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Abstract: Seasonal climate predictions can assist with timely preparations for extreme episodes, such
as dry or wet periods that have associated additional risks of droughts, fires and challenges for water
management. Timely warnings for extreme warm summers or cold winters can aid in preparing
for increased energy demand. We analyse seasonal forecasts produced by three different methods:
(1) a multi-linear statistical forecasting system based on observations only; (2) a non-linear random
forest model based on observations only; and (3) process-based dynamical forecast models. The
statistical model is an empirical system based on multiple linear regression that is extended to include
the trend over the previous 3 months in the predictors, and overfitting is further reduced by using
an intermediate multiple linear regression model. This results in a significantly improved El Niño
forecast skill, specifically in spring. Also, the Indian Ocean dipole (IOD) index forecast skill shows
improvements, specifically in the summer and autumn months. A hybrid multi-model ensemble is
constructed by combining the three forecasting methods. The different methods are used to produce
seasonal forecasts (three-month means) for near-surface air temperature and monthly accumulated
precipitation seasonal forecast with a lead time of one month. We find numerous regions with added
value compared with multi-model ensembles based on dynamical models only. For instance, for
June, July and August temperatures, added value is observed in extensive parts of both Northern
and Southern America, as well as Europe.

Keywords: seasonal climate forecasts; multi-linear statistical model; non-linear statistical model;
multi-model ensemble forecast

1. Introduction

Seasonal predictions of key atmospheric variables are an important area in climate
science because of their large potential value for a wide range of end users and for several
applications, such as agriculture, hydrology and renewable energy (e.g., [1–3]).

Seasonal forecasts can be produced by either a statistical seasonal forecasting system or
a dynamical forecasting system. Statistical methods have been used extensively (e.g., [4–6])
and are based on observed relationships between certain predictors and the forecasted
atmospheric variables (predictands). Dynamical forecasting systems, on the other hand, are
based on numerical models that represent the physical processes in the atmosphere, ocean
and land surface and their non-linear interactions. A disadvantage of the dynamical models
is that they are inherently complex and computationally expensive. Furthermore, their
model output often needs further calibration due to model drift towards their preferred
climate state (e.g., [7]). Statistical models do not suffer from these two issues because
their relationships are based on the observations themselves. Furthermore, statistical
models tend to be relatively simple and easy to interpret. Arguably, statistical models can
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sometimes be insufficiently sophisticated for capturing the intricate non-linear relationships
among predictor variables and the predictand, particularly when longer prediction horizon
times are considered (e.g., [8]).

Over the years, many comparison studies between statistical and dynamical seasonal
forecasting systems have been performed. Peng et al. [9] found that for SST-forced global
climate variability, dynamical and statistical models had similar forecast skill. Van Olden-
borgh et al. [10] showed that for El Niño and La Niña forecasts, two dynamical ECMWF
models outperformed statistical models in boreal spring and summer. However, it was
found that combining the strength of both forecasting methods ultimately led to better re-
sults (e.g., [11,12]). Also, statistical models could be used to benchmark dynamical seasonal
forecasts and also point to specific deficiencies in the dynamical models, such as the lack of
a resolved stratosphere, needed for better forecasts of the European winter climate ([13]).

With recent advances in computer science, machine learning (ML) models have begun
to be used more and more in weather forecasting (e.g., [14,15]) and seasonal forecasting.
Qian et al. [16] showed that ML models provided more skilful forecasts for winter tem-
peratures over northern and central North America than two state-of-the-art dynamical
models. Another study by [17] demonstrated that a hybrid ML model using an artificial
neural network outperformed the Climate Forecast System v2 in monthly ENSO indices.

Here, we analyse a suite of statistical models and assess their added information
relative to a suite of dynamical models on a global scale, both in a single model and as a
multi-model ensemble framework. We present an update of the relatively simple statistical
forecasting system from [6], which will act as a benchmark for more advanced statistical
models based on tree-based regression systems. We assess the forecast skill of the statistical
models and analyse their added value relative to dynamical seasonal forecasting models in
a single and multi-model forecasting setup. Nielsen et al. [18] discussed the optimization
of a grand multi-model probabilistic seasonal prediction system and found that only a
limited number of seasonal prediction systems was required to improve the skill. The
optimal number is between three and six, with the optimal combination of models being
dependent on the region and season. Based on these findings, we use a limited number of
dynamical models.

The novelty of our approach is that the forecasting systems generated using different
approaches are compared and combined on a global scale. The optimal combination
of different systems is tested using different combinations for each grid cell, which can
provide information on the performance of each system for different areas in relation to
other systems.

The structure of the manuscript is as follows: Section 2 describes the data and models,
including the observational data used, the different statistical models and the choices
made therein, and the dynamical models that are used. The improved skill of the updated
statistical model is discussed using the correlation between climate indices. Also addressed
in this section is a separate note regarding verification and the use of grid-interpolated
observational databases and different re-analyses datasets. Section 3 discusses the results
separately for the two statistical models and then compares these methods with the dynam-
ical models. The added value of a multi-model framework is demonstrated in Section 4.
The conclusions are summarised in Section 5.

2. Data and Models

Near-surface air temperature and monthly accumulated precipitation forecasts with
lead times in the order of months were investigated using a suite of statistical methods
for the forecasting system, ranging from relatively simple linear regression models to
more advanced tree-based regression models. Hereafter, near-surface air temperature
and monthly accumulated precipitation will be abbreviated by temperature or T2M and
precipitation or precip (the predictands; see Table 1).
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Table 1. Overview of predictor and predictand data; see also [6] (p. 3950).

Predictand Acronym Source 1

Near-surface air temperature T2M or temperature GHCN-CAMS [19]
ERSSTV5 [20]

Monthly accumulated precipitation Precip or precipitation GPCC [21]

Predictor type Predictor Source

Climate index predictor NINO34 Based on ERSSTV5 2

NINO12
WWV POAMA PEODAS [22]
PDO Based on ERSSTV5
AMO ERSSTV5 [23]
IOD Based on ERSSTV5

Local predictors Precipitation GPCC [21]
Persistence Same as predictand

Long-term trend CO2EQ CO2-equivalent concentrations [24]
1 Observational gridded databases. 2 Normalized relative to 1981–2010.

2.1. Data

Statistical forecasts are based on observed relationships between certain predictors
and the forecasted atmospheric variables. Hence, we need reliable observational gridded
products that: (i) cover a long time period, (ii) are frequently updated and (iii) have a
high enough spatial resolution. For temperature, we used the Global Historical Clima-
tology Network version 2 and the Climate Anomaly Monitoring System (GHCN-CAMS)
dataset ([19]; 0.5° resolution). Over the oceans, we used the Extended Reconstructed Sea
Surface Temperature V5 (ERSSTV5) ([20]; 2° horizontal resolution) dataset. This combina-
tion of SST and T2M is hereafter labelled as T2M. For precipitation, we used the Global
Precipitation Climatology Centre (GPCC) dataset ([21]; 1° hor. resolution). For all products,
we used monthly data. The predictors we used (Table 1) can be divided into local predictors
(spatio-temporal data), large-scale climate indices and the CO2-equivalent forcing (CO2EQ)
as a predictor for the long-term trend.

As local predictors, we used persistence. The previous three-month average was used
to predict the following upcoming three months: for example, OND2020 was used as a
predictor for FMA2021. In other words: OND2020 is the temperature or the precipitation
averaged over the months of October, November and December and used as a predictor for
the three-month averaged temperature or precipitation for the following February, March
and April. Because of the relation between warm periods following from precipitation
deficits ([25]), we also used the previous 3-month accumulated precipitation as a predictor
for the next 3-month temperature.

For the large-scale climate indices, we used the El Niño Southern Oscillation (ENSO),
Pacific Decadal Oscillation (PDO), Atlantic Multidecadal Oscillation (AMO), Indian Ocean
dipole (IOD), North Atlantic Oscillation (NAO) and other predictors.

In the predictor choices, we closely followed [6], who made a selection based on
physical principles and processes so as to benefit from the predictive power from the
long-term trend associated with the CO2EQ and at the same time minimise the risk of
overfitting by adding as few additional predictors as possible. We refer to [6] for a more
in-depth analysis of the predictive power of these climate indices. In Table 1, the predictors
are listed that are found to significantly add value to the predictions, with the datasets
used. The time period ranged from 1961 to 2021. The data were re-gridded to a 1◦ × 1◦

grid. ENSO was quantified using multiple indices, namely the NINO34 (average SST over
5N–5S and 170W–120W) and NINO12 (average SST over 0–10S and 90W–80W) index and
the warm water volume (WWV). All SST-based indices are based on ERSST V5.
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2.2. Statistical Models

The different statistical models were constructed in a similar manner. The models
forecast the next 3-month mean, i.e., a forecast initiated in January will produce a forecast
for FMA. For each grid point, a separate model was fitted. The predictor and predictand
data were first detrended based on a linear regression with CO2EQ in order to have a
stationary dataset. All models have a global coverage and a horizontal resolution of
1 degree. Forecasts were assessed using the Leave-1-year-out cross-validation over the
period of 1961 to 2020.

2.2.1. Multiple Linear Regression (MLR)

The MLR model is an updated version of the relatively simple statistical forecasting
system from [6]. It forecasts the next 3-month average based on the previous 3-month mean
predictors. As an example, a forecast of T2M issued in January is based on OND predictor
data and predicts FMA.

In this work, the [6] model was extended and improved by incorporating second-order
information as predictors, namely the 3-month linear trend. This was deemed necessary
following an analysis of forecast errors, which identified that situations with a change of
sign in the NINO34 index during the period leading up to the forecast resulted in large
forecast errors. This issue arises because the 3-month average of the predictors (the NINO34
index in this case) may obscure important variations within the three-month period. To
avoid overfitting by introducing too many predictors, we have used an intermediate MLR
model to predict the future state of each climate index based on its previous 3-month
mean and 3-month trend. These future states of the climate indices were then used as
predictors in the actual MLR model. For the NINO34 index, this greatly reduces the spring
predictability barrier, and it increases the autumn IOD forecast predictability (Figure 1).

Figure 1. Lagged correlation (dashed line) and the intermediate MLR model (solid line) for the
climate indices. The dashed lines represent the lagged correlation between the 3-month mean and
the 3-month mean 3 months ahead; e.g., January shows the correlation between the OND average
and the next FMA. The solid lines show the correlation between the forecasted climate index and the
observed climate index. The forecasted climate index is based on a multiple linear regression model,
with the previous 3-month mean and previous 3-month trend being used as predictors.

For the local predictors (e.g., persistence), the intermediate MLR step is skipped, and
the 3-month trend is added as an extra predictor in the actual MLR model.
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Another update to the original forecasting system is to have a stricter predictor se-
lection routine. In [6], only predictors with a significant correlation (p < 0.05) with the
predictand were added. Though this removes non-relevant predictors, it does not ac-
count for co-variability between predictors, which can lead to increased overfitting of
the model. This can be an issue for instance in the NINO34 region, where we expect a
strong correlation between the NINO34 index and SST (persistence predictor). To overcome
this, we implemented a stepwise predictor selection routine. In step 1, we compute the
correlation between all predictors and the predictand. The predictor with the highest
significant correlation (p < 0.05) is then chosen as the first predictor in the MLR model. In
step 2, we remove the linear relation between the chosen predictor and the predictand
from the predictand time series, creating a residual time series (PRRES). In step 3, we again
compute the correlation between the predictors and the predictand times series, but now
with the remaining predictors and with PRRES. The predictor with the highest significant
correlation is then chosen as the second predictor. These steps are continued until there is
no significant correlation between a predictor and PRRES. This procedure was performed
for every grid point individually. With the leave-1-year-out cross-validation, the residuals
can be calculated for each timestep for the period of 1961–2020 minus the one year that was
used for the cross-validation.

The ensemble was calculated by randomly sampling 50 values from the residuals
(forecast error) of the model fit and adding these to the deterministic forecast. If there is
poor predictability, the errors will be large; thus the ensemble spread will be relatively large.
If there is good predictability, the errors will be small; thus, the ensemble spread will be
relatively small.

The advantages of using the relatively simple MLR method is that we can identify
the individual contribution of each predictor and it works well on relatively small sample
sizes. The disadvantages of using MLR is that it assumes a normal distribution and
homoscedasticity, is sensitive to outliers and assumes a linear relationship.

Note that besides MLR, we also tested LASSO and ridge regression but found no
improvement relative to MLR; hence, we did not proceed with these methods.

2.2.2. Random Forest Regression (RFR)

Random forest regression (RFR) is a tree-based ensemble regression model, which is a
popular machine learning tool used for many different forecasting problems and research
fields. We used the random forest regressor of the Python module scikit-learn (see [26]).
Random forests are constructed by individual decision trees. A basic decision tree model
can make very accurate predictions on the data it was trained on. However, it generally
leads to very bad results on new (testing) data. To circumvent this, multiple decision
trees (i.e., a forest) can be built, where each decision tree uses a bootstrapped sample of
the original training data and then takes the average of all these trees. This method is
known as bagging, i.e., taking the aggregate of all the different trees based on bootstrapped
training data. The main advantage of this method, implemented by the RFR model, is that
it performs much better on new data, thus leading to better generalization.

With RFR, there are several tuning parameters. Given that the model is fit for each
grid point, the optimal parameter combination will differ per grid point. A sensitivity
analysis for the different parameters showed that the RFR model was mostly sensitive
to the maximum depth of the decision trees. Hence, a parameter selection routine on
the maximum depth ranging from 1 to 7 was performed for each grid point separately
to establish the best possible parameter setting. Generally, in regions with low forecast
skill, the maximum depth is kept smaller to avoid overfitting, whereas in regions with
larger predictability, the maximum depth is higher to allow for more complex trees. Other
relevant parameters were set to a fixed value. The number of trees in the forest were set to
50, and the maximum number of predictors was set to 3 in order to prevent overfitting.

RFR models tend to be ‘data hungry’ [27], i.e., they require a large training sample in
order to yield stable models. The data used in this study cover the period from 1961 to 2020;
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thus there are about 60 samples if the model is fitted for each month individually (there-
fore retaining the annual cycle) and about 700 samples if the model is fitted using all
months together. Ideally, the model should be fitted for each individual month because
the predictor–predictand relations can strongly differ for different months. However, ini-
tial tests pointed to stronger overfitting using only 60 samples relative to using the full
dataset. This is why we constructed two RFR models, one that fits a model for each month
individually (RFR-M), and one model that uses the full sample (all months together, RFR-Y).

Note that in the RFR-Y model we normalise the data by dividing the predictand data
by its monthly standard deviation prior to the model fit and then multiplying the forecast
by its monthly standard deviation to yield the actual value of the variable considered. This
is performed because variability is month-dependent, especially for precipitation, which
can lead to unrealistic high variability over months with relatively low variability.

We increased the number of potential predictors in the model by adding more permu-
tations of the predictor data to the model. Besides the 3-month mean and 3-month trend,
as performed in the MLR model, we also added the 5-month mean and 1-month values at
lags of 1, 3 and 5 months. We tested multiple predictor selection routines, but found no
clear reduction in forecast error, and we greatly increased the model run time. Hence, we
did not use a predictor selection routine for the RFR models.

We constructed probabilistic forecasts by taking into account all trees of the random
forest and not just the average or median value over these trees, as is usually done. Given
that the number of estimators (trees in the forest) is 50, we have an ensemble size of 50.
The advantages of RFR relative to MLR is that it assumes no distribution and can handle
non-linear relationships and heteroscedasticity.

We also tested several other tree-based regression models such as the gradient boosting
method and regression-enhanced random forest, but these methods showed no clear
improvement of the standard RFR; hence, we did not proceed with these methods.

Figure 2 provides a schematic diagram of the time schedule of the predictands used
by both statistical models.

MLR

M−8 M−7 M−6 M−5 M−4 M−3 M−2 M−1 M0 M+1 M+2 M+3 M+4

Last 3-month mean

Last 3-month trend Forecast 3-month average

Predictor selection routine

NINO34
NINO12
WWV
PDO

AMO
IOD
Precipitation
Persistence

RFR
Multiple flavors of a feature / predictand

M−8 M−7 M−6 M−5 M−4 M−3 M−2 M−1 M0 M+1 M+2 M+3 M+4

Lag at -1,-3 and -5

Last 3-month mean

Last 5-month mean

Last 3-month trend

Forecast 3-month average

Figure 2. Schematic diagram of the prediction time schedule. The selection routine selects predictors
from the set of predictors for each predictand and for each grid cell separately.
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2.3. Dynamical Models

The dynamical model forecasts used here were retrieved by the SECLI-FIRM team at a
1◦ × 1◦ regular lat/lon grid. A summary of the resulting database is given in Table 2. The
analysis here was conducted for the years of 1993–2016 as this period of 24 years is covered
by all models. More details on the retrieval can be found in [18] (p. 9).

Table 2. List of dynamical seasonal forecasting models, taken in hindcast mode (hence with lower
ensemble members than for forecast, and in some cases different initialization datasets).

Name Producer Atmospheric Model Resolution Ocean Model Members Initialization
Atmos

Initialization
Ocean

CANI Meteorological Service of Canada
(MSC), Canada

CanAM4 T63, corresponding to a
128 × 64 Gaussian grid Res:
∼2.8◦lat/lon

CanOM4 Res: ∼1.4◦(lon),
∼0.94◦(lat) 10 CMC ORAP5 ocean

reanalysis

CCSM University of Miami (RSMAS), USA CAM4
0.9◦× 1.25◦

CCSM POP2
g1v6 ∼1◦ × 1◦ 10 CFSR OISST

CMCC CMCC, Centro Euro-Mediterraneo
per i Cambiamenti Climatici, Italy

CESM 1.2—CLM5.3
Res.: 0.5 lat/lon L46

NEMO v3.4
Res.: ORCA0.25 L50 40 ERA5

C-GLORS
Global Ocean
3D-VAR

DWD Der Deutsche Wetterdienst (DWD),
Germany

ECHAM 6.3.05—
JSBACH v3.20
Res.: T127 L95

MPIOM 1.6.3
Res.: TP04 L40 30 ERA5 ORAS5

ECMWF European Centre for Medium-Range
Weather Forecasts (ECMWF), EU

IFS Cycle 43r1
Res.: Tco319 L91

NEMO v3.4
Res.: ORCA0.25 25 ERA-

Interim ORAS5

GEMN Meteorological Service of Canada
(MSC), Canada

GEM 4.8-LTS.13
Res: ∼110 × 110 km

NEMO 3.6 ORCA
Res: ORCA1 ∼1◦lat/lon 10 ERA-

Interim
ORAP5 ocean
reanalysis

GFDL The Geophysical Fluid Dynamics
Laboratory (GFDL) , USA

AM 4.0
1◦ × 1◦ , L33

MOMv6: ∼1◦ × 1◦ ,
tropical refinement to 0.3◦ 15 CFSR OISST v2

JMA
Japan Meteorological Agency (JMA)
/ Meteorological Research Institute
(MRI)

JMA-GSM
Res: TL159 ( 110 km)

MRI.COM v3
Res: 1◦× 0.3◦/ 0.5◦on a
tripolar grid

10 JRA-55 MOVE /
MRI.COM-G2

MF Meteo France. France ARPEGE v6.2 - SURFEX v8.1 Res.:
T359 L91

NEMO v3.4
Res.: ORCA1 L75 25 ERA-

Interim GLORYS2V2

NCEP National Center for Environmental
Prediction, USA

GFS
Res: T128 (∼1◦ × 1◦ )

GFDL MOM4
Res: ∼0.5◦lat/lon 24 CFSR CFSR

UKMO UK-Met Office Met Office,
United Kingdom

Unified Model (UM)—Global
Atmosphere 6.0—JULES 6.0 Res.:
N216 L85

NEMO v3.4—Global
Ocean 5.0
Res.: ORCA0.25 L75

28 ERA-
Interim GS-OSIA

In order to assess the relative accuracy of statistical and dynamical models, we com-
pared the statistical models to 11 dynamical seasonal forecasts (listed in Table 2). The
seasonal forecasts were all bias corrected by simply subtracting the mean bias, computed
as the difference between the ensemble mean in the hindcast mean and observations. This
was performed for each forecasted period separately. As an example, all forecasts valid for
JJA have the same correction factor.

2.4. Verification

Several options have been considered in terms of reference data for the verification
of seasonal climate forecasts ranging from climatology based on reanalyses products to
observational gridded datasets. For verification on a global scale, the best option is not
obvious a priori.

Despite significant improvements in observational products in recent times, consid-
erable observational uncertainty still remains for certain regions. Different observational
products can differ considerably, making the choice of which product to use for verification
non-trivial. Figure 3 shows the observational uncertainty, quantified by the disagreement
(standard deviation) between multiple observational and reanalysis products (listed in
Table 3). Here, we first compute the standard deviation (STD) per time step (monthly
average) between the different observational products and then average this STD over all
months and years. Generally speaking, there is a larger uncertainty around regions with
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less observations and in areas with complex terrain. However, there are many regions with
a standard deviation of around 0.5 ◦C, indicating a spread of around 1.5 ◦C 3 sigma).

(a) (b)

Figure 3. The average standard deviation between all products is used to quantify the observational
uncertainty for (a) the near-surface temperature (T2M) in Kelvin and (b) precipitation (Precip) in
mm/month. The standard deviation is averaged over the full time period (1980–2016).

Table 3. List of observational and reanalysis products used.

Product T2M Precip. Resolution Reference

ERA5 x x 0.25° [28]
JRA-55 x x 1.25° [29]
MERRA-2 x x 0.5° [30]
ERSST V5 x - 2° [20]
CRUTEM x - 5° [31]
GPCC - x 0.5° [21]
GISTEMP x - 2° [32]

For precipitation, the STD can be as large as 100 mm/month or even larger (Figure 3).
Over the oceans, the STD is only calculated between the different reanalysis products,
showing that the uncertainty there is of the same order.

These large STDs occur specifically around the equator, where the climatological
monthly averages range from 100 mm/month to several hundreds of mm/month.

For the observational gridded precipitation database GPCC, [21,33] discussed the
different sources of errors in the rain gauges-based gridded monthly precipitation database.
Schneider et al. [21] estimated the relative sampling error with respect to the true area
mean for different numbers of stations per grid to be between ±7 to 40% for five sites and
between ±5 and 20% if there are ten sites inside the grid box.

The GPCC dataset provides precipitation data along with the number of stations per
grid. We used this information to select two grid locations with many stations in a grid
box and one location with only a few stations in a grid box. The three grid locations are
taken within The Netherlands, the greater Brisbane region and Ecuador, respectively. The
number of stations per grid was, for a randomly chosen month, 60, 96 and 2, respectively.
We compared the GPCC precipitation with the reanalysis products ERA5, MERRA-2 and
JAM (see Table 3). The reanalysis data were interpolated to the same 1◦ × 1◦ grid.

Figure 4 shows the correlation between the reanalysed products with GPCC data as
scatter plots; also shown are correlation matrices for the same locations.

The correlation between the reanalysed products with the observed values is low for
the grid box with only a few measurements, as can be expected. However, the correlation
matrices show that the correlation between the reanalysed products themselves is low too.
Hence, from these correlation matrices, it is difficult to conclude which product is the best
reference dataset.
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Figure 4. (a–c): The top row shows the monthly accumulated precipitation for the models as a func-
tion of the observed precipitation for ERA5 (blue), Merra-2 (orange) and JRA (green) for areas near
(a) De Bilt, The Netherlands, where the maximum monthly precipitation is around 250 mm/month;
(b) Brisbane, Australia, with a maximum monthly precipitation around 500 mm/month; and
(c) Ecuador, with a maximum monthly precipitation around 800 mm/month. Note that the axes
reflect the differences in precipitation. (d–f): The bottom row contains the correlation matrices for the
same models and locations: (d) De Bilt, The Netherlands, (e) Brisbane, Australia and (f) Ecuador.

The statistical models are all biased towards their own reference product, whilst the
dynamical models are also all biased towards their respective observational product used
for their initialization. Hence, which model performs better will strongly depend on which
observational product is used as a reference. To circumvent this potential bias, we used
the average of multiple observational and reanalysis products (ENS_OBS) as a reference
dataset to evaluate the forecast skill.

3. Results

The forecast skill is quantified by the continuous ranked probability score (CRPS),
which is an often-used measure for probabilistic forecasts. It quantifies the error based on
the quadratic measure of the difference between the forecast cumulative density function
and the observed value. We use the CRPS skill score variant (CRPSS) by directly comparing
the CRPS of the forecast to a reference forecast (CRPSS = 1 − [CRPS f orecast / CRPSre f erence]).
Positive values indicate that the forecast outperforms a reference forecast.

3.1. Multiple Linear Regression (MLR)

First, we look at the forecast skill of the relatively simple MLR model. We use a
climatological forecast as reference, which is constructed by randomly sampling 50 values
(same size as MLR and RFR ensemble) from the climatology with leave-1-year-out cross-
validation. The skill score is based on data from 1980 to 2016. Only significant values
(p < 0.05) are plotted, based on a bootstrapped sample. Positive CRPSS values indicate
that the MLR forecast performs better than the climatological forecast. Figure 5 shows the
CRPSS of T2M and PRECIP for the JJA and DJF forecasts, initiated in May and November,



Climate 2024, 12, 83 10 of 16

respectively. Positive CRPSS values indicate that the MLR forecast performs better than the
climatological forecast; these are the red areas in Figure 5.

Figure 5. Forecast skill (CRPSS) with a climatological forecast as a reference for the MLR model
for T2M and Precip and for JJA and DJF. Only significant values (p < 0.05) are plotted, based on a
bootstrapped sample. The skill score is based on data from 1980 to 2016. Positive CRPSS values
indicate that the MLR forecast performs better than the climatological forecast. (Top left) T2M CRPSS
for JJA, (top right) T2M CRPSS for DJF, (bottom left) Precip CRPSS for JJA, (bottom right) Precip
CRPSS for DJF.

It is clear from the T2M figures that forecast skill is largest in the tropical regions,
owing to the large influence of ENSO. Also, skill over the ocean is generally larger because
of the stronger persistence of anomalies. In JJA, we also find some skill over Europe, which
is mainly related to the long-term trend.

For precipitation, the forecast skill is generally much lower. The teleconnections
with ENSO do provide some skill over the northern part of South America, Australia and
southern part of North America. Negative values (worse than a climatological forecast)
for both T2M and precipitation are to some extent caused by overfitting, but mostly due
to differences in between GHCN (used as the observational estimate in the model fit) and
ENS_OBS. For an extensive evaluation of the added benefit of the individual predictors,
we refer to [6].

3.2. Random Forest Regression (RFR)

Next, we assess the forecast skill of the RFR-M model, where the MLR forecast is used
as reference (Figure 6). Hence, red values indicate that the RFR-M model outperforms the
MLR model, whereas blue values indicate that the MLR model outperforms the RFR-M
model. RFR-M outperforms the MLR forecasts over several regions, but there are also
many regions where MLR outperforms the RFR-M model. There are distinct regions where
one model performs better than the other, such as Russia for MLR and the Western Pacific
for RFR-M. For precipitation, MLR outperforms the RFR-M model in most areas, with the
exception of an area in Southern America for DJF and Northern Africa in JJA.

When comparing RFR-Y with MLR (Figure 7), we again find some regions where
RFR-Y outperforms MLR. However, there are considerably more regions where MLR
outperforms RFR-Y.



Climate 2024, 12, 83 11 of 16

Figure 6. As in Figure 5, but for RFR-M with MLR as the reference forecast.

Figure 7. As in Figure 6, but for RFR-Y instead of RFR-M.

The RFR-Y model fails to reproduce some of the variability in the northern regions,
whereas MLR and RFR-M are instead capable of reproducing some of the variability. It
seems that for many regions, the seasonal relation between predictor and predictand differs
considerably. This leads to worse results when pooling all months together and missing
part of the variability that is correctly forecasted otherwise. For precipitation, the MLR
model seems to outperform RFR-Y in almost all regions.

The results indicate that using more advanced models does not necessarily lead
to better results. RFR models generally need a large training set in order to create stable
models, and it seems that 60 years of data is not a large enough sample to really outperform
MLR. By pooling all months together (RFR-Y), the sample size is largely increased, but
at the cost of losing the individual predictor–predictand relations on a monthly basis.
Especially for ENSO, which is phase-locked to the seasonal cycle, the relations strongly
differ throughout the year, making RFR-Y less skilful than RFR-M.

3.3. Statistical versus Dynamical Models

The advantage of statistical models relative to dynamical models (DYNs) is the low
computation costs and an easier understanding of the sources of predictability, either
through the regression coefficients (MLR) or features importance (RFR). However, it is
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also important to know whether statistical models provide added information relative to
dynamical models. All of the analysis in this section was performed on data ranging from
1993 to 2016 because of the availability of the hindcasts of the dynamical forecasts.

In order to assess the added value of the statistical models, we compared them with
a set of dynamical forecasts (listed in Table 1). We calculated the CRPS of each model
(ENS_OBS as observational estimate) and selected the best performing model (lowest
CRPS) per grid point (Figure 8). The labels in Figure 8 denote the type of model which
performed best. It is clear that for most regions, one of the dynamical models performed
best. However, especially in the JJA, both for T2M and precipitation forecasts, there are still
many regions where either an RFR model or MLR model performed best, such as parts of
central and North America and the UK.

Figure 8. Best scoring model type per grid point based on the minimum CRPS.

4. Discussion: Added Value in a Multi-Model Framework

Though the results in Figure 8 indicate that dynamical models provide the best in-
dividual forecast in general, this does not automatically indicate that there is no added
value in using statistical forecasts. In general, a multi-model combination of seasonal
forecasts tends to outperform single seasonal forecasts ([34]; see also previous sections in
this report). Hence, to fully assess the added value of statistical models, we constructed a
multi-model forecast of five models out of every possible combination of dynamical and
statistical models available. For the number of models in this analysis, this amounted to
2002 individual multi-model combinations. This number was chosen because the average
number of models in the optimal multi-model combination was estimated at 4.5 models
for the two variables over the domains [18]. In order to assess statistical significance, we
constructed 100 different samples through resampling with replacement (bootstrapping,
n = 100). For each sample, we selected the model with the lowest RMSE, after which we
counted how many times a certain model was present in one of the 100 resampled samples.
In order to test whether a model was chosen more often than due to random chance, we
used a binomial significance test (p < 0.05). From the list of significant models, we counted
how many times a statistical model was present, which indicates added value for statistical
models in a multi-model framework. This analysis was performed for each grid point
individually as seen in Figure 9. Note that, due to computational constraints, we limited
this analysis to deterministic skill metrics (i.e., ensemble averages). It is clear that compared
with Figure 8, there are many more regions where a statistical model provided additional
information in a multi-model framework. For JJA and T2M, there are a number of regions
(North America, South America and Europe) where at least one of the three models are
statistical models. For precipitation, the results are a bit more scattered but do point to



Climate 2024, 12, 83 13 of 16

the same conclusion that, in a multi-model framework, there is regionally added value by
combining statistical with dynamical models.

Figure 9. Added value of statistical models in a multi-model framework. The values indicate
how many statistical models were listed in the best performing statistically significant multi-model
combination of 5 models. Statistical significance was acquired through bootstrapping (n = 100).

Although Figure 9 shows there are many areas where statistical models can provide
added value, it is difficult to assess the actual magnitude of the added value. In order to
quantify this, we selected the best model combination with at least one statistical model
included and the best model combination with no statistical model included and calculated
the percentage change in RMSE. The results are shown in Figure 10. Blue values indicate
that adding the statistical model to the dynamical model improves the result (reduction in
RMSE). For instance, for the JJA temperature forecast, there is added value in large parts of
Northern and Southern America and Europe. For Europe and North America, the forecast
error reduces by up to 10–20%. There are also areas where the forecast is deteriorated by
adding a statistical model, which are mostly situated over the ocean. Further research is
needed to better understand the sources of this increased forecast skill due to adding a
statistical model.

Figure 10. Change in RMSE for the best multi-model combination with and without a statistical
model (using 5 models in the combination). Blue values indicate that adding a statistical model
lowered the RMSE. The values are based on the average of the bootstrapped sample (n = 100). Dots
indicate where 90% of the resampled samples agree with the sign of the change.
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Note that there is an inherent uncertainty in the findings due to the relatively short
hindcast period and observational uncertainty. Also, we used a fixed value of five models in
the multi-model ensemble, while locally, this number might be more or less if an objective
method was used to select the best model combination. Hence, the fixed value of five
could artificially increase the value of the dynamical or statistical models. More work is
needed to better quantify these uncertainties. The setup with a three-model combination
yielded similar results. Note that when using a five-model combination, there are a total of
2002 possible multi-model combinations. Out of these, there are 462 combinations with
no statistical models and 1540 combinations with at least one statistical model. In order to
create an unbiased comparison, Figure 10 is based on a randomly selected subset (462 out of
the 1540 combinations). From these results, it is clear that when constructing a multi-model,
in this case with a size of five, from eleven dynamical systems and three statistical models,
the latter models seem to often be needed to improve the skill of the forecast.

Figure 10 shows the results when the multi-model combination is tested against
OBS_ENS (the average of observational and reanalysis products). To test the sensitivity
to the reference product, we also tested the performance of the multi-model combination
against individual observational and reanalysis reference products. We found only small
sensitivity to which product is used as reference, indicating that the result shown in
Figure 10 is a robust result. This indicates that, in general, there is a large added value of
statistical models in a multi-model framework.

5. Conclusions

In this paper, we analysed the skill of relatively simple and more advanced statistical
seasonal climate forecasting systems and assessed their added value relative to dynamical
seasonal forecasting systems, both as single-system forecasts and in a multi-model context.

The relatively simple seasonal forecast is based on multiple linear regression. In this
paper, the model is extended to include second-order (i.e., differential) information in the
predictors, and overfitting is further reduced by using an intermediate multiple linear
regression model. This update results in a significantly improved NINO34 index forecast
skill, specifically in spring. The forecasts display skill in many regions, particularly for
near-surface air temperature. It has skilful forecasts in the tropical regions, where there are
strong teleconnections with large-scale climate indices such as NINO34. The persistence of
anomalies and the long-term trend is also a large source of forecast skill.

Machine learning models (RFR) improve the forecasts locally, but the small sample
size hampers their forecast skill. By using the full sample (all months pooled together),
the forecasts become more stable (less overfitting). This improves the forecast in certain
regions but mostly reduces forecast skill in other regions because it loses the individual
predictand–predictor relations that differ throughout the year. Hence, we find no ‘best’
model for all grid points, but rather an ensemble of statistical empirical models whose skill
depends on the region considered.

When comparing the statistical models to a suite of dynamical models, we find
that, in general, the best individual model is one of the dynamical models, though the
specific model varies depending on the area. There are some regions where the best
forecast skill is obtained by a statistical model, but this is rather limited. In a multi-model
framework, however, there are numerous regions where the multi-model average forecasts
are improved by a combination of statistical and dynamical models instead of only using a
combination of dynamical models. For instance, for the JJA temperature forecast, there is
added value in large parts of Northern and Southern America and Europe. For Europe and
North America, the forecast error reduces by up to 10–20%.

Our findings are based on a relative short hindcast period and a fixed number of
five models in the multi-model ensemble. The results can be further improved by extending
the hindcast period and optimizing the number of models in the multi-model ensemble per
grid box by an objective method.
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The global assessment of the hybrid multi-model ensemble combining dynamical and
statistical models demonstrates the added value using an observational dataset constructed
from a combination of reanalysis and observational products. More sophisticated methods
for analysing the added value would probably yield even more added value, for example
focussing on regions where observationally based datasets and the different reanalysis
datasets agree. Identifying seasons (months) and regions where the statistical models add
value can help to explore the full benefit of the hybrid multi-model ensemble for seasonal
climate forecasts. Further development could target specific areas where the inclusion of
the statistical models already shows added value.

Given that marginal improvements in seasonal forecasts of precipitation and tempera-
ture are already very useful for sectors such as energy or agriculture, these results highlight
the need for adding statistical models to multi-model ensemble seasonal forecasts.
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