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Abstract: Predicting local precipitation patterns over the European Alps remains an open challenge
due to many limitations. The complex orography of mountainous areas modulates climate signals,
and in order to analyse extremes accurately, it is essential to account for convection, requiring
high-resolution climate models’ outputs. In this work, we analyse local seasonal precipitation in
Trento (Laste) and Passo Tonale using high-resolution climate data and neural network downscaling.
Then, we adopt an ensemble and generalized leave-one-out cross-validation procedure, which is
particularly useful for the analysis of small datasets. The application of the procedure allows us to
correct the model’s bias, particularly evident in Passo Tonale. This way, we will be more confident in
achieving more reliable results for future projections. The analysis proceeds, considering the mean
and the extreme seasonal anomalies between the projections and the reconstructions. Therefore,
while a decrease in the mean summer precipitation is found in both stations, a neutral to positive
variation is expected for the extremes. Such results differ from model’s, which found a clear decrease
in both stations in the summer’s mean precipitation and extremes. Moreover, we find two statistically
significant results for the extremes: a decrease in winter in Trento and an increase in spring in
Passo Tonale.
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1. Introduction

The climate is a complex system, and its dynamical behaviour is one of the most
challenging to determine. The standard method to approach the study of climate dynamics
involves the development and application of so-called Global Climate Models (GCMs)
which are complex models that take into consideration individual climate subsystems
and their interactions through fundamental equations and parameterizations for processes
occurring below the grid scale [1–3].

Their application enables a quite accurate reconstruction of the climate of the recent
past. Moreover, with the support of attribution studies, it is possible to understand the
causes of its changes and to derive scenarios for the coming decades under the influence
of external forcings. However, GCMs still have a limited resolution and show serious
limitations [4] when it comes to reconstructing and predicting small-scale climate trends
in the future, in particular for meteorological parameters with pronounced variability
such as precipitation. Thus, Regional Climate Models (RCMs) have been developed,
nested within GCMs and with higher resolution, allowing for a more accurate ‘view’ at a
smaller scale [4–6]. However, even these models cannot allow for climate reconstruction
and prediction at a local scale [7] and are quite computationally expensive to run [8]. In
addition, if we want to predict a complex variable such as precipitation, which is often
characterized by high spatial variability, then the issue becomes even more challenging [9].
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In this framework, neural network (NN) modelling may help. It is a machine learning
technique designed to mimic the behaviour of the human nervous system’s cells, a network
of neurons, in order to simulate the learning mechanisms observed in biological organisms.
Here, however, our NNs are not considered as realistic models of the human brain but only
for their capacity to catch nonlinear behaviours in the system studied.

As a matter of fact, NNs provide the opportunity to comprehensively consider the
nonlinear nature of the climate system by a data-driven method that is completely inde-
pendent from GCMs and RCMs so that we can obtain information on the robustness of the
results by comparing relative outcomes on the same problem (e.g., attribution of recent
climate change) [10–13].

But NNs should not be viewed simply as an alternative to dynamical modelling, as
this mindset would overlook their potential to serve as a complementary approach [14].
Recent research has indeed shown how machine learning (ML) techniques can be applied
directly to precipitation model output [9]. Combining the strengths of physical modelling
and machine learning, it is possible to enhance the accuracy of precipitation modelling,
improving parameterizations [15,16], or correcting the model bias of dynamic variables [14].

In the recent past, NNs and other ML techniques have gained significant popularity
in climate science [17]. They have been used to detect extreme climate events through
pattern recognition [18,19], to explore the possibility of outperforming Numerical Weather
Prediction (NWP) [20–22], for statistical modelling and forecasting and many other applica-
tions in extreme events [17,23–25], and, in general, for the hybridization of ML methods
with Traditional Numerical Modelling [26]. For a comprehensive review of neural network
applications in climate studies, see [27] or [28], and for an overview of deep learning
applications in Earth system science, refer to [14].

A concrete example of “synergy” between the two methods is the case of downscaling
GCMs through NNs. Specific examples of downscaling using neural networks can be
found in [8,29].

In this framework, this work was conducted. By considering a 30-year climate simu-
lation on the Greater Alpine Region (GAR) and observational precipitation provided by
Meteotrentino, the official Civil Protection Weather Forecasting Agency of the Province of
Trento (Italy), it was possible to perform downscaling and to analyse seasonal precipitation
and extremes at two stations located in Trentino: Trento (Laste) and Passo Tonale. Then,
once an NN “transfer function” to scale down from the regional to local scale in the past
was obtained, it was possible to apply it to future regional scenarios, thus providing local
precipitation projections.

The scientific community agrees on the relevance of studying the climate in mountain
areas. These regions are considered climate hotspots and are believed to be more responsive
and sensitive to climate change [30,31]. Moreover, several studies [32–34] have identified
the entire Mediterranean basin as a climate change-induced drought hotspot.

Global climate projections show a decrease in summer precipitation over the European
Alps; however, precipitation change signals can be locally modulated by topography [35].
Consequently, a high-resolution description of regional climate phenomena is necessary to
characterize future climate evolutions at regional to local scales over Europe [36].

Mountainous regions exhibit a distinctive climate due to their complex orography,
and the GAR (4–19◦ E, 43–49◦ N, 0–3500 m asl) is characterized by extensive climate
variability [37]. In a strong climate-warming scenario (RCP 8.5), the mean seasonal sum-
mer precipitations are projected to decrease in this area [7,36], probably being linked to
stronger summer warming. However, climate summer extremes, both drought and heavy
precipitation, are likely to be more intense [7,38].

The distinctive feature of the climate simulations we use is their high temporal and
spatial resolution, which resolves convection and enables the analysis of summer extremes.
Additionally, future projection is conducted under the global warming scenario RCP 8.5,
allowing us to compare it with previous findings [7,36,37,39]. However, due to the lack of
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direct correspondence between historical days from the model and observational data, we
are limited in performing a seasonal analysis.

At first glance, this might seem like a significant issue, considering the shorter time
series we obtain and the limited data available for the training of the network [40]. However,
we can overcome this barrier by adopting an NN tool—recently developed by one of us
(A.P.)—which is particularly useful for the analysis of small datasets [41]. This tool has been
applied to the analysis of several climatic topics in the recent past, employing innovative
methods, such as attributing recent temperature changes to anthropogenic forcing [10],
human migration flows [42], climate change impacts on food security in Sahel [43], changes
in the Atlantic Multidecadal Oscillation (AMO) due to anthropogenic sulphates [44], and
meteo-climatic drivers affecting vectors of infectious diseases [45]. Additionally, for a
deeper discussion of these methods, see [46].

2. Materials and Methods
2.1. Observational Data

We considered the observational daily precipitation recorded in Trento (Laste) and
Passo Tonale from hydrological annals as the target of the neural network (NN). These data
are open access and are freely provided by Meteotrentino.it at https://www.meteotrentino.it/
(accessed on 4 October 2023).

We specifically selected data from these two stations due to their differing altitudes
(Trento Laste is situated in the valley at 312 m, whereas Passo Tonale is positioned in the
mountains at 1875 m; see Figure 1) and the high quality of their time series. The data,
which are available in CSV format, were validated and provide information on the quality
of each measurement.
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Figure 1. Altitude map showing coordinates of Trento Laste (red cross) and Passo Tonale (blue cross)
stations. Isolines indicate elevation changes every 500 m.

We considered the time span of 1979–2008, since our historical simulation output was
conducted over this 30-year period. However, Passo Tonale’s station was dismissed on 20
January 2005, and therefore, we considered a shorter time series for this station.

We accumulated the precipitation for each station, and Figure 2 shows the seasonal
precipitation for Trento (Laste) (in panel a) and Passo Tonale (in panel b). Both daily time
series contain some NaN values, which are highlighted with a blue line in the seasonal
time series. To exclude seasons with excessive NaN values while avoiding an unnecessary
reduction in our time series, we considered only the seasonal precipitation of those seasons
with a maximum of 7% NaN values in our analysis.

https://www.meteotrentino.it/
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Figure 2. Time series of seasonal precipitation for the Trento (Laste) station (panel (a)) and Passo
Tonale (panel (b)). This figure shows the accumulated precipitation recorded for each season at both
stations from DJF 1979 to SON 2008 for Trento and from DJF 1979 to DJF 2005 for Passo Tonale. The
blue line indicates the presence of an “NaN” value in that season.

We analyse the trend in our seasonal time series using a Mann–Kendall test, and both
time series show no significant trend. We also assess stationarity using the Dickey–Fuller
test: Trento (Laste) exhibits stationarity with high confidence (p-value < 0.05), while Passo
Tonale shows weaker evidence of stationarity (p-value = 0.10).

In this study, we perform a seasonal analysis, and we refer to the different seasons
using the standard climatological divisions: DJF (December, January, February), MAM
(March, April, May), JJA (June, July, August), and SON (September, October, November) [7].

2.2. Climate Model

We use model runs for the training of the NN. In particular, we consider the dynamical
downscaling presented in Napoli et al. [37]. The Weather Research and Forecasting (WRF)
model is used to dynamically downscale the EC-Earth global model (25 km grid resolution)
for two different periods: the historical run from 1979 to 2008 and the future projection, run
under the global warming scenario RCP 8.5, from 2039 to 2068. The spatial domain includes
the Greater Alpine Region (GAR), and the simulations are run at a convection-permitting
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resolution (4 km) to accurately model air mass interactions with the complex orography of
the selected area. For further information also regarding the validation of the runs, refer to
Napoli et al. [37].

The historical run is used here as the training of the NN, while future projections
to obtain local precipitation projections are used in order to analyse the anomalies of the
mean seasonal precipitation and extremes. Since the climate model runs are conducted in
“scenario-mode”, they do not provide a daily update of weather conditions, and there is no
direct correspondence between historical days in the model runs and observational data in
the same days. Therefore, for each station, we use the averaged seasonal precipitation data
from the four closest grid points instead of daily precipitation as the variable to be fed into
the neural network.

The altitudes of the four grid points, compared to the elevation of each station, are
shown in Table 1. The differences in altitude between the stations and the grid points are
likely due to the presence of higher mountains near the stations and the averaging process
performed by the model.

Table 1. Altitudes of Trento (Laste) and Passo Tonale stations, along with four corresponding
grid points.

Height [m] of Stations and Grid Points

Station Grid Point 1 Grid Point 2 Grid Point 3 Grid Point 4

Trento 312 m 648 m 665 m 721 m 601 m
Passo Tonale 1875 m 2236 m 2214 m 2166 m 2134 m

2.3. Neural Network Model

In this paper, we explore a possible application of Neural Networks (NNs) in climate
studies: Feedforward Neural Networks with backpropagation training. They rely on a
structure called “multilayer perceptron”, and being one of the simplest NN architectures,
they can still provide realistic nonlinear multiple regressions and return accurate results.
For the basics, refer to [46–48], and for environmental applications, see, for instance [27,49].

The ultimate goal is to find a transfer function that adequately captures the relationship
between input and target variables, leading to an accurate prediction of the target variable
when faced with independent data. In general, a neural network procedure returns reliable
results if large amounts of data are provided. However, with the right strategy, it is possible
to obtain accurate outcomes from small datasets.

In this paper, we want to present a possible application of a method called the general-
ized leave-one-out cross-validation procedure, which allows us to maximize the extension
of the training set and provides accurate predictions even when large amounts of data
are not available. This procedure was previously used in a tool developed by one of us
(A.P.) [41], and a schematic representation is illustrated in Figure 3.

Climate 2024, 12, x FOR PEER REVIEW 6 of 18 
 

 

training stops when an increase in the mean square error (MSE) appears in the validation 
set. 

  
Figure 3. Schematic representation of generalized leave-one-out procedure (from [41]). 

It follows that the results of this generalized leave-one-out procedure depend heavily 
on the random choices of the elements for the validation test. Additionally, the changes in 
the values in the initial weights are also critical for the outcomes and allow the model to 
widely explore every cost function. Therefore, to obtain more robust results, it is possible 
to perform ensemble runs of the NNs by repeating each estimation a fixed number of 
times (generally 20 or 30). After computing the average on the runs of the model, reliable 
results, which do not depend on the variability in random choices, are obtained. For more 
technical details on this NN tool, refer to [41]. 

In this particular application, this process occurs twice: first in the reconstruction of 
the past and then in the projection of the future, with minor variations. 

The input data for the reconstruction consist of the seasonal average of daily precip-
itation measured at each station (target) and the seasonal average of daily precipitation of 
the climate model (predictors). When the process outlined above is complete, the neural 
network reconstruction is obtained. 

Now, the weights are fixed, and we can pass on the projections. This is a forward 
step, when the only data we fed to the NN are the seasonal average of daily precipitation 
of the climate model’s projection for every network, and we iterate the previous process 
for each corresponding season. Finally, we compute the ensemble mean, which is consid-
ered the local projected precipitation. 

To assess the performance of the NNs, standard multilinear regressions are per-
formed using the same training approach, and the resulting performance coefficients are 
reported. Moreover, the performance of the NNs in reconstructing past seasonal time se-
ries is evaluated by comparing their results with those obtained from the precipitation 
mean of the grid points. 

2.4. Data Preprocessing 
For each season, we considered the target to be the seasonal average of daily precip-

itation observed in each station. As a matter of fact, we noticed the presence of some NaN 
values in both daily time series, so we considered the seasonal precipitation of only those 
seasons that present a maximum of 7% NaN values (see Figure 2). Then, to obtain normal-
ized seasonal daily precipitation, we divided the total precipitation for each season by the 
number of “non-NaN” days. 

Accordingly, we calculated the seasonal average of daily precipitation for the four 
grid points as well. It is important to underline that this procedure did not affect the sea-
sonal analysis as the neural network still performed normalization. 

Finally, due to the “scenario mode”, a synchronization procedure between the obser-
vational data and grid point data was needed. It consisted of the following steps. 

The data were divided by season. For each season, target and grid point precipitation 
values were sorted in ascending order. 
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All input data are divided into three subsets: a training set, validation set, and test
set. Referring to Figure 3, the white squares represent the training set, while the black
squares stand for the validation test, and lastly, the grey square represents the test pair. The
reason why this method is unique lies in the iteration of the test pair as a “hole” through
the dataset. Moreover, during the process, the training set and validation set are picked
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randomly. At the end of the procedure, all output values are estimated, and the training
stops when an increase in the mean square error (MSE) appears in the validation set.

It follows that the results of this generalized leave-one-out procedure depend heavily
on the random choices of the elements for the validation test. Additionally, the changes in
the values in the initial weights are also critical for the outcomes and allow the model to
widely explore every cost function. Therefore, to obtain more robust results, it is possible
to perform ensemble runs of the NNs by repeating each estimation a fixed number of times
(generally 20 or 30). After computing the average on the runs of the model, reliable results,
which do not depend on the variability in random choices, are obtained. For more technical
details on this NN tool, refer to [41].

In this particular application, this process occurs twice: first in the reconstruction of
the past and then in the projection of the future, with minor variations.

The input data for the reconstruction consist of the seasonal average of daily precipi-
tation measured at each station (target) and the seasonal average of daily precipitation of
the climate model (predictors). When the process outlined above is complete, the neural
network reconstruction is obtained.

Now, the weights are fixed, and we can pass on the projections. This is a forward step,
when the only data we fed to the NN are the seasonal average of daily precipitation of the
climate model’s projection for every network, and we iterate the previous process for each
corresponding season. Finally, we compute the ensemble mean, which is considered the
local projected precipitation.

To assess the performance of the NNs, standard multilinear regressions are performed
using the same training approach, and the resulting performance coefficients are reported.
Moreover, the performance of the NNs in reconstructing past seasonal time series is eval-
uated by comparing their results with those obtained from the precipitation mean of the
grid points.

2.4. Data Preprocessing

For each season, we considered the target to be the seasonal average of daily pre-
cipitation observed in each station. As a matter of fact, we noticed the presence of some
NaN values in both daily time series, so we considered the seasonal precipitation of only
those seasons that present a maximum of 7% NaN values (see Figure 2). Then, to obtain
normalized seasonal daily precipitation, we divided the total precipitation for each season
by the number of “non-NaN” days.

Accordingly, we calculated the seasonal average of daily precipitation for the four grid
points as well. It is important to underline that this procedure did not affect the seasonal
analysis as the neural network still performed normalization.

Finally, due to the “scenario mode”, a synchronization procedure between the obser-
vational data and grid point data was needed. It consisted of the following steps.

The data were divided by season. For each season, target and grid point precipitation
values were sorted in ascending order.

Subsequently, starting from the sorted data, every target season (e.g., DJF 2000) was
linked with the corresponding season of the first grid point (e.g., DJF 2002). The remaining
grid point values were then synchronized based on such association. Thus, each station’s
seasonal precipitation value was connected to four grid point values per season.

Finally, the four subsets were merged into a single dataset; then, the observational
data time series was reconstructed with temporal sorting, thus building a dataset to be fed
to the NNs containing the normalized daily seasonal precipitation of all data (target and
grid points).

We performed trend and stationarity analyses on the time series fed to the neural
network. Similarly to what we found for the observation data, in general, we found no
trend in each time series and stationary time series with high confidence (p-value < 0.5) for
Trento (Laste) and less confidence (p-value < 0.10) for Passo Tonale.
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3. Results

The compiled datasets described in the preceding paragraph were fed into our feed-
forward neural network, returning the following results.

3.1. Neural Network Reconstruction

We reconstruct through the NN the historical seasonal time series for both stations
using the precipitation data from the surrounding four grid points of the RCM as the input
of the 4-4-1 networks: Trento (Laste) reconstruction is shown in Figure 4a, while Passo
Tonale’s is shown in Figure 4b. It can be noticed that we are able to only reconstruct the
period 1979–2003 for Passo Tonale since we have a shorter observational time series, and
additionally, we have to exclude some seasons with too many NaNs. Table 2 shows the
coefficients of determination for the neural network (NN) and the linear regression (LR)
reconstructions, and it also includes the coefficients of determination obtained from the
precipitation mean of the grid points.
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Figure 4. The reconstruction of the seasonal average daily precipitation for Trento (Laste) from 1979
to 2008 (panel (a)) and Passo Tonale from 1979 to 2003 (panel (b)) using a neural network. The black
crosses represent the corresponding station precipitation, serving as the target for the network. The
red lines represent the outputs of the different runs, while the thick blue line represents their ensemble
mean. The precipitation shown in this figure represents the seasonal daily average [mm/day].
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Table 2. R2 values for the neural network and linear regression reconstructions, as well as for the
grid point time series, for Trento (Laste) and Passo Tonale.

R2 Trento (Laste) Passo Tonale

Neural Network 0.69 0.68
Linear Regression 0.64 0.59
Mean Grid Points 0.66 0.58

Table 2 shows that in both cases, NN reconstructions were characterized by good
coefficients of determination, which outperformed the corresponding linear regression
coefficients. The NN also performed better compared to the grid points, with a significant
difference observed at Passo Tonale.

3.2. Does the Neural Network Perform Better than the Model?

In this section, we compare the neural network reconstructions with the seasonal
precipitation observed at the stations and the mean precipitation of the closest grid points.
Figure 5 displays the averaged seasonal precipitation distribution for station observations
(target), the model (grid points), and the neural network (NN) reconstructions.

The NN significantly outperforms the model in Passo Tonale, located at 1875 m, at
least in three seasons (DJF, MAM, JJA in Figure 5, panel b). This improvement is especially
predominant in summer (JJA), where the 25th percentile of the model’s precipitation
distribution exceeds the 75th percentile of the observed target values. In Trento (Figure 5,
panel a), the NN performs slightly better in spring (MAM) and corrects some outliers
in JJA compared to the model, while in autumn (SON), when the target’s precipitation
is characterized by great variability, the NN does not perform better than the model in
either station.

When focusing on the top three precipitation extremes for each season, the results show
a clear and distinct improvement in the NN in JJA (see Table 3). For these extremes, we
compare the values reconstructed by the NN and linear regression with station observations
and the mean precipitation of the nearest grid points.

Table 3. Top 3 JJA extremes values for Trento (Laste) (at the top) and Passo Tonale (on the bottom) sta-
tions observed and obtained from the neural network (NN) and linear regression (LR) reconstruction
and from the mean of the precipitation values of the four closest grid points.

JJA Extremes

(a) Trento (Laste)

Extreme values Station NN LR Grid point mean

[mm] 372.4 427.4 578.4 572.4
[mm] 369.6 400.9 453.9 472.5
[mm] 352.4 390.3 409.4 385.1

(b) Passo Tonale

Extreme values Station NN LR Grid point mean

[mm] 533.4 605.5 856.1 1095.9
[mm] 489.6 570.1 733.4 826.8
[mm] 477.6 567.5 624.3 681.5

It is important to point out that the model overestimates JJA extremes in past simula-
tions in both stations, with a particularly strong overestimation in Passo Tonale, where the
model’s values are nearly double the observed ones, as shown in Table 3b.
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Figure 5. Boxplots of seasonal average daily precipitation for Trento (Laste) (1979–2008, panel (a)) and
Passo Tonale (1979–2003, panel (b)): observed (“Target”), mean value of grid points (“GridPoints”)
and neural network reconstruction (“NN”). Each boxplot is bounded by the lower and upper
quartiles, representing the 25th and 75th percentiles, respectively. The red lines represent the median
values, while the red crosses indicate the outliers.

Concerning the other seasons, not pictured in the tables, the NN performs slightly
better than the model in DJF in Passo Tonale and in MAM in Trento, while in SON, both
the model and the NN underestimate the extremes.

Therefore, the neural network corrects the model’s bias in Passo Tonale and especially
in summer precipitation, providing values that are closer to the observed data. This result
is crucial since it allows us to be more confident in obtaining more realistic results in future
local projections.

3.3. Neural Network Projection

After the neural network reconstruction, the weights are fixed. In order to obtain the
local NN predictions of precipitations, values for the four grid points in the projection
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dataset and for each season are provided as input. As output, the network returns the local
projected precipitations. The resulting projections are shown in Figure 6.
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Passo Tonale shows a greater variability in seasonal precipitation compared to Trento
(Laste) in both the past reconstructions and future projections. In the future projections, the
maximum average daily precipitation value reaches 8.3 mm/day in Passo Tonale, corre-
sponding to more than 760 mm in a single season, while Trento (Laste) shows precipitation
never exceeding 5 mm/day.

We then focus our analysis on seasonal extremes and considering each season apart.

3.4. Mean Seasonal Precipitation and Extremes

Our goal in this section is to analyse the anomalies of the mean seasonal precipitation
and extremes for each season. In order to achieve this, we accumulate the total seasonal
precipitation for each season in both the past reconstructions and the future projections.
By calculating the mean seasonal precipitations for both time series and computing the
difference, we obtain the relative anomalies.
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Our results are shown in Figure 7a and Table 4a for Trento Laste, while Figure 7b and
Table 4b show the results for Passo Tonale.
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Figure 7. Seasonal time series NN reconstructions for the past (blue line) and future (red line)
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The precipitation shown in this figure represents the seasonal daily average [mm/day]. The dashed
lines represent the average values.

In order to assess the significance of our results, we perform Student’s t-test for
independent samples for both analyses. It is important to note that this involves an
approximation, as the forecast is considered independent from the neural reconstruction.

We observed a negative variation in the seasonal precipitation mean for all seasons
except spring (MAM) in both stations. This effect is particularly pronounced in Passo
Tonale, which shows a greater positive seasonal anomaly. Despite variations exceeding
10% for DJF in both stations, JJA in Trento, and MAM in Passo Tonale, none of these values
have a p-value less than 0.05.
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Table 4. Absolute and relative anomalies of mean seasonal precipitation between future projection
and past reconstruction in Trento (Laste) (top) and Passo Tonale (bottom).

NN—Mean Seasonal Precipitation

(a) Trento (Laste)

Season anomalies DJF MAM JJA SON

[mm/season] −24.9 9.8 −34.3 −4.7
% −15.4 3.7 −13.0 −2.1

(b) Passo Tonale

Season anomalies DJF MAM JJA SON

[mm/season] −29.8 36.0 −25.0 −19.6
% −13.0 11.0 −5.8 −6.0

Next, we proceed to analyse the season extremes. We focus on the top three extreme
values for each season by cumulating the top three values for both the future projections
and past reconstructions. The average is then calculated for each set of values. Finally, we
compute the difference between these two averages and the percentage variation. These
results are presented in Table 5. Statistically significant results (p < 0.05) are shown in bold
in the tables.

Table 5. The absolute and relative anomalies of the mean precipitation of the top 3 extremes for each
season between future projections and past reconstructions in Trento Laste (top) and Passo Tonale
(bottom). Statistically significant results are shown in bold.

NN—Seasonal Extremes

(a) Trento (Laste)

Extreme anomalies DJF MAM JJA SON

mm −71.5 1.5 −3.7 40.2
% −21.1 0.4 −0.9 11.3

(b) Passo Tonale

Extreme anomalies DJF MAM JJA SON

mm −41.3 80.4 35.5 26.8
% −9.3 17.0 6.1 5.3

Focusing on the precipitation values of the top three seasonal extremes, we observe a
general decrease in extreme precipitation during DJF in both stations, which is statistically
significant in Trento (p-value = 0.03). In Passo Tonale, there is a general increase in extreme
precipitation in the other seasons, with a significant rise during MAM (p-value = 0.01). In
Trento, there is a positive 11% extreme precipitation increase in SON, although this change
is not statistically significant since the p-value is larger than 0.05.

By comparing the results from both analysis tables, we are inclined to think that
stations relatively close to each other at different altitudes can exhibit distinct results. It is
important to emphasize that the statistically significant findings we report have consistently
appeared, with slight variations, across all the neural network trials we conducted with
different parameters. In addition, we observe similar absolute and relative anomalies in
mean seasonal precipitation, though none with sufficiently small p-values. This could be
influenced, at least for Passo Tonale, by the presence of outliers in the future NN projections.

Considering the results of other runs, we find that JJA extreme anomalies show great
variability for both stations. In some cases, we observe a positive variation even in Trento.
However, as one might suspect, none of these variations show significant p-values.
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3.5. Grid Point Analysis

In order to compare the neural network results with the model, we perform the
same seasonal analysis on the precipitation mean and extremes on the mean values of the
four grid points. Trento Laste’s results are shown in Tables 6 and 7 panel (a), while Passo
Tonale’s are shown in panel (b).

Table 6. Absolute and relative anomalies of mean seasonal precipitation of four grid points closest to
Trento Laste (top) and Passo Tonale (bottom) between future projection and past simulation.

Grid Points—Mean Seasonal Precipitation

(a) Trento Laste

Season anomalies DJF MAM JJA SON

mm/season −19.6 12.9 −39.2 −6.2
% −12.3 4.9 −14.7 −2.7

(b) Passo Tonale

Season anomalies DJF MAM JJA SON

mm/season −20.8 35.3 −14.2 −27.1
% −7.6 9.1 −2.5 −7.0

Table 7. Absolute and relative anomalies of mean precipitation of top 3 extremes of four grid points
closest to Trento Laste (top) and Passo Tonale (bottom) between future projection and past simulation.

Grid Points—Seasonal Extremes

(a) Trento Laste

Extreme anomalies DJF MAM JJA SON

mm −57.5 17.5 −104.2 19.4
% −18.0 4.2 −21.5 5.4

(b) Passo Tonale

Extreme anomalies DJF MAM JJA SON

mm −34.4 50.0 −84.3 −44.4
% −7.2 8.7 −9.5 −7.6

By comparing Table 6 with Table 4, we observe a similar trend in the mean seasonal
anomalies. There is a general decrease in seasonal precipitation during DJF, JJA, and SON
in both stations, while MAM shows an increase, which is more pronounced in Passo Tonale.

The differences between the NN and the model’s relative anomalies of seasonal
precipitation are stronger in Passo Tonale, with the decreases in DJF and JJA nearly doubling
those observed in the model. Unfortunately, no statistically significant results are obtained.

When analysing extremes (Tables 5 and 7), more differences are evident. The grid point
analysis shows a negative JJA variation of 22% in Trento and 10% in Passo Tonale which
is not observed in the NN analysis. The model indicates a clear, though not statistically
significant, reduction in JJA extremes in both stations, whereas the NN shows a 6% increase
in Passo Tonale and no variation in Trento.

Finally, the only statistically significant result (p-value < 0.05) found in this analysis is
a decrease in DJF extremes in Trento, which is consistent with the NN result.

4. Discussion

In this paper, we perform downscaling through neural networks considering seasonal
precipitation observed in Trento (Laste) and Passo Tonale and convection-permitting high-
resolution climate outputs. Despite the short seasonal time series, we adopt a generalized
leave-one-out cross-validation procedure and reconstruct the period from 1979 to 2008 for
Trento and 1979 to 2003 for Passo Tonale. This approach allows us to achieve good coeffi-
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cients of determination, 0.69 and 0.68, respectively, which outperformed those obtained
through linear regression and the mean of the four closest grid points.

A key outcome of this work is the correction of the model’s bias in summer precipita-
tion performed by the NN, particularly pronounced in Passo Tonale. The overestimation of
precipitation over mountainous areas in very high-resolution models has been previously
found in other papers (see, for instance, [39]). A possible explanation is the overestimation
of low-intensity events, particularly in summer [50], or model deficiencies [39].

Our result represents one of the many potential synergies between models and data-
driven algorithms depicted in Reichstein et al. [14]. It shows how machine learning
techniques can be integrated into a hybrid modelling approach to, allegedly, enhance the
predictive accuracy of seasonal forecasting.

Later, we performed a seasonal projection from 2039 to 2068 (2063) for the Trento (Passo
Tonale) station. The simulations carried out for Passo Tonale show greater variability, and
the mean seasonal precipitations are generally greater than the ones obtained in Trento
(Laste). This is consistent with the orographic enhancement in precipitation, as Passo
Tonale is located at a higher altitude.

Following this, we analysed the anomalies in the mean seasonal precipitation and top
three extremes. Considering the neural network analysis performed in Section 3.4 and the
model analysis in Section 3.5, we could perform a comparison of the results.

We observe similar mean seasonal anomalies between the two analyses. DJF, JJA, and
SON show a general decrease, while MAM shows an increase, which is more pronounced in
Passo Tonale. Despite the fact that none of these results proved to be statistically significant,
the observed decrease in seasonal JJA precipitation in this area is consistent with previous
studies [7,36,37,39]. Among these, the decrease in seasonal DJF precipitation in both stations
is only documented in Napoli et al. [37], as illustrated in Figure 1 of that paper, where the
data from the grid points are sourced. However, Ban et al. [39], which compared the results
between a very high-resolution and a coarser model, exhibit a decrease over the Po Valley
and Swiss Alps and an increase in the surrounding area in the 10-year-long simulations
CRM2 (2.2 km resolution) and CPM12 (12.5 km res.) and a stronger increase in the Alps
and a smaller decrease in the valley considering the latter for a 30-year-long simulation.
Therefore, even if they suggest that their results could be influenced by decadal variability,
it shows that non-homogeneous patterns can arise when considering a finer-resolution
model, unlike [7], where a general decrease is found.

Considering large-scale circulation patterns, the decrease in summer precipitation is
consistent with an increase in the anticyclonic circulation over the Mediterranean basin
and Central Europe (see Reale et al. [51] for an in-depth discussion on the future regime
of cyclones in the Mediterranean area). Such a circulation pattern enhances downward
motions and deflects storms northward [35]. On the other hand, the dipolar DJF pattern is
still not fully understood, but it is probably related to the long-term variability pattern of
the North Atlantic Oscillation, whose storm track shifts are known [37].

However, while the mean summer precipitation is projected to decrease, JJA extremes
are expected to increase [7,36]. But also, from the point of view of basic physics, a change
in extreme precipitation is expected in response to a warmer climate and its impact on
saturation vapor pression through the Clausius–Clapeyron relation. From this equation, it is
possible to obtain that a relative change in specific humidity is linked to the relative change
in temperature. A 1% change in temperature (3 ◦C) corresponds to a 20% change in specific
saturation humidity, or, alternatively, a 1 K change is associated with a 7% variation [52–54].
This implies that the capacity of the atmosphere to hold water increases by approximately
6–7% per degree of warming, and if relative humidity stays constant, it follows that extreme
precipitation can also change at the same rate [39].

In the analysis of extremes, we find two statistically significant and robust results: a
21% decrease in Trento (Laste) DJF extremes and a 17% increase in Passo Tonale MAM
extremes. We then find an increase in SON of 11% and 5% in Trento and Passo Tonale,
respectively, and an increase in JJA of 6% in Passo Tonale. However, even though we did
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not obtain statistical results for JJA extremes, we want to highlight that in other neural
network trials with different parameters, an increase in Trento in this season was obtained
in many cases. Therefore, JJA extreme anomalies show great variability from a neutral to
a positive increase, unlike the model that shows a decrease of 22% in Trento and 10% in
Passo Tonale.

5. Conclusions

The prediction of precipitation patterns over the European Alps at the local scale
possesses many challenges. This area is characterized by a complex orography which
modulates climate signals, and therefore, in order to analyse and predict extreme precipi-
tation accurately, high-resolution climate models are needed. Accounting for convection
is essential, but on the other hand, considering convection-permitting resolution (4 km or
less) conducted for long simulations could be computational expensive. Moreover, even at
this resolution, some parametrizations are still made, and it is difficult to obtain reliable
climate reconstruction and prediction at the local scale due to the underlying possibility of
biases in the dynamic model such as, for instance, the overestimation of precipitation over
mountainous areas [39].

Here, we perform neural network downscaling considering high-resolution climate
models’ seasonal precipitation and the one observed at the Trento (Laste) and Passo Tonale
stations. In order to account for the limited time series, we adopt an ensemble and general-
ized leave-one-out cross-validation procedure, already tested in previous works [10,42–45].

Our NN model manages to correct, in most cases, the model’s bias, which is pre-
dominant in the station at higher altitudes and even more when considering summer
precipitation. This correction is even more pronounced when taking into account sum-
mer extremes, where the model even doubles the observed ones. Correcting this bias
is fundamental for increasing confidence in obtaining more realistic results in future
local projections.

When looking at future projections, we find a decrease in seasonal precipitation in
winter and summer in both stations. This result is consistent with the model (as one can
see in Napoli et al. [37]) and with the concept that non-homogeneous patterns can arise in
the Great Alpine Region (known also as GAR) when considering a finer-resolution model,
as shown in [37,39], even with some differences. These non-homogeneous patterns are
likely due to the complex topography of the area, which cannot be accurately captured by
lower-resolution models.

Considering the extremes, we find two statistically significant results: a 21% decrease
in Trento (Laste) for winter extremes and a 17% increase in Passo Tonale in spring. Unfor-
tunately, no other statistically significant results were found, likely due to the presence of
too many seasons with excessive NaN values in the initial time series, which forced us to
exclude them and significantly shorten the series for Passo Tonale. On the other hand, it is
important to highlight that summer extreme anomalies, when considering all the different
runs of this analysis, showed considerable variability. In general, we observed a neutral to
positive increase, in contrast to the model, which indicated a clear decrease in both stations.

Overall, our results are in agreement with the thermodynamics and dynamics (circula-
tion) in the Mediterranean under global warming conditions, which indicate an increase in
the anticyclonic circulation over the Mediterranean basin and Central Europe and a general
increase in extreme precipitations.

Finally, it would be interesting to repeat the same analysis using more complete time
series from different stations to determine whether the results we obtain for stations at
different altitudes are the result of local effects or can also be observed in other locations.
However, at present and to our knowledge, there are no known 30-year time series from
stations in the Greater Alpine Region that are both available and of sufficient quality for use.
Moreover, future work will focus on extending our approach by incorporating exogenous
variables as inputs.
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