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Abstract: In this paper major machine learning (ML) tools and the most important applications
developed elsewhere for numerical weather and climate modeling systems (NWCMS) are reviewed.
NWCMSs are briefly introduced. The most important papers published in this field in recent years
are reviewed. The advantages and limitations of the ML approach in applications to NWCMS are
briefly discussed. Currently, this field is experiencing explosive growth. Several important papers are
published every week. Thus, this paper should be considered as a simple introduction to the problem.
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1. Introduction

Everything we think we know about the world is a model

Our models do have a strong congruence with the world

Our models fall far short of representing the real world fully.

Donella H. Meadows [1]

At the end of the Second World War, the field of numerical weather and climate mod-
eling developed as a collection of simple linear or weakly nonlinear single-disciplinary
models, such as simplified atmospheric and oceanic models, that included a limited de-
scription of the physical processes. However, a well-pronounced trend has emerged in
numerical weather and climate modeling over the last several decades. It marks a transition
to complex, nonlinear, multidisciplinary systems or numerical weather/climate model-
ing systems (NWCMS) like the European Centre for Medium-Range Weather Forecasts
(ECMWF) models (e.g., Integrated Forecasting System (IFS)), National Oceanic and Atmo-
spheric Administration (NOAA) National Centers for Environmental Prediction (NCEP)
Global Forecast System (GFS) and Climate Forecast System (CFS), NCEP Seasonal Forecast
System (SFS), and NOAA Unified Forecast System (UFS), with fully coupled atmosphere,
land, ocean, ice and wave components [2,3], etc.

Any NWCMS usually has, as three major subsystems, the following three important
components: (1) a data assimilation system (DAS)—a subsystem that ingests/assimilates
data, and prepares initial conditions, necessary to run the model; (2) a statistical or deter-
ministic (based on first principles equations) model that includes model dynamics (dycor)
and model physics (here terms “physics” includes all physical, chemical, and biological
processes that are incorporated into the model); and (3) a post-processing (PP) subsystem
that corrects model outputs, using data.

Currently, NWCMSs face four major challenges:

1. The vast amounts of observational data available from satellites, in situ scientific
measurements, and in the future, from Internet-of-Things devices, increase with
tremendous speed. Even now, only a small percentage of the available data is used
in modern DASs. The problems with the assimilation of new data in DASs range

Climate 2024, 12, 78. https://doi.org/10.3390/cli12060078 https://www.mdpi.com/journal/climate

https://doi.org/10.3390/cli12060078
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/climate
https://www.mdpi.com
https://orcid.org/0000-0003-0848-4161
https://doi.org/10.3390/cli12060078
https://www.mdpi.com/journal/climate
https://www.mdpi.com/article/10.3390/cli12060078?type=check_update&version=1


Climate 2024, 12, 78 2 of 20

from increased time consumption (with increasing amounts of data) vs. limited
computational resources to the necessity of new approaches for assimilating new
types of data [4,5];

2. The increasing requirements to improve the accuracy and the forecast horizon of nu-
merical weather/climate modeling systems are leading to their growing complexity,
due to increasing horizontal and vertical resolutions and the related complexity of
model physics. Thus, global and regional modeling activities consume a tremen-
dous amount of computing resources, which presents a significant challenge despite
growing computing capabilities. Model ensemble systems have already faced the
computational resources problem that limits the resolution and/or the number of
ensemble members in these systems [5];

3. Model physics is the most computationally demanding part of numerical weather/
climate modeling systems. With the increase in model resolutions, many subgrid
physical processes that are currently parameterized become resolved processes and
should be treated correspondingly. However, the nature of these processes is not
always sufficiently understood to develop a description of the processes based on first
principles. With the increase in model resolution, the scales of the subgrid processes
that should be parameterized become smaller and smaller. Parameterizations of such
processes often become more and more time-consuming and sometimes less accurate
because the underlying physical principles may not be fully understood [4,5];

4. Current NWCMSs produce improved forecasts with better accuracy. A major part of
these improvements is due to the increase in supercomputing power that has enabled
higher model resolution, better physics/chemistry/biology description, and more
comprehensive data assimilation [5]. Yet, the “demise of the ‘laws’ of Dennard and
Moore” [6,7] indicates that this progress is unlikely to continue, due to an increase
in the required computer power. Moore’s law drove the economics of computing by
stating that every 18 months, the number of transistors on a chip would double at an
approximately equal cost. However, the cost per transistor starts to grow with the
latest chip generations, indicating an end to this law. Thus, due to the aforementioned
limitations, results produced by NWCMSs still contain errors of various natures. Thus,
the PP correction of model output errors becomes even more important [8]. Currently
used in NWP operational practices, post-processing systems like Model Output
Statistics (MOS) [9] are based on linear techniques (linear regressions). However,
because optimal corrections of model outputs are nonlinear, correcting the biases of
even regional fields requires the introduction of many millions of linear regressions in
MOS [10,11], making such systems cumbersome and resource-consuming.

Flexible and powerful numerical techniques are required to reduce the growing de-
mands for computer resources that outrun the actual growth of computer power, enable
new data types to be used, meet the challenges of model physics, and develop flexible PP
techniques to correct errors in model outputs. Developments in the various fields of artificial
intelligence (AI), in particular, in machine learning (ML), computer science, and statistics
have indicated the possibilities of using ML as one of these techniques. For example, ML is
increasingly being applied to solve and/or alleviate problems in NWCMSs [12–16].

2. ML for NWCMSs Background

Machine learning is a subfield of AI that uses statistical techniques to give computers
the ability to “learn” (i.e., progressively improve performance on a specific task) from data,
without being explicitly programmed [17]. This definition explains why ML is sometimes
also called statistical learning or learning from data [18].

2.1. ML Tools

ML algorithms build a model based on sample data, known as training data, to
make predictions or decisions without being explicitly programmed to do so [14]. Then,
these ML models can be used for representing, interpolating, and limited extrapolating
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of the data. The set of ML tools includes a large variety of different algorithms such
as various neural networks (NN), different kinds of decision trees (e.g., random forest
algorithms), kernel methods (e.g., support vector machines and principal component
analysis), Bayesian algorithms, etc. (see Figure 1). Some of these algorithms are more
universal (e.g., generic multilayer perceptron or NNs), and some are more focused on a
specific class of problems (e.g., convolutional NNs that show an impressive performance as
image/pattern recognition algorithms).
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Figure 1. ML and various types of ML tools. There are many different types of NNs: shallow,
deep, convolutional, recurrent, etc., as well as many types of tree algorithms. New ML tools emerge
very often.

There are many different types of NNs: shallow, deep, convolutional, recurrent, etc.,
as well as many types of tree algorithms (see Figure 1). Here, we briefly discuss two major
types of ML tools that have been applied to develop applications for numerical weather and
climate prediction systems: (1) NNs that have been applied in most studies (e.g., [19–23]);
and (2) tree algorithms that have been applied in a few works [24,25].

Most applications proposed in the aforementioned works are based on two assumptions:

5. Many NWCMS applications, from a mathematical point of view, may be considered
as mapping, M, that is a relationship between two vectors or two sets of parameters X
and Y, as follows:

Y = M(X), X ∈ Rn, Y ∈ Rm (1)

where n and m are the dimensionalities of vectors X and Y correspondingly.

6. ML provides an all-purpose non-linear fitting capability. NN, the major ML tool that
is used in applications, are “universal approximators” [26] for complex multidimen-
sional nonlinear mappings [27–31]. Such tools can be used, and have already been
used, to develop a large variety of applications for NWCMSs.

A generic NN that is used for modeling/approximating complex nonlinear multidi-
mensional mappings is called the multilayer perceptron. It is comprised of “neurons” that
are arranged in “layers”. A generic neuron can be expressed as follows:

xn+1
j = ϕ(bn

j + ∑kn
i=1 an

ji· xn
i ) (2)

Equation (2) represents a neuron number j in the layer number n. xn+1
j is the output of

the neuron that, at the same time, is an input to neurons of the layer number n+1. Here, xn
j

are inputs to neurons of the layer number n (outputs of neurons of the layer number n−1,
the input layer corresponds to n = 0), a and b are fitting parameters or NN weights and
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biases, ϕ is the so-called activation function, and kn is the number of neurons in the layer
number n. The entire layer number n can be represented by a matrix equation as follows:

Xn+1 = ϕ(Bn + An·Xn) (3)

where for n = 0, Xn = X, a vector of the NN inputs. If the layer number n+1 is the output
layer, linear neurons are often used for the output layer,

Y = Xn+1 = Bn + An·Xn (4)

where Y is a vector of outputs.
The activation function ϕ is a nonlinear function (see Figure 2), often specified as the

hyperbolic tangent; however, rectangular linear unit, SoftMax, leaky rectangular linear
unit, Gaussian, trigonometric functions, etc. are also used in applications [14]. All layers of
the multilayer perceptron NN between input and output layers are called “hidden layers”.
NNs with multiple hidden layers are called “deep neural networks” (DNN). The simplest
multilayer perceptron NN with one hidden layer is called a “shallow” NN (SNN). SNN is
a generic analytical nonlinear approximation or model for mapping (1) and a mathematical
solution of the ML problem [27–29]. Multiple authors have shown, in a variety of contexts,
that the SNN can approximate any continuous or almost continuous (with a finite number
of finite discontinuities) mapping (1) [22,30–32]. The accuracy of the SNN approximation,
or the ability of the SNN to resolve details of the mapping (1), is proportional to the number
of neurons k in the hidden layer [33].
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Additional hidden layers and/or nonlinear neurons in the output layer can be intro-
duced and the resulting DNN can be applied to either mapping approximation problems or
problems of a different nature. DNNs have been extremely successful in many areas, includ-
ing in applications for numerical weather/climate modeling systems. However, as pointed
out by Vapnik [29], from the standpoint of statistical learning theory, only SNN has been
formally shown to be a solution to the mapping approximation problem (see also Figure 3).
Successful approximation of the mapping (1) by a DNN cannot be guaranteed theoretically,
and this specific application of DNNs should be considered a heuristic approach. Both
SNNs and DNNs have been successfully applied to numerical weather/climate modeling
system mappings by different authors (see discussion in the following Sections).
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NNs are very successful in solving complex nonlinear mapping problems. After they
are trained, their application is fast; they are easily parallelizable. They use the training
dataset only during training. Trained NNs contain all necessary information about the
mapping in a set of NN weights and biases that is usually much smaller than the training
set and does not require a lot of memory. However, NNs are difficult to interpret because
information about the mapping is distributed over multiple weights and biases, which is
typical for any nonlinear statistical model. Additionally, as with any nonlinear statistical
model, NN has limited ability for prediction/extrapolation/generalization; however, a
well-trained NN is capable of a limited accurate generalization.

A decision tree is a tree-like model of decisions and their consequences. They are
widely used in statistics and ML for solving non-linear classification and regression prob-
lems. Decision trees are easily interpretable; however, they are not stable to noise in the
data. To avoid instabilities and improve the accuracy and robustness of the approach, an
ensemble of decision trees called a ‘forest’ approach, has been developed. Introducing
elements of randomness to the trees turned out to be beneficial, hence the approach is
named “random forest” [34]. This algorithm has many advantages: it does not require
complex pre-processing and normalization of data; it easily handles missing data; the
random forest is a robust algorithm that can handle noisy data and outliers. However,
random forests require more memory than other algorithms because this algorithm stores
multiple trees. This can be a problem if the dataset is large. To apply a trained random
forest algorithm, the entire training set must be kept in memory. In addition, it will not be
able to predict any value outside the available training set values, since averaging various
trees, each of which is built upon the training set, is a big part of random forest models.
Thus, we cannot expect reliable predictions/extrapolations/generalizations when using
the random trees algorithm. For more detailed discussions of NN, trees, and other ML
tools, see [14].

2.2. ML for NWCMS Specifics

It is critical to understand that the development of many ML applications for numerical
weather and climate modeling systems is essentially different to the standard ML approach.
First, a standard ML approach consists of two major steps: (1) training an ML tool (e.g.,
an NN) using training and test sets; and (2) validating a trained tool on an independent
validation set. If the validation is successful, the tool is ready for use. In this sense
“Generative AI” (like ChatGPT)—deep learning models that can generate high-quality text,
images, and other content based on the data they were trained on—can be considered a
traditional ML application.
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When an ML application is being developed for a numerical weather modeling system
to work within the model or in the model environment (e.g., data assimilation system), in
close connection with the model, the third and the most important validation step must be
included in the approach: (3) the trained application should be introduced in the model
to check its coherence with the model and the model environment, to check that it does
not introduce any disruption in the stable functioning of the modeling system and that the
system keeps producing meaningful results.

Second, such applications usually do not use unstructured datasets (sets that consist
of a mixture of numerical, text, images, etc.) for training and validation. Usually, structured
datasets that consist of matrixes or tables of numerical observations or simulated data
are used.

Third, generally, there are not enough observations for the training and validation
of ML applications for NWCMSs. The observations in weather and climate systems are
usually sparse and located close to the land and ocean surface. Thus, observations are very
often augmented by data simulated by numerical models. Analysis and reanalysis, which
are thoroughly fused observations and data simulated by numerical models, are often used.

It is noteworthy that the use of a relatively large number of mostly uninterpretable
parameters led to the perception of ML as a “black box” approach, which created problems
with its acceptance by weather and climate modelers. In essence, the trade-off between
simple statistics and ML is mostly between interpretability and accuracy. With relatively
few parameters and few predictors (often by using predictor selection methods to reduce
the number of predictors), simple statistical models are generally much more interpretable
than ML models.

Most ML tools are closely related to nonlinear nonparametric statistics. A limitation of
the parametric approach is that the functional form for the statistical model is specified,
which may not work well for some datasets. For example, a linear regression model may not
work for data representing essentially nonlinear behavior. The alternative non-parametric
modeling approach still has parameters, but the parameters are not used to control the
specified functional form of the model; instead, the parameters are used to control the
model complexity. Thus, in principle, a nonparametric approach (and ML approach as well)
is more flexible, and a nonparametric/ML model can automatically adjust to/learn any
nonlinear behavior exhibited by data. On the other hand, parametric models (if they work
well) may be easier to interpret. With nonparametric/ML models, such a straightforward
interpretation is not possible.

For example, coefficients of linear regression models may be interpreted as contri-
butions of the corresponding input variables into the output variable. In contrast, ML
methods, such as neural networks and random forests, are run as an ensemble of models
initialized with different random numbers, leading to a vast number of parameters that
are largely uninterpretable. In this case, the contributions of an input parameter are dis-
tributed through multiple coefficients of the nonlinear nonparametric/ML model. Over
time, datasets become increasingly larger and more complex, making good interpretability
harder to achieve even with parametric statistical models. At the same time, the advantage
in prediction accuracy attained by ML models makes them more and more attractive.
Currently, a lot of works have been published that are devoted to the problem of the
interpretability of ML models [35].

3. Climate and Weather Systems
3.1. Systems and Subsystems

Formally, a system can be defined as a set of elements or parts that is coherently
organized and interconnected in a pattern or structure that produces a characteristic set of
behaviors, often classified as its “function” or “purpose” [1]. Thus, any system is composed
of components or parts. In aggregations, parts are added; in systems, components or parts
are arranged or organized; hence, each system has a well-defined structure. Systems are
significant because of organization–positional values, and because of their structure. If a
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system is properly structured or organized, then it is more than the total sum of its parts
and the whole system may demonstrate behavior (quality) that cannot be predicted by
the behavior of its parts. In such cases, we are talking about a synergy of the parts in
the system.

In a complex climate and weather system (see Figure 4), the atmospheric constituent (as
well as other ones) of the system is itself a complex system of interacting dynamical, physical
(radiation, convection, etc.), and chemical processes (see Figure 4). Such constituent parts
of the whole system that themselves have a structure (organization) are called subsystems.
Systems arranged in such a way (nested systems in the system) are called hierarchical
systems [36,37]. A hierarchical system is an arrangement of subsystems, in which the
subsystems are represented as being “above”, “below”, or “at the same level as” with
respect to one another. In such a hierarchy, subsystems can interact either directly or
indirectly, and either vertically (between different levels of hierarchy) or horizontally (at the
same level). The number of vertical levels determines the depth or the vertical (hierarchical)
complexity of the hierarchical system [37].
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Interactions and relationships at a higher level of hierarchical complexity organize
and transform the lower-order interactions, producing organizations of lower-order rela-
tionships that are new and not arbitrary and cannot be accomplished by those lower-order
interactions alone (outside of the system). The higher-order relationship governs or coordi-
nates the relationships of the next lower order; it embraces and transcends the lower orders.
It is noteworthy that interactions in complex systems are better described by feedback loops
than by one directional cause-and-effect type actions, which makes the analysis of such
systems even more difficult.

3.2. ML for NWCMS and Its Subsystems

Figure 5 portrays a NWCMS with subsystems. All subsystems shown in the figure
and the entire system, from the mathematical point of view, are mappings—relationships
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between the vector of output parameters and the vector of input parameters, like (1). This
is why ML methods apply to NWCMS and subsystems.

NOAA and ECMWF scientists were among the pioneers in the field of ML applications
to NWCMS. They first developed many key approaches that are currently used in this field.
NOAA developments in this field during the period 1995 to 2012 are reviewed in [15]. Later
developments are presented in [38,39].

Currently, ML is considered a powerful and prospective tool for the further develop-
ment and improvement of NWCMSs at ECMWF [40] (see also Figure 5), UKMO and other
world weather centers. According to the NOAA AI Strategy, it is expected that the ML
applications briefly described below will be developed at NWS in close collaboration with
the Academy, NOAA Cooperative Institutes, NOAA Cooperative Science Centers, other
NOAA divisions, private companies, and international communities.
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Two major types of ML tools have been applied to develop applications for NWCMS:
(1) NNs [21,23,41,42] and (2) tree algorithms [24,25]. There are many different types of NNs:
shallow, deep, convolutional, recurrent, etc., as well as many types of tree algorithms (see
Figure 1). The advantages and limitations of different types of ML are discussed in detail
in [38] and in Section 2 of this paper.

4. Hybridization of ML with Traditional Numerical Modeling

Initially, ML methods were introduced into weather and climate science as nonlinear
statistical models to improve upon linear statistical tools. In the beginning, ML weather
and climate applications had no direct relation to numerical models based on first-principle
dynamic equations and physics (here we use the term “physics” in the broadest sense
that includes physics, chemistry, and biology). Only at the beginning of the 2000s did the
convergence and hybridization of the two entirely different approaches, ML and numerical
modeling, start [19,20], pointing to a new future for weather and climate science.

4.1. ML for Data Assimilation

Both DAS and ML, from a mathematical point of view, belong to the same class of
optimization problems. Both methods apply a nonlinear optimization of an error function
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to determine the optimal parameters of the system. Because DAS can be considered as
a mapping between observations, first guess, and the final analysis, in principle, it may
be possible to substitute the entire variational DAS with an ML DAS [30,43]. However,
while, and if, this approach is reaching maturity, it makes sense to focus on using ML for
improvements in the existing variational DASs. The following elements of the variational
DAS are good candidates for applying ML.

4.1.1. Fast ML Forward Models for Direct Assimilation of Satellite Measurements

Forward models (FM) are used for direct assimilation of satellite radiances in DAS [44].
FMs are usually complex due to the complexity of the physical processes that they describe
and the complexity of the first-principle formalism on which they are based (e.g., radiative
transfer theory). Thus, the dependence of satellite radiances on the geophysical parameters,
which FMs describe, is a complex and nonlinear mapping. These mappings may exhibit
different types of nonlinear behavior. Direct assimilation is an iterative process, where FMs
and their Jacobians are calculated many times for each satellite measurement. As a result,
this process becomes very time-consuming, and sometimes even prohibitively expensive,
for operational (real-time) applications.

For such applications, it is essential to have fast and accurate versions of FMs. Usually,
despite the functional complexity of FM mappings, ML techniques like NNs can provide
fast and accurate emulations of FMs ([15], Chapter 3.2). Moreover, an NN can also provide
an entire Jacobian matrix with only a small additional computational effort (also see
Section 4.1.3 below).

4.1.2. Fast ML Observation Operators

When 2D observations like surface winds, surface currents, SST, or sea surface ele-
vation are assimilated into an atmospheric or oceanic DAS, the impacts of these data in
the DAS are mostly localized at the vertical level where they are assimilated. There is
usually no explicit mechanism in the DAS to propagate the impact of these data to other
vertical levels and other variables, except for error covariances and cross-correlations in the
variational solver that can, to some extent, spread the influence of 2D observations to other
vertical layers and other fields. Usually, this propagation occurs later, with a delay, during
the integration of the model, following dependencies determined by the model physics
and dynamics.

Several attempts have been made to extract these dependencies from model simula-
tions [45] or observed data [46] in a simplified linear form for use in an ocean DAS to allow
for 3D assimilation of the 2D surface data. However, these simplified and generalized
linear dependencies, that are often derived from local datasets, do not properly represent
the complicated nonlinear relationships (mappings) between the model variables. If we
were able to extract or emulate these mappings in a simple, but not overly simplified and
yet adequately nonlinear analytical form, they could be used in the DAS to facilitate a
more effective 3D assimilation of the 2D surface data. ML observation operators have
been developed for some surface observations (e.g., an ML observation operator for ocean
surface elevation is described in [15], Chapter 5.1.1). In addition, assimilating chemical
and biological observations in physical models that do not have corresponding prognostic
variables requires fast chemical and biological models to describe complex relationships be-
tween chemical/biological and physical prognostic variables. ML chemical and biological
models can be built to play this role in DAS. For example, an ocean color NN empirical
model has been developed [47].

4.1.3. Fast ML Models and Adjoints

Fast hybrid and ML models for fast calculation of the first guess in DAS can be
developed [48] (see also Sections 4.2.4 and 4.2.5 of this paper). Because some ML tools
(e.g., NNs) are analytically differentiable (see Equations (2) and (3)), using such hybrid
and ML models alleviates the problem of calculating adjoints, simplifying and speeding
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up calculations in 4Dvar DAS [23,49,50]. Although the differentiation of statistical models
is an ill-posed problem, an NN ensemble technique has been developed to regularize the
problem [51].

4.1.4. Data Pre-Processing and Quality Control

ML promises to enhance the assimilation of satellite measurements, including radi-
ances affected by clouds, precipitation, and surface properties (requiring more complete
radiative transfer models accounting for these effects), and using improved or more ef-
ficient thinning, quality control (QC), observation bias correction, and cloud clearing
procedures [52]. There is the potential for ML techniques to help with QC decisions, either
of the categorical (accept or reject) kind, or the more flexible “nonlinear” or “variational”
kind where possibly dubious measurements are downweighed. For example, an automated
DNN-based QC of precipitation can be developed for a sparse station observation network
within a complex terrain area.

4.2. ML for Model Physics

Any parameterization of model physics, even the entire model physics, and the entire
model is a mapping (1) between a vector of input parameters (e.g., profiles of atmospheric
state variables) and a vector of output parameters (e.g., a profile of heating rates in radiation
parameterization). In terms of Y vs. X dependencies, parameterization mappings may be
continuous or almost continuous; that is, they contain only a finite number of step-function-
like discontinuities. Usually, parameterizations of physics do not contain singularities.
ML can be used as follows: (1) to develop emulating ML parameterizations (EMLP) that
accurately emulate the original physically based parameterization schemes, speeding up
the calculation by orders of magnitude; (2) when the underlying physics of processes is not
well understood, ML can be used to develop new ML parameterizations (MLP) by learning
from data (reanalysis, data simulated by high-resolution models, or/and observations); and
(3) ML as statistical tools can be used to develop stochastic ML parameterizations (SMLP).

4.2.1. Fast ML Radiation

Radiation parameterizations are among the most time-consuming components of
model physics. Because of the high computational cost, they are never calculated at
each time step and in each grid point of NWP models. At NCEP and UKMO, radiation
is calculated every model hour and prorated in between. At ECMWF and the Canadian
Meteorological Center, it is calculated at a reduced horizontal or vertical resolution and then
interpolated. Both these approaches are detrimental to the accuracy of the model forecast.
Multiple NN emulators have been developed for radiation parameterizations [19,20,53–59];
however, to our knowledge, most of them have not yet been tested in an online setting to
demonstrate their accuracy and stability in interactive coupling to an atmospheric model.
NCEP scientists demonstrated that accurate and fast radiation EMLPs can be developed for
the CFS and GFS [53,54,59] that do not deteriorate the accuracy and stability of the model
predictions and provide a speedup so that radiation can be calculated at each time step
in each grid point. They demonstrate the high robustness and stability of EMLPs in the
model [60].

4.2.2. Fast and Better ML Microphysics

State-of-the-art microphysical cloud modeling [61] is tremendously time-consuming
and cannot be introduced in atmospheric models without parameterization. Parameter-
izations significantly simplify the original microphysics (MP) and limit the number of
atmospheric scenarios represented. However, even in a parameterized form, microphysics
calculations are computer resources and time-consuming. In addition, introducing param-
eterizations limits the number of atmospheric scenarios represented by each particular
parameterization of MP. Often, it is found that MP schemes perform well in certain at-
mospheric situations and do not perform as well in others. When, and why, one scheme
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outperforms others is often not well understood. It appears that none of the existing MP
parameterizations may offer comprehensive treatment of the natural processes involved.

In this case, ML tools can perform two different but related tasks when applied to
MP parameterizations. First, ML can be used to create fast EMLPs by emulating vari-
ous MP parameterizations; for example, the Thompson MP scheme [62] was emulated
with an ensemble of SNNs [63]; Zhao-Carr microphysics was emulated by a two-layer
vanilla recurrent NN [22]; or by a random forest ML model [64], which is then used to
predict supercooled large drops from several variables derived from High-Resolution
Rapid Refresh model output. Second, ML tools can be applied to integrate existing MP
parameterizations in a more comprehensive scheme that can offer better treatment of the
sub-grid processes involved; cover a greater variety of sub-grid scenarios; and stochastically
represent uncertainty in MP schemes.

4.2.3. New ML Parameterizations

ML techniques can also be used to improve model physics. Because of the simplified
parameterized physics that general circulation models (GCM) use, they cannot accurately
simulate many important fine-scale processes like cloudiness and convective precipita-
tions [21,42]. Cloud-resolving models (CRM) resolve many of the phenomena that lower
resolution global and regional models do not resolve (e.g., higher-resolution fluid dy-
namic motions supporting updrafts and downdrafts, convective organization, mesoscale
circulations, and stratiform and convective components that interact with each other, etc.).

An ML approach has been developed [64] that uses ML/NN to develop an ML mois-
ture parameterization trained using CRM simulated data. This MLP can be used as a
moisture parameterization in GCMs and can effectively account for major sub-grid scale ef-
fects taken into account by other approaches (e.g., multi-scale modeling framework (MMF)
approach). MLP emulates the behavior of a CRM or large eddy simulation and can be
run at larger scales (closer to GCM scales) in a variety of regimes and initial conditions.
It can be used as a novel and computationally viable parameterization of moisture pro-
cesses in a GCM. Currently, this approach is extensively applied and developed in many
places for building MLPs for moisture physics [25,42,65–67], planetary boundary layer
processes [68,69], and other processes. This approach produces ML parameterizations
of similar, or better quality, compared to the super parameterization, effectively taking
into account subgrid scale effects at a fraction of the computational cost. In addition, a
combination of simulated and observed data can be used for the development of MLP
when observed data are available.

4.2.4. ML Full Physics

Developing ML emulation of the entire model physics (or diabatic forcing) is a very
attractive task. If successful, it could speed up model calculation significantly (especially
for high-resolution models). On the one hand, a lot of challenges are faced when ap-
proaching this problem. On the other hand, the full model physics may be better balanced
than each particular parameterization separately. It means that the full physics mapping
may be smoother and easier for approximation than separate parameterization mappings.
Krasnopolsky et al. [70] discussed the problems arising when emulating full physics using
NNs. An NN emulation of the entire model physics is analytically differentiable (see
Equations (2) and (3)), which will greatly simplify the calculation of an adjoint. Another
approach is emulating columnar physics by emulating MMF, super-parameterization, or
columnar CRM embedded into the GCM. This approach was successfully applied in [71].

4.2.5. ML Weather and Climate Models

It was shown that it is possible to emulate the dynamics of a simple GCM with a
DNN [72]. After being trained on the model, the network could predict the complete model
state several time steps ahead. Scher and Messori [73] assessed how the complexity of
the climate model affects the emulating NN’s forecast skill, and how dependent the skill
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was on the length of the provided training period. They showed that using the NNs to
reproduce the climate of general circulation models including a seasonal cycle remained
challenging—in contrast to earlier promising results on a model without a seasonal cycle.
However, further attempts (e.g., [74]) to develop cheap ML models for the task of climate
model emulation have shown some progress. Dueben and Bauer [16] used a toy model for
global weather predictions to identify challenges and fundamental design choices for a
forecast system based on NNs. In addition, simplified atmospheric and ocean ML models
can be developed for use in data assimilation systems for fast first-guess calculations [48]
and to speed up the integration of coupled models [75].

Schultz et al. [76] considered some evidence that better weather forecasts can be
produced by introducing big data mining and deep NNs into the weather prediction
workflow. They discuss the question of whether it is possible to completely replace the
current numerical weather models and data assimilation systems with deep learning
approaches using state-of-the-art ML concepts and their applicability to weather data with
its pertinent statistical properties. They concluded that it is not inconceivable that numerical
weather models may one day become obsolete, but many fundamental breakthroughs are
needed before this goal comes into view.

EMC/NCEP has adopted Google DeepMind’s GraphCast model and initialized it with
the GFS ICs to produce daily global forecasts for evaluation (data are available through
AWS). A global ensemble version using the GraphCast model and GEFS IC perturbations
is also under development and verification now (For details of this work see [77]).

Recently, several very promising results have been obtained. A three-dimensional
Earth-specific transformer DNN architecture [78] was developed that can capture the rela-
tionship between atmospheric states in different pressure levels. Experiments on the fifth
generation of ECMWF reanalysis data showed that this ML model is as good as determinis-
tic forecast and extreme weather forecast while being more than 10,000 times faster than
the operational IFS. The neural general circulation model (NeurlGCM), a hybrid model
that combines a differentiable solver for atmospheric dynamics with ML components [79],
can generate forecasts of deterministic weather, ensemble weather, and climate comparable
with the best ML and physics-based methods. NeuralGCM is competitive with ML models
for 1–10-day forecasts and the ECMWF ensemble prediction for 1–15-day forecasts. With
prescribed sea-surface temperatures, NeuralGCM can accurately track climate metrics,
such as global mean temperatures, for multiple decades, and climate forecasts with 140
km resolution exhibit emergent phenomena such as realistic frequency and trajectories of
tropical cyclones. A deep learning-based multilayer perceptron tropical cyclone-intensity
prediction model was developed (For a detailed comparison with other models see [80]).
The model’s 24 h intensity forecast outperformed some of the most skillful operational
models by 5–22%.

In some senses, the approaches discussed in this Section is a revival, at a new, more
sophisticated level, of the statistical weather prediction that existed before the NWP era.
It remains to be seen if these can completely replace complete NWCPMSs in the future;
however, it appears that these approaches will be able to complement them.

4.2.6. ML Stochastic Physics

In some cases, parameterization mapping contains an internal source of stochasticity. It
may be due to several reasons: a stochastic process that the mapping describes, a stochastic
method (e.g., Monte Carlo methods) implemented in the mathematical formulation of the
mapping, the contribution of subgrid processes, or uncertainties in the data that are used to
define the mapping. Such stochastic parameterizations can be emulated using an ensemble
of ML/NNs [64].

ML can be used to create fast stochastic physics. Usually, perturbed physics (or
parameterization) P is created by adding a small random value to deterministic physics.
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Using ML, the jth perturbed version of the deterministic model physics, P, can be written
as follows:

Pj = PML
j = P + ε j (5)

where PML
j is an ML emulation number j of the original model physics, P, and ε j is an emu-

lation error for the ML emulation number j. As discussed in previous investigations [81],
ε j can be controlled and changed significantly by varying the number of hidden neurons
in NN so that not only the value but also the statistical properties of ε j can be controlled.
For example, the systematic components of the emulation errors (biases) can be made
negligible (therefore, ε j are purely random in this case). Thus, ε j can be made in the same
order of magnitude as the natural uncertainty of the model physics (or of a particular
parameterization) due to the unaccounted variability of sub-grid processes. A single ML
emulation (each member of the aforementioned ensemble) can be considered a stochastic
version of the original deterministic parameterization and can be used for creating different
ensembles with stochastic physics [81].

4.2.7. ML Model Chemistry

Traditionally, model chemistry forecasting has primarily relied on physiochemical
models such as the chemical transport model. These numerical models, however, en-
counter challenges stemming from structural constraints, variations in meteorological data,
emission inventories, and intrinsic model limitations. Model chemistry is one of the most
time-consuming parts of model “physics”. During the last several years, attempts have been
made to emulate various parts of atmospheric chemistry using ML. In [82] the potential
for ML to reproduce the behavior of a chemical mechanism, with reduced computational
expense, was investigated. The authors created a 17-layer residual multi-target regression
NN to emulate a gas-phase chemical mechanism. They trained the NN to match a chemical
model prediction of changes in concentrations of 77 chemical species after one hour, given
a range of chemical and meteorological input conditions. The NN provided a satisfactory
emulation accuracy while achieving a 250 times computational speedup. An additional
17-time speedup (total 4250-time speedup) was achieved by running the neural network
on a GPU.

In a recent work [83] the authors demonstrated that ML can accurately emulate
secondary organic aerosol formation from an explicit chemistry model with an approximate
error of 2–8%, up to five days, for several precursors and for potentially up to one month
for recurrent NN models, and with 100 to 100,000 times speedup over the explicit chemistry
model, making it computationally useable in a chemistry–climate model. A physics-
informed DNN was trained [84] that demonstrated ML applicability for emulating the
chemical formation processes of isoprene epoxydiol secondary organic aerosols over the
Amazon rainforest. A randomly generated deep NN capable of replacing the current
aerosol optics parameterization used in the Energy Exascale Earth System Model was
developed [85].

4.3. ML for Post-Processing

Currently, numerical models produce improved weather forecasts and climate projec-
tions with better accuracy. However, results produced by the NWP and climate projecting
systems still contain errors of a different nature. Errors from multiple sources have a detri-
mental effect on the skill of weather forecasts. One of the sources of errors is associated with
the construction of an initial condition for numerical weather forecasting systems. The sen-
sitivity to initial conditions makes errors grow rapidly during the forecasts, until they reach
a level beyond which the forecasts do not display any useful skill. Boundary-condition
errors and model structural errors are two other important categories of errors that reduce
forecast skill. Model structural errors include missing or poor representations of subgrid
dynamical and physical processes and inaccuracies associated with the numerical scheme.

All these NWP model deficiencies induce errors that are rapidly amplified in time
due to the chaotic nature of the model dynamics, and that, in turn, affect the forecasts
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by inducing errors (systematic and random). Thus, the post-processing (PP), correction
of errors in model outputs/forecasts, becomes even more important [8,86]. Statistical PP
approaches correct errors in model output by comparing hindcasts to observations. Since
the beginning of the era of the NWP forecast, attempts have been made to statistically
correct model outputs, given observational data [87]. Most current weather forecasting
centers rely on statistical methods that have been proven successful. The first approach
used for statistical PP, known as MOS [87,88], was based on multiple multilinear regressions.
The U.S. National Weather Service has used these statistical methods to improve systematic
model errors since 1968 [9,11]. This approach has also been applied to correct errors
in ensembles, thereby becoming ensemble model output statistics (EMOS) [10]. These
methods demonstrate a significant reduction in errors in numerical forecasts [89]. However,
these approaches have several significant limitations, as follows: (1) they are essentially
linear techniques; to account for the nonlinear character of errors (e.g., due to different
atmospheric regimes, terrain types, etc.). Multiple multilinear regressions are introduced
to correct errors in different variables, at different locations, and under different weather
conditions, thereby tremendously increasing the number of linear regressions used by
the system; and (2) they require significant amount of additional information about the
statistical properties of parameters [88].

At the same time, these linear statistical approaches can be viewed as a supervised ML
task, that is, as a direct linear predecessor of nonlinear ML approaches. ML/AI methods,
such as NNs and DNNs, which usually are nonlinear and nonparametric, have capabilities
to describe the complex, multiscale, and nonlinear character of model errors significantly
better and more compactly, and provide more effective corrections.

Initial efforts using ML in the context of PP NWP model output have shown promis-
ing results (see [8] and references therein) in both probabilistic and deterministic settings.
At ECMWF, work [90] is mainly focused on post-processing ensemble predictions, us-
ing DNNs, on precipitation downscaling, and tropical cyclone detection and tracking.
Bouallègue et al. [91] used the ML technique to correct global 2 m temperature and 10
m wind speed forecast errors. Rojas-Campos et al. [92] analyzed the potential of deep
learning using probabilistic NN for post-processing ensemble precipitation forecasts at
four observation locations. NNs showed a higher performance at three of the four stations
for estimating the probability of precipitation and at all stations for predicting the hourly
precipitation. Benáček et al. [93] used tree-based ML techniques, namely, natural gradient
boosting, quantile random forests, and distributional regression forests to adjust hourly
2 m temperature ensemble prediction at lead times of 1–10 days. They showed that key
components to improving short-term forecasting are additional atmospheric/surface state
predictors and the 4-year training sample size.

At NCEP, SNNs were used to calculate nonlinear multi-model (eight global and
regional models) ensembles and to correct 24 h precipitation forecasts over the ConUS [94].
It was shown that, compared with the conservative ensemble (arithmetic mean of ensemble
members) and linear regression approach, the ML approach provides slight improvements
in gross statistical scores; however, it significantly reduces the number of false alarms and
improves the forecast of maxima, and the shape and position of fronts. Recently, papers
on using ML for multi-model ensemble forecasts of surface air temperatures [95] and for
probabilistic multi-model ensemble predictions of Indian summer monsoon rainfall have
been published [96].

A nonlinear ensemble averaging technique using NNs was applied to the NCEP Global
Ocean Wave Ensemble Forecast System (GWES) data [39]. Post-processing algorithms were
developed based on SNNs trained with altimeter data to improve the global forecast skill
from nowcast to forecast ranges up to 10 days, including significant wave height and wind
speed. It was shown that a simple NN model with few neurons can reduce the systematic
errors for short-range GWES forecasts, while an NN with more neurons is required to
minimize the scatter error at longer forecast ranges. The RMSE of day-10 forecasts from
the NN simulations indicated a gain of two days in predictability when compared to
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the conservative ensemble, using a reasonably simple post-processing model with a low
computational cost.

Running high-resolution NWP models is costly in terms of computing resources.
Convection-permitting NWP models at the global scale are currently at the limit of what
is feasible using conventional NWP techniques. A possible solution is the use of ML
techniques, as described in [97]. Examples of the use of DL for the downscaling of wind
fields are given in [98,99]. An example of the use of DL for the downscaling of temperature
is given in [100]. In a recent publication [101] several ML techniques were compared
and used for the spatial downscaling of hourly model air temperature over mountainous
regions. A collaborative Google-NOAA study [102] focused on investigating the benefits
and challenges of using non-linear NN-based methods to post-process multiple weather
features. such as temperature, moisture, wind, geopotential height, and precipitable water,
at 30 vertical levels of the NOAA GFS.

5. Conclusions

We have briefly touched on some advantages and limitations of the ML technique
and the NN technique, in particular. More details can be found in Chapters 2 and 4 of [15].
Here, we discuss only the major advantages and limitations relevant for the development
of ML applications for NWCMSs and their components, like DAS, model physics, and PP.

For DAS, ML can provide fast-forward models for the direct assimilation of satellite
radiances, fast observation operators for instantaneous 3D assimilation of surface obser-
vations, fast environmental models for assimilating chemical and biological observations,
fast adjoints for 4Dvar DAS, and fast hybrid and ML models for calculating first guess. For
model physics, ML can provide fast emulating ML parameterizations, fast and improved
ML parameterization of physics, fast ML emulations of entire atmospheric physics, and fast
ML stochastic physics. For PP, ML can enable developments of nonlinear bias corrections,
nonlinear ensemble averaging, etc.

Some limitations of ML techniques should be mentioned. ML tools are not very
good at far extrapolation. Nonlinear extrapolation is an ill-posed problem that requires
regularization to provide meaningful results. The development of ML applications depends
significantly on our ability to generate/collect a representative training set to avoid using
ML tools for extrapolation far beyond the domain covered by the training set. Because of
the high dimensionality, n, of the input domain, which is often several hundred or more, it
is rather difficult to cover the entire domain. At least 2n points are required to cover the
entire domain. It is especially difficult to cover the “far corners” associated with rare events,
even when we use simulated data for ML training. A significant help here can be the ML
ensemble approach. Using an ensemble of ML tools can help to regularize the extrapolation
and deliver ML applications that are more stable when the inputs approach “far corners”
or cross the boundary of the training domain.

Another related problem arises when ML emulations are developed for a non-stationary
environment or climate system that changes with time. This means that, for example, the
domain configuration for a climate simulation may evolve due to climate changes. In
such situations, the ML emulation may be forced to extrapolate beyond its generalization
ability, leading to errors in ML component outputs and resulting in simulation errors in the
corresponding model. Here, compound parameterization [103] and dynamical adjustment,
as well as using the ML ensemble approach could be helpful.

The fields of ML, as well as ML applications to NWCMSs, are currently experiencing
explosive development. New ML tools emerge very often. Several important papers are
published every week. Most applications have been developed using different versions of
DNNs. Considering the great popularity of different variations of DNNs, it is important to
be aware of the theoretical [29] and practical [104,105] limitations of these techniques.

It is noteworthy that ML still requires human expertise to succeed. The development
of ML applications for NWCMSs is not a standard ML problem. While ML applications
can, in principle, be used as a black box, the development, for example, of ML physics for
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Earth system models will require domain knowledge about Earth system physics. Close
collaborations between computer scientists, Earth system physicists, and modelers will
be essential, even if petabytes of training data and GPU supercomputers are available. A
deep understanding of how to use the physical knowledge of the Earth system to improve
the development of ML architectures and ML training, and how to preserve conservation
properties and consider other physical constraints, will be required. There are a lot of
decisions that must be made in the process of developing ML applications that cannot be
made automatically. Like any other statistical model (e.g., MOS), ML applications must be
maintained and periodically updated.
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