming years, reaching a value
of 0.43 m at the end of the century. The maximum projected value of the total water level
elevation for the RCP 4.5 dataset is 0.89 m.

2.2. Methodology Outline

This section presents the outline of the conceptualized methodology to select com-
binations of wave characteristics based on nearshore wave propagation simulations and
machine learning techniques, focusing especially on incorporating the impact of compound
flood events. The distinct steps to reproduce the methodology (also illustrated in Figure 5)
are the following (and they should be repeated for each period of interest, e.g., historical,
future period incorporating climate change):

1. Obtain time series of offshore sea-state wave characteristics (at a minimum Hmo, Tp,
and MWD should be included) and total water level elevation (WL) for the study
area for the historical and future periods incorporating climate change impacts. These
data can be retrieved from metocean databases such as the CDS [34].

2. Define compound events of waves and total water level elevations, adopting an extreme
value threshold for Hmo and WL. This threshold should be reasonably high to capture
extreme events and a value of the 95th [36,37] or 99th percentile [38,39]. By adopting
the threshold for both variables, an area of compound extremes is defined by both
variables exhibiting extreme values at the same time. Hence, two areas are defined: a
“supercritical” one, containing the compound events; and a “subcritical” one, lying
below the thresholds. It should be noted that if the timestep of the wave characteristic
and water level time series is not equal, resampling through extrapolation could be
conducted by taking either the mean or maximum value of the variables within the
time frame examined.

3. Propagate the defined compound events at a nearshore depth of about 8–10 m (taken
to be 10 m in the present study). This depth represents a typical value for the esti-
mation of wave characteristics in the nearshore and in the context of the subsequent
calculation of the depth of closure, as shown in other studies [23,40]. For this purpose,
it is advised to use either a spectral wave model (e.g., [29,41,42]) or a mild slope wave
model [43,44]. In the present study, a nonlinear parabolic mild slope model (hereafter
denoted PMS) [26,27] was utilized. The reason for selecting this model is the accuracy
in prescribing the wave field in mildly sloping beds, the fast simulation times, and
the capability to include the increase in the water level in the wave propagation simu-
lations. It is noted that compound events that have wave incidence angles offshore
with ao > ±90◦, with respect to the shore normal, can be excluded from the analysis
as they are not expected to affect the study area and lead to coastal inundation.

4. Calculate wave overtopping across indicative coastal profile sections utilizing the
nearshore wave characteristics and water level elevations obtained through step 3. The
selected coastal profiles should be representative of the bathymetry and topography
of the hinterland. In case of a relatively alongshore homogeneous domain, a single
coastal profile can be chosen. Wave overtopping can be calculated either through
empirical relationships, developed artificial neural networks [45], or numerical mod-
eling. In the present study, the coastal profile model CSHORE [46] was selected due
to its rapid simulation times and capability to predict wave runup and overtopping
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in porous media. Model calibration and validation should take place at this stage
provided the availability of field measurements.

5. Based on the results of step 4, define events that lead to wave overtopping (with
a non-zero wave overtopping discharge or with an overtopping discharge exceed-
ing the tolerable limits, i.e., as presented in [47]). For the set of compound events,
perform feature weight estimation [48] to identify the contribution of each variable
(i.e., Hmo, Tp, MWD, WL) in wave overtopping. In case of negative weights, the
corresponding variable can be excluded from the subsequent analysis.

6. Based on the calculated weights, generate a weighting function to quantify the com-
bined contribution of each variable in wave overtopping. In the present research a
weighted sum model [49] was adopted, commonly used in multicriteria analysis.

7. Perform weighted cluster analysis separately for the “subcritical” and “supercritical”
areas of the dataset. Clustering methods have experienced increased usage in the field
of coastal engineering in the past decade to uncover hidden patterns and formations
in multivariate datasets. They have been employed in various applications such as
coastal storm classification [50], longshore transport rates [51], cross-shore profile
morphological evolution [52], multivariate wave climate classification [31], and as
input reduction methods for coastal morphological simulations [23]. In the present
study, the well-known K-Means algorithm [53] is utilized but other algorithms can be
also implemented (e.g., Fuzzy C-Means [54], CURE [55] or the Maximum Dissimilarity
Algorithm [31], among others). The reason for the selection of K-Means in the context
of the methodology used herein mostly lies in its capability to handle excessively
large datasets with computational efficiency. The clustering algorithm takes as input
variables Hmo, Tp, cos(ao), and WL. It is noted that the MWD is transformed to the
incident wave angle in relation to the shoreline orientation. Through an iterative
procedure the algorithm selects a number of clusters and centroids, the latter of which
are the desired representative events. As proposed and supported by the findings
of this research, the clustering algorithm should incorporate the weighting function
defined in the previous step.

The obtained centroids are the individual events that can be utilized to perform hy-
drodynamic simulations of coastal inundation, and subsequently, train a machine learning
algorithm (e.g., artificial neural networks [16] or Bayesian networks [17]). With the uti-
lization of weighted clustering algorithms, it is foreseen that the subsequent EWS will be
properly trained and capable of capturing the possible occurrence of extreme compound
flood events, and it will ensure its longevity.

In the following subsection, the governing equations of the two numerical models
utilized in the context of the proposed methodology are presented.

2.3. Background of Numerical Models
2.3.1. Nearshore Wave Model

For the simulation of the irregular wave transformation from offshore to nearshore
a nonlinear mild-slope wave model of parabolic approximation is implemented, devel-
oped in [27], based on the work in [56], who derived a parabolic equation governing
the complex amplitude, A, of the fundamental frequency component of a Stokes wave.
Thereafter, Ref. [57] improved the parabolic equation and its applicability range through
approximations based on minimax principles to allow for large-angle propagation. The
range of allowable wave angles within the limitations of the parabolic approximation was
significantly increased by relaxing the local accuracy of approximations based on Padé
approximants at normal wave incidence in favor of minimax approximations, which min-
imize the maximum error that occurs over a prespecified range of wave directions. The
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revised governing parabolic equation, allowing for the study of waves with larger wave
incidence angles with respect to the x axis (the principal direction of propagation), is

Cg Ax + i
(

k − a0k
)

Cg A + 1
2
(
Cg

)
x A + i

ω

(
α1 − b1

k
k

)(
CCg Ay

)
y −

b1
ωk

(
CCg Ay

)
yx

+ b1
ω

(
kx
k2 +

(Cg)x
2kCg

)(
CCg Ay

)
y +

iωk2

2 D|A|2 A + w
2 A = 0

(1)

where the parameter D is given by D =
(cosh 4kh+8−2tanh2kh)

8sinh4kh
, the complex amplitude A

is related to the water surface displacement by η = Ae−i(kx−ωt), and k is the local wave
number, related to the angular frequency of the waves, ω, and the water depth, h. Moreover,
k is a reference wave number taken as the average wave number along the y-axis, C is the
phase celerity, Cg is the group celerity, and w is a dissipation factor. Coefficients a0, α1, and
b1 depend on the aperture width chosen to specify the minimax approximation [58].
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The model allows for the generation and propagation of unidirectional irregular
waves by dividing the wave energy spectrum into discrete wave components of equal
wave energy and performing separate simulations for each one. Energy dissipation due
to bathymetric breaking following the formulation of [59], and bottom friction, which
is modeled through the formulation of [60], are also treated by the model. To improve
model results in the nearshore, nonlinear dispersion characteristics are incorporated by
introducing an approximate nonlinear amplitude dispersion relationship, as shown in [61].
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2.3.2. Coastal Profile Model CSHORE

For the simulation of wave overtopping in the nearshore, the coastal profile model
CSHORE [46] was utilized. The model is time-averaged and is able to predict the coastal
profile evolution at the scale of storm events or interannual periods, as well as the wave
runup and overflow due to wave overtopping for permeable structures and beds [62,63] as
well as impermeable structures [64,65].

The wave transformation and evolution of the root mean squared wave height (Hrms)
is obtained by solving the wave action balance equation:

d
dx

[
E
ω

(
Cgcos α +

Qx

h

)]
= −

Db + D f

ω
(2)

where Qx is the cross-shore volume flux, E is the wave energy, a is the wave incidence
angle with respect to the cross-shore direction, h is the still water depth, and Db and D f
are energy dissipation rates due to wave breaking and bottom friction, respectively. In
particular, energy dissipation due to wave breaking is calculated based on the formula
of [66], modified by [67] as follows:

Db =
ρgasQbHb

4Tp
(3)

where ρ is the seawater density; g is the acceleration due to gravity; Tp is the wave period
at the spectral peak; Qb is the fraction of breaking waves; and as =

2πSb
3kh

is a slope effect
parameter expressed as the ratio between the wave length (2π/k) and the horizontal length
(3h/Sb) imposed by the small depth and relatively steep slope.

Energy dissipation due to bottom friction is calculated through the following relationship:

D f =
1
2

ρ fbU3 (4)

where fb is a bottom friction coefficient and U is the cross-shore flow velocity.
The cross-shore volume flux Qx for the flow over an impermeable layer in shallow

water is calculated through the time-averaged and vertically-integrated continuity equation
as follows [46]:

Qx = hU +
gσ2

η

C
cos α + qrcos α = qo (5)

where ση is the standard deviation of the free surface elevation, qr is the roller volume
flux, estimated using the roller energy equation as presented in [67,68], and qo is the wave
overtopping rate.

The overtopping rate qo is estimated using the computed hydrodynamic variables at
the crest (highest elevation) of the coastal profile zb. If the landward marching computation
starting from x = 0 (i.e., the seaward limit of the profile) does not reach the crest, then the
overtopping rate qo = 0.

3. Results and Discussion
3.1. Compound Flood Events

Initially, the basis on which an event is categorized as a compound flood event is laid
out. In the context of this study, a compound event is defined as one where the values of
the offshore wave height and the total water level exceed the respective 99th percentiles
of the corresponding dataset [38,39,69]. Of particular interest is the utilization of three
separate datasets (historical, RCP 4.5, and RCP 8.5) covering different time periods. As can
be observed from Figure 4, a mean sea level rise due to climate change is identified for both
the RCP 8.5 and RCP 4.5 datasets compared to the historical one. It should be noted that
the 99th percentiles of total water level for the datasets incorporating climate change are
expected to be higher than the respective one for the historical period due to mean sea level
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rise. This can lead to the omission of sea level elevations that, combined with high-energy
sea states, can potentially lead to overtopping and coastal flooding. Consequently, the 99th
percentile values of the total water level and significant wave height were used as constant
thresholds for both the historical and the RCP datasets. Figure 6 illustrates the compound
events for the three time periods of interest.

It is important to note that the corresponding thresholds define two distinct areas,
a “supercritical” area, corresponding to the compound extreme events (illustrated with
orange markers in Figure 6), and a “subcritical” area, lying below the thresholds (illustrated
with blue markers in Figure 6). These two areas effectively create two separate datasets,
which are treated differently in the subsequent cluster analysis.

In total, 475 compound events were obtained for the historical period, whereas the
corresponding number was 2572 for RCP 8.5 and 3018 for RCP 4.5, signifying a significant
increase in the frequency of future extreme events offshore of the study area, when adopting
the thresholds of the historical dataset. A slight change in the mean deviation of the wave
incidence angle with respect to the shore normal is observed, with the absolute value being
15.84◦ for the historical dataset, 18.89◦ for RCP4.5, and 17.52◦ for RCP8.5. This indicates
that there is slight altering of the mean wave direction, and for the datasets incorporating
climate change, more oblique incidence angles are observed, which can potentially be
beneficial in reducing wave runup and overtopping of the sand dunes. Even though
this shift in wave incidence angles enhances coastal resilience by reducing the extreme
wave impacts on the shore, the simultaneous increased water levels under climate change
projections could potentially compromise it.

3.2. Coastal Wave Propagation

The next step concerns the coastal wave propagation from offshore to nearshore in
order to obtain wave characteristics across the depth of 10 m. For this purpose, a 2D nonlin-
ear irregular parabolic mild slope (PMS) wave propagation model was utilized to conduct
the required simulations of wave propagation. The PMS wave model is mainly tasked
with producing output that is used to force the CSHORE profile mode. It is advised to
utilize a 2D area numerical model for this task, to better prescribe the wave transformation
processes before proceeding with the 1D coastal profile modeling.

The bathymetry of the domain was discretized with a spatial step size of 5 m in both
directions. The domain extends 13 km in the x-direction and 8.5 km in the y-direction. The
points where characteristics were extracted have a depth of 10 m. The bathymetric grid,
superimposed with the positions where wave characteristics were extracted is shown in
Figure 7. Points P1 and P2 are located at distances of 315 m and 300 m from the shoreline,
respectively. This distance is over three times larger than the average wavelength of the
incident waves at this depth (assuming linear dispersion of water waves), which is 99.2 m,
allowing for a good resolution of the wave transformation processes from this depth up
to the shoreline. It is also noted that these two positions were selected for the particular
study area due to the presence of the sand dunes, the potential breach of which can lead
to coastal flooding, in conjunction with the conducted surveys in the hinterland, which
indicate a relatively uniform coastal profile for about 1.5 km on either side of the river
mouth. The steps of the methodology can however readily be applied to any number
of nearshore locations and coastal profiles, provided significant variations in the coastal
profile are identified.
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Figure 7. Bathymetry of the numerical domain and extraction points of nearshore waves. Date of
bathymetric survey: 26 July 2024.

The maximum depth is 100 m and the mean coastal bed slope close to the mouth of
the Alfios river is relatively mild, reaching a value of 0.8%. Figure 8 shows a comparison
between the offshore sea-state wave characteristics and the nearshore values at the two
extraction locations (P1 and P2) for the historical dataset, while Figures 9 and 10 correspond
to the RCP8.5 and RCP4.5 datasets, respectively, as simulated with the PMS model.
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(triangular markers).
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Figure 9. Comparison of significant wave heights for the RCP8.5 dataset (2041–2070) between offshore
wave data (circular markers), nearshore point P1 (x markers), and nearshore point P2 (triangular
markers). Vertical plots indicate sequence of scenarios.

As expected, a decrease in the wave height is observed from offshore to nearshore and
is mainly attributed to the processes of wave refraction and shoaling. For instance, for the
historical period an average decrease of 6% was observed, whereas the respective values
for RCP 8.5 and RCP 4.5 were 6.8% and 7.33%. Both nearshore positions exhibit almost
identical values of wave characteristics and so, considering that both coastal profiles are
relatively similar up until the top of the sand dunes, only profile 2 will be used hereafter
for the simulations using the CSHORE numerical model.

3.3. Wave Overtopping

Having calculated the nearshore wave characteristics, the next step concerns the
calculation of wave overtopping for the compound events of the three examined datasets
utilizing the CSHORE [46] coastal profile model. The main input data required by the
model are the root mean square wave height Hrms, the peak wave period Tp, and the wave
incidence angle a, all of which are provided by the obtained results of the PMS wave model.
The model also takes into account the effect of sea level increase, and each wave condition
is associated with the corresponding WL elevation, as obtained by the analysis of the
compound events carried out in Section 3.1. It should be mentioned however that, being a
coastal profile model, CSHORE has some inherent limitations as the full hydrodynamics are
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not resolved and empirical relationships are utilized for the calculation of wave overtopping
volumes, which may lead to inaccurate estimations, especially for steep beach profiles.
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Out of the 6232 simulated compound events, a total of 472 events lead to wave
overtopping of the sand dunes, distributed as follows among each dataset: 24 in the
historical dataset, 260 in RCP 8.5, and 188 in RCP 4.5. This corresponds to a percentage
of wave overtopping of 5.0% for the historical, 10.1% for RCP 8.5, and 6.3% for RCP 4.5,
signifying an increase in overtopping events over the coming years due to the effects of
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climate change. It is noted that the morphological evolution of the coastal profile was not
taken into account due to the unavailability of measurements that are required to calibrate
the sediment transport parameters of the model.

Figure 11 depicts the relationship between Hmo and the other three examined parame-
ters (i.e., WL, Tp, and ao) for the combined datasets, distinguishing the events that lead to
wave overtopping of the sand dunes.
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While Figure 11 attempts to decompose wave overtopping and examine the individual
relationship between the physical parameters examined, it should be mentioned that the
interplay between them can potentially influence the occurrence of wave overtopping,
Since wave overtopping is a complex physical process influenced by the aforementioned
interactions, this is the potential reason why some highly energetic events in Figure 11 (as
far as wave height is concerned) do not lead to wave overtopping.

3.4. Feature Weight Estimation

Apart from the analysis to estimate the interdependencies between the wave charac-
teristics and total water level, an attempt is made to estimate the weight of each variable
with respect to the overtopping rate.

To this end, feature weight (FW) estimation methods [48] have been employed exten-
sively in the past years in order to enhance machine learning algorithms’ performance,
as well as to assess the relevance of each variable in contributing to the output pat-
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tern. In the present research, the main interest lies in estimating which of the variables
(i.e., Hmo, Tp, ao, WL) contribute the most to wave overtopping and can potentially lead to
coastal inundation, or if there is a variable that can be omitted from the analysis.

For the compound flood events identified for each of the three datasets (historical,
RCP4.5, and RCP8.5), a Random Forest (RF) algorithm, commonly used for classification
and regression tasks [70] was implemented. The algorithm was applied in the scikit-learn
library [71], utilizing 100 estimators and a training/test dataset split of 90%/10%. This
fractional split was selected over a more common split percentage of 80%/20% since the
main focus is the feature weight estimation in the training dataset and not the predictive
capabilities of the Random Forest classifier. The input variables of the Random Forest
are normalized values of Hmo, Tp, ao, and WL and the output is the overtopping rate,
represented by a logical constructor with a “true” value if overtopping occurs and “false”
if the particular combination of the input variables does not lead to wave overtopping. To
estimate the feature importances of each of the input variables, a permutation importance
technique was utilized. This technique is particularly useful for nonlinear or opaque
estimators, and revolves around randomly shuffling the values of a single feature and
observing the resulting degradation of the model’s score [70]. It was selected over an
impurity-based feature importance method since the latter can lead to misleading results
for features with many unique values (high cardinality). The obtained mean accuracy
decreases for each feature with respect to the examined dataset are illustrated in Figure 12.
It is noted that a higher value indicates the increased importance of that feature.

As can be observed in Figure 12, negative feature importances are not identified,
signifying that all variables contribute to the calculation of wave overtopping and none
should be omitted from the analysis. This is a particularly interesting finding for the
subsequent cluster analysis, since it reaffirms that all examined variables should be utilized
as input for the clustering algorithm. Comparing the estimated weights between the
datasets, it can be observed that the largest contribution to the wave overtopping event is
predominantly from the spectral wave height followed by the peak wave period. Lower
contributions are observed for the total water level and the offshore wave incidence angle
throughout all examined datasets. As expected, the contribution of the total water level in
wave overtopping increases for the RCP datasets. Specifically, a mean accuracy decrease of
3.6% for the historical dataset if water level is excluded becomes 7.8% for RCP 8.5 and 8.8%
for RCP 4.5.

The weights obtained by the feature weight estimation analysis are subsequently
provided through a function as a sample weight to a clustering algorithm with the ultimate
goal of shifting the cluster centroids closer to combinations of input variables that are
expected to lead to wave overtopping. The function selected is based on a simple weighted
sum model [49] calculated for each combination of input variables as follows:

WSM = WLnorm·wWL + Hmo,norm·wHmo + Tp,norm·wTp + cos(ao,norm)
·wao + f lovertopping

(6)

where w denotes the individual weights for each variable, as dictated by the feature weight
estimation, and f lovertopping is an integer receiving discrete values: 1 if the compound flood
event leads to wave overtopping and 0 if it does not. The subscript “norm” denotes normal-
ized values of each variable, obtained by implementing a min–max normalization method.

It is noted that the cosine of the offshore wave incidence was selected as a variable to
calculate WSM, as a way to include the obliqueness of the waves, which leads to smaller
overtopping volumes, as shown in Figure 11c.
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Figure 12. Bar plot of estimated feature importances for (a) historical dataset, (b) RCP 8.5, and
(c) RCP 4.5.

3.5. Implementation of Clustering Analysis

The final step of the methodology concerns conducting clustering analysis in order
to define the individual events that will be used to conduct hydrodynamic simulations,
and thereafter, train a machine learning algorithm to be used in the framework of a coastal
flooding EWS.

As mentioned in Section 3.1, each examined dataset was divided in two subcate-
gories: a “supercritical” one, containing the compound flood events; and a “subcritical”
one, containing the combinations of variables below the thresholds, categorized as non-
compound events.

To carry out the clustering analysis, the well-known centroid-based K-Means clustering
algorithm [53] was implemented. The reason for this selection over other alternatives is
the capability of the K-Means algorithm to handle large datasets and the property to
preemptively select the optimal number of clusters. The latter is especially important as it
allows a degree of freedom to the number of obtained centroids.

An instance of the K-Means clustering algorithm was applied with the initial centroids
selected through the K-Means++ algorithm [72]. For the number of iterations, 800 was set
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as the optimal number to avoid fluctuations of the obtained centroids over consecutive
implementations of the algorithm and maintain reasonable computational times.

The input variables of the cluster analysis were Hmo, Tp, cos ao, and WL which were
normalized prior to inclusion in the clustering algorithm. It should be stated that for the
subcritical dataset additional thresholds were imposed prior to the clustering algorithm.
Therefore, all events with Hmo < 2 m and Tp < 8.25 s were excluded from the clustering
analysis. The reason thresholds were imposed solely on these two variables is due to their
increased importance in leading to wave overtopping. The value of the wave period was
correlated with the threshold wave height and was estimated by performing regression
for the sea states of all the datasets associated with Hmo > 2 m based on a power law [73].
Even though, from the compound event assessment it was discovered that events with
Hmo < 4 m did not lead to wave overtopping, a lower threshold value for the wave heights
was selected to provide a more diverse set of conditions to develop the EWS.

Importantly, it is mentioned that each combination of the input variables was accom-
panied by the calculated value of WSM, which was used as a sample weight in the instance
of the K-Means algorithm. It is noted that in the case that the combination of variables
examined is not a compound flood event, the value of f lovertopping in Equation (6) is set
to zero.

The first point of the conducted clustering analysis was to define the optimal number
of clusters and centroids to represent the subcritical and supercritical datasets. The main
goal of this investigation was the selection of the appropriate number of centroids that
would be, on one hand, able to prescribe in good detail the features of the full dataset
but, on the other hand, to avoid prescribing an overly large amount of centroids which
would unequivocally lead to several simulation scenarios to train the EWS. To select the
optimal number of clusters and avoid overfitting, the well-known elbow method [74], using
the distortion score as a metric, was utilized. The elbow method is a graphical approach
which operates by calculating the within-cluster sum of squares (WCSS), which is the total
of the squared distances between data points and their cluster center (k). The elbow is
defined as the point where increasing k no longer leads to a significant decrease in the
WCSS, and the rate of decrease slows down. Firstly, the elbow point was calculated for the
subcritical historical dataset by incrementally increasing the number of clusters within the
range of 10–150. The graphical representation of the elbow graph is shown in Figure 13.
As can be seen from Figure 13, the elbow point of the graph was located at a number of
k = 50 clusters.
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It should be noted that the elbow point could be taken at a slightly higher number of
clusters (e.g., 60 or 80); however, k = 50 is considered an adequate number to prescribe the
subcritical historical dataset. Having selected the optimal number of clusters, Figure 14 shows
the formation of clusters and corresponding centroids for two distinct cases: (a) without the
utilization of sample weighting function in the K-Means algorithm, and (b) using the WSM
value of each observation as a weight.

Plotting the clusters as a 2D scatter graph of Hmo against WL leads to a cluster forma-
tion with overlapping members, as is expected since the dataset contains four variables
used as input in the clustering analysis. As can be deduced from Figure 14, the weighting
function shifts the centroids to sea states that lie closer to the defined wave height and
total water level threshold. This behavior is the intended one, as it is desirable to include
combinations of sea states and water level that could potentially lead to overtopping in
the training of the EWS. Consequently, the inclusion of weights in the analysis shifts the
centroids to more extreme compound events, which is particularly important in the context
of the development of an EWS framework for the prediction of coastal flooding.

For the supercritical historical dataset, containing the compound flood events, the
determination of the number of clusters was based on the discretion of the authors instead
of utilizing the elbow method because it is desirable to represent the compound events
present in this dataset in much more detail, since a select few of them lead to wave
overtopping of the sand dunes and coastal inundation. Consequently, it was chosen to
utilize at least double the number of cluster centroids of the respective subcritical dataset.
It should also be highlighted that utilizing the WSM quantity for the sample weight in the
K-Means algorithm, calculated through Equation (6), ensures, on one hand, that the cluster
centroids are shifted to more energetic sea states and higher total water levels, but also, that
compound flood events that lead to wave overtopping are considered in the analysis with
increased importance. Figure 15 depicts the cluster centroids for the historical supercritical
dataset as a 2D scatterplot, superimposed with all the compound events. The dark blue
markers denote events that lead to wave overtopping of the sand dunes.

As can be seen from Figure 15, the cluster centroids are well formed, and importantly,
a select few of them are positioned close to events that lead to wave overtopping.

Using the same principles as the historical dataset, the configured K-Means algorithm
was applied to both RCP 4.5 and RCP 8.5, obtaining 50 clusters for the subcritical and
100 clusters for the supercritical datasets, respectively. To illustrate the effect of incorpo-
rating weights in the clustering algorithm, Figure 16 shows the obtained clusters for the
supercritical dataset of RCP 8.5 with (red triangular markers) and without (orange square
markers) the implementation of the weighting function.

Although at first glance the differences between some of the obtained cluster centroids
seem inconspicuous, a closer look reveals that incorporating weights in the K-Means
algorithm can lead to some notable differences. In general, the centroids obtained by the
K-Means algorithm incorporating weights are shifted towards higher values of wave height
and total water level. Interestingly, for individual events that lead to wave overtopping
scattered among others that do not overtop the sand dunes, the weighting function shifts
the centroids towards these events. One such centroid is located at values of Hs = 4.6 m
and WL = 0.72 m, while the respective cluster centroid without the inclusion of weights
would lie in an area with events that are considered unable to overtop the sand dunes.
Consequently, utilizing weights in the clustering analysis is expected to have more visible
effects the larger the size of the dataset and the more overtopping events are observed, so
the weights of these observations have a larger contribution.
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Figure 16. Compound events that generate wave overtopping superimposed with the centroids of
the cluster analysis for the RCP 8.5 dataset without weighting function (green triangular markers)
and with weighting function (red square markers).

In summary, by implementing the K-Means algorithm in each dataset, a total of
450 combinations are distinguished (150 for each dataset) and correspond to the obtained
centroids from the clustering analysis. The obtained clusters for each dataset are compiled
and shown as a 3D scatter plot in Figure 17 for the variables Hmo, Tp, and cos(ao). It is con-
sidered that the computed centroids adequately represent the full dataset, but significantly
reduce the large number of simulations that have to be conducted, and subsequently used,
to develop a machine learning-based EWS for coastal flooding.



Climate 2024, 12, 178 23 of 28

Climate 2024, 12, x FOR PEER REVIEW  23  of  28 
 

 

of weights would lie in an area with events that are considered unable to overtop the sand 

dunes. Consequently, utilizing weights in the clustering analysis is expected to have more 

visible effects the larger the size of the dataset and the more overtopping events are ob-

served, so the weights of these observations have a larger contribution. 

In summary, by implementing the K-Means algorithm in each dataset, a total of 450 

combinations are distinguished (150 for each dataset) and correspond to the obtained cen-

troids from the clustering analysis. The obtained clusters for each dataset are compiled 

and shown as a 3D scatter plot in Figure 17 for the variables 𝐻௠௢,  𝑇௣, and  cos ሺ𝑎௢). It is 

considered that the computed centroids adequately represent the full dataset, but signifi-

cantly  reduce  the  large number of  simulations  that have  to be  conducted,  and  subse-

quently used, to develop a machine learning-based EWS for coastal flooding. 

   
(a)  (b) 

 
(c) 

Figure 17. Obtained clusters for each dataset: (a) historical, (b) RCP 8.5, and (c) RCP 4.5. 

3.6. Suggestions for Future Research 

The proposed methodology presents an integrated framework to select representa-

tive  sea  states with  the  associated water  level  elevations,  taking  into  account  climate 

change projections, for applications in coastal flooding EWSs. The steps of the proposed 

Figure 17. Obtained clusters for each dataset: (a) historical, (b) RCP 8.5, and (c) RCP 4.5.

3.6. Suggestions for Future Research

The proposed methodology presents an integrated framework to select representative
sea states with the associated water level elevations, taking into account climate change
projections, for applications in coastal flooding EWSs. The steps of the proposed methodol-
ogy were also conceptualized in a manner allowing for many future research objectives to
further expand and verify the proposed methodology.

An especially interesting topic for future research revolves around the inclusion of
sediment transport and erosion of the coastal profile in the CSHORE model. Due to the
inherent complexity in accurately modeling coastal processes, topographic surveys of the
coastal profile, ideally before and after storm events, should take place in order to calibrate
the parameters of CSHORE. However, the inclusion of the morphological evolution of
the coastal profile can exacerbate the risk of coastal flooding due to wave overtopping,
especially if simulations show that the sand dunes in the study area are in danger of eroding,
compromising the flood protection of the hinterland.

Another objective for future research revolves around the evaluation of the perfor-
mance of the machine learning algorithm that will be tasked with predicting the flooding
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inundation in the framework of the EWS. It would be interesting to intercompare the
performance of two EWSs, one based on simulation scenarios with the K-Means algorithm
without the proposed weighting function, and another with the centroids calculated with
the inclusion of weights in the algorithmic procedure. This comparison would further
support the notion that the second EWS would be better equipped to predict events that
lead to coastal flooding. This comparison could also enable the utilization of alternative
clustering algorithms instead of K-Means, or examine if a hybrid approach combining the
use of K-Means and MDA could ultimately enhance the performance of the EWS.

4. Conclusions

This research presents a robust methodology to predict coastal flooding through
a framework that combines numerical modeling of nearshore wave propagation and
clustering algorithms to select compound events that can potentially lead to inundation
of the hinterland. The developed methodology, which was applied to the coastal area
surrounding the estuary of Alfios river in Pyrgos, Greece, is based on processing of time
series of wave characteristics and total water level elevation. The data refer to three distinct
time periods: a historical period (1977–2005); the medium-term future (2041–2070), based
on climate projections with RCP 8.5; and the long-term future (2071–2100), based on the
RCP 4.5 emission scenario.

The analysis shows a significant increase in the frequency of compound flood events
in future climate scenarios (RCP 4.5 and RCP 8.5) compared to the historical period. This
indicates a higher risk of extreme events, which highlights the importance of developing a
robust EWS to alert coastal communities to the imminent threat of coastal flooding.

In an integral step for the proposed methodology, feature weight estimation using a
Random Forest algorithm was carried out to assess the contribution of each variable in wave
overtopping. The conducted analysis indicates that, out of all the variables, spectral wave
height and peak wave period are the most critical variables influencing wave overtopping.
This finding is consistent across all datasets, with water level and wave incidence angle
having lower contributions. Importantly, the contribution of water level elevation increases
for the future scenarios incorporating climate change.

The computed weights from the future weight estimation are used to form a weighting
function that is supplied as input to the K-Means clustering algorithm, that is tasked
with selecting the representative scenarios for the development of an EWS for coastal
flooding. Importantly, introducing a weighted sum model ensures that the most critical
events are prioritized, shifting the centroids of the cluster analysis to the combination of
more energetic sea states and higher values of total water level elevation. It is suggested
for hourly time series of offshore wave characteristics to select at least 150 centroids (100
for the compound events and 50 for the rest of the dataset) to ensure a good description of
the prevalent meteorological and oceanographic conditions of the study area.

While the proposed methodology offers significant advantages, such as its repro-
ducibility and ability to prioritize critical compound flood events, there are some limita-
tions that should be acknowledged. The methodology relies on certain assumptions in the
numerical modeling and clustering processes, which could introduce uncertainties, partic-
ularly in extreme future scenarios, where the dynamics may not be fully captured by the
models. Additionally, the clustering process, while effective and robust, may not perfectly
reflect the full range of complex coastal interactions and dataset variability, particularly in
highly dynamic environments.

In summary, the proposed methodology lays the groundwork for the optimal selection
of scenarios in the context of coastal flooding early warning systems, being simultaneously
easily reproducible, so it can be applied in any coastal area without restrictions, granted
that the intricacies and unique features of each coastal area are properly represented. This
approach has strong implications for enhancing climate resilience in coastal communities
and informing coastal management policies by providing a data-driven foundation for
proactive flood risk mitigation strategies.
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