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Abstract: Brazil, despite possessing the largest renewable freshwater reserves in the world (8.65 tril-

lion m3

annually), faces growing challenges in water management due to increasing demand. Agricul-
ture, responsible for 68.4% of water consumption, is one of the main drivers of this demand, especially
in the Sao Francisco River Basin, where irrigation accounts for 81% of total water withdrawals. Wa-
ter bodies play a crucial role in sustaining ecosystems and supporting life, particularly along the
East-West axis of Alagoas, a water-rich region in the ENEB. This study aimed to map and quantify
the spatiotemporal variations of water bodies in the ENEB region and assess the impacts of human
activities using MODIS satellite data, applying hydrological indices such as NDWI, MNDWI, and
AWEI. Between 2003 and 2022, significant variations in the extent of water bodies were observed, with
reductions of up to 100 km? during dry periods and expansions of up to 300 km? during wet seasons
compared to dry periods. AWEI and MNDWI proved to be the most effective indices for detecting
water bodies with MODIS data, providing accurate insights into water dynamics. Additionally, the
MapBiomas Rios dataset, despite being resampled from a 30 m to a 500 m resolution, offered the
most accurate representation of water bodies due to its methodology for data acquisition. Changes in
albedo and surface temperature were also detected, highlighting the influence of climate change on
the region’s water resources. These findings are crucial for guiding the sustainable management of
water resources, not only in Alagoas but also in other regions of Brazil and similar semi-arid areas
around the world. The study demonstrates the hydrological variability in the state of Alagoas, indi-
cating the need for adaptive strategies to mitigate the impacts of climate change and anthropogenic
pressures, supporting the need for informed decision-making in water resource management at both
local and national levels.

Keywords: sustainable water management; hydrological metrics; climate change; water resources;
water monitoring
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1. Introduction

For millennia, rivers have provided food, water for domestic and agricultural use,
transportation, and more recently, energy generation and industrial production [1]. How-
ever, managing water resources remains a global challenge, particularly in semi-arid regions
such as parts of Africa [2-4], the Middle East [5,6], North America [7], and Australia [8],
where water scarcity and environmental degradation are exacerbated by harsh climatic
changes and conditions. In these areas, satellite remote sensing has emerged as a powerful
tool for monitoring water bodies, as demonstrated in studies from the Nile Basin [9], the
Gobi Desert [10], the Sacramento—San Joaquin Delta of California [11], and the Murray-
Darling Basin [12]. Despite their effectiveness, these approaches often face challenges
such as limited long-term data, low spatial resolution, and interference from cloud cover,
which can affect the accuracy of water body detection. Furthermore, many of these regions
struggle with consistent monitoring due to technological and satellite coverage limitations.

Brazil, despite being the country with the largest availability of renewable freshwater
resources globally (8.65 trillion m3 annually, according to FAO, 2017), is not immune to
these concerns. Agriculture is the activity that uses water the most in Brazil, accounting
for 68.4% of the flow consumed from water bodies, second to the National Agency of
Water (ANA, 2019) [13,14]. Although Brazil is well endowed with fresh water, its growing
demand has caused concern. According to the survey “Atlas Irrigation—use of water in
irrigated agriculture” [15].

Economic activity that uses water the most in Brazil, particularly in the Sao Francisco
River Basin (SFRB), where water withdrawals for irrigation granted by water authorities
amount to 22.3 billion m3 per year, a number that is close to 81% of the total withdrawal [13].
The SFRB is one of the largest basins in Brazil, with a drainage area that encompasses six
Brazilian states (Alagoas, Bahia, Goias, Minas Gerais, Pernambuco, Sergipe), and the
Distrito Federal.

It is subdivided into four geographic regions: Upper, Middle, Sub-Middle, and
Lower [16]. The SFRB is under socioeconomic and environmental vulnerabilities. It
encompasses regions with high population density and poverty and regions with low pop-
ulation density; social and environmentally diverse (biomes of Caatinga, Atlantic Forest,
and Cerrado), which makes it difficult and challenging to enforce any type of scientific
investigation [17].

It is widely known that the water availability from water bodies is vital for populations
and ecosystems, especially in the semi-arid regions of Northeast Brazil (NEB), which face
high climatic variability and the effects of flash droughts and severe droughts, impacting
agriculture, water resources, civil defense, and tourism [18-25]. More specifically, in
the state of Alagoas, in the Eastern Northeast of Brazil (ENEB), water availability varies
significantly between climatic mesoregions, with the semi-arid portion facing frequent and
severe droughts, in contrast to the coastal areas [18,21,26].

The condition and water availability in the semiarid region of NEB have demonstrated
the severe effects of drought; these conditions favor vulnerability to environmental degrada-
tion processes, which are further exacerbated by the pressures of human activities, such as
inadequate land use and management practices, including intensive agriculture, livestock,
deforestation, and fires. The severe droughts between 2011 and 2020 notably impacted
rural development opportunities, such as family farming, and worsened local and regional
socioeconomic conditions [27].

Droughts lead to significant social, and economic losses at the local (municipalities
and communities), regional, and national scales in Brazil affecting rural-urban migra-
tion flows [28], such as in the NEB region. These challenges highlight the importance of
adopting public policies that promote sustainable land use and water resource manage-
ment [29,30], especially in contingency situations, aiming to mitigate the adverse effects of
climate variability in the NEB, particularly in extreme climate conditions, supporting rural
livelihoods, and strengthening the resilience of affected local communities, not only in the
state of Alagoas.
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Furthermore, characterizing water bodies is essential for the adoption of public policies
and the appropriate and sustainable institutional management of resources, contributing to
sustainable development and the maintenance of biodiversity [31-34]. Efficient manage-
ment of water resources is crucial for water security and the well-being of communities [35].
Recent studies highlight the importance of biodiversity conservation and sustainable man-
agement in the region [36].

Data from meteorological stations indicate that the Alagoas sertdao region has an
average annual precipitation between 400 and 600 mm [37-39] and average temperatures
above 25 °C. In the Agreste region of Alagoas, precipitation ranges from 700 to 1000
mm [39-43], while in the Zona da Mata (eastern Alagoas), the average annual precipitation
is significantly higher, usually between 1000 and 1800 mm [44—-47].

The variability in rainfall and temperatures in the Alagoas semi-arid, characterized by
prolonged droughts and extreme events, impacts water availability and the dynamics of
water bodies [26,48,49]. The transition region between the Sertao and Agreste of Alagoas
contains remnants of the Atlantic Forest and strategic water resources, including the Sao
Francisco River basin [26,50], with the highest percentage of Atlantic Forest found in the
Eastern mesoregion [16].

According to the study by Junior et al. (2023) [51], temporal analyses identified drier
and wetter years throughout the time series. Dry years, such as 2003, 2012, 2016, and
2018, stood out due to the absence of months with maximum rainfall, suggesting a direct
impact of unfavorable climate conditions. In contrast, years such as 2000, 2002, 2006, 2008,
2011, and 2020 had at least three months with maximum rainfall, with 2022 registering the
highest number of months with elevated precipitation in the series, being characterized as
one of the wettest years.

When comparing these rainfall patterns with ENSO (El Nifio and La Nifia events)
fluctuations, a strong correlation was observed between ENSO and variations in precipita-
tion patterns, as noted in studies such as Oliveira-Junior et al. (2021) [52]. During EI Nifio
events, historically associated with drought in Northeast Brazil, years with fewer months
of heavy rainfall were observed, such as 2003 and 2015, both classified as moderate El Nifio,
and 2010, which experienced a strong El Nifio.

Conversely, during La Nifia years, which often bring increased precipitation to North-
east Brazil, a higher occurrence of months with maximum rainfall was identified. For
instance, the year 2000, which corresponded to a moderate La Nifia, had several months
with maximum rainfall. Similarly, 2007, 2011, and 2021, which coincided with moderate
to strong La Nifia events, registered months with rainfall above the established threshold.
Notably, 2020, also influenced by La Nifia, saw a significant increase in maximum rainfall
months, as most of the mentioned years correspond to ENSO events, specifically La Nifia
episodes [34] in the study area.

Satellite remote sensing datasets are valuable for monitoring the dynamics of water
bodies, ensuring the detection of change patterns in a practical and effective manner, and
with low operational costs [53-55]. They map seasonal and interannual patterns in the ex-
tent of these environments [38,56]. In recent years, the integration of satellite imagery with
Geographical Information Systems (GIS) has further enhanced the capability to monitor
and predict changes in river morphology, enabling a more detailed understanding of the
evolution of these environments [57]. Through the use of spectral indices—combinations of
surface reflectance at different wavelengths—researchers can effectively analyze temporal
satellite images to track shifts in river dynamics [58].

There are several physical-hydric indices for detecting water bodies, such as the Nor-
malized Difference Water Index (NDWI) [58-62], Modified Normalized Difference Water
Index (MNDWI) [60,61,63,64], Normalized Difference Moisture Index (NDMI) [58,59,65,66],
Automated Water Extraction Index (AWEI) [58,67-70], and Water Ratio Index (WRI) [58,71,72].
These indices are effective in detecting changes in the extent and quality of water re-
sources [73], helping to understand the impacts of anthropogenic activities and climate
change [74,75].
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The MODIS sensor was designed to meet the requirements of three fields of study:
atmosphere, ocean, and land, with spectral and spatial resolution bands selected for these
objectives and nearly daily global coverage [76-78]. Several studies have highlighted the ef-
ficiency of MODIS in detecting land cover and land use changes at a continental scale in the
Amazon [79-81], in the Caatinga [82], in the Brazilian Cerrado [83,84], and in other biomes
and regions worldwide [85,86]. Additionally, it has been used to detect land cover and land
use changes in deforestation mapping in Asia [73,87,88] and in multitemporal analyses
in China [89,90]. Moreover, MODIS has been successfully applied in studies of water
resources and water bodies monitoring in various regions around the world [56,74,75].

The use of Geographic Information Systems, such as the Google Earth Engine (GEE)
cloud platform service, when combined with apps such as MapBiomas Brasil [91], with
medium and high spatial resolution images, allows for the identification of phenological
changes in ecosystems [89,92,93] and the mapping of land use and cover dynamics [94-97].
This facilitates orbital monitoring, generating time series that enable the characterization of
trends and patterns in the observed targets [98-100].

In the context of digital image processing, the main objective of this study was to
map the quantitative and spatiotemporal variations of water coverage areas using orbital
remote sensing datasets to estimate physical-hydric indices. The aim was to address some
of the limitations found in previous studies of the semi-arid region of northeastern Brazil,
particularly regarding the use of low- and high-resolution imagery. This study utilized
satellite images available on the Google Earth Engine (GEE) platform and spectral indices
used for the identification of water bodies, monitoring the dynamics of water bodies in the
state of Alagoas over a 20-year period, and comparing them with data from the MapBiomas
Rios (MBR) project along the East-West axis of Alagoas. The specific objectives included:
(I) establishing biennial time series of water bodies using the GEE cloud platform; (II)
identifying changes and patterns in the regional dynamics of surface water across the state
of Alagoas; and (III) comparing the effectiveness of different spectral indices used for water
body identification.

2. Materials and Methods
2.1. Study Area

The study area encompasses the entire state of Alagoas, including its climatic mesore-
gions (East, Agreste, and Sertao)—(Figure 1a) and elevation (m) derived from the Shuttle
Radar Topography Mission (SRTM) (Figure 1b), located in the NEB region. The state of
Alagoas has a total area of approximately 27,767 km? [101]. To the east, Alagoas borders
the Atlantic Ocean, with a coastal strip of 229 km; to the north (N), it borders the state of
Pernambuco; to the west (W), it borders Bahia; and to the south (S), it borders Sergipe.

Alagoas is divided into three climatic mesoregions (Figure 1a): Sertao, Agreste, and
East Alagoas [41,52]. It is situated between latitude 8°48'12"-10°29’12" S and longitude
35°09'36"-38°13/54" W. The state extends 339 km in the longitudinal direction (East-West)
and 186 km in the direction of its shorter axis (North-South) [18], with an average altitude
of approximately 300 m and an estimated population of 3,127,683 inhabitants, according to
the 2020 census [102].

Three climatic types are predominant in Alagoas. The East, characterized as the Zona
da Mata, has a tropical monsoon climate classification ("Am’). The Agreste, in the central
portion of the state, has a tropical climate with a dry winter ("Aw’). The Sertao, which
covers the entire western part of the state, is characterized by low air humidity associated
with high temperatures and is classified as BSh [103,104].
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Figure 1. Map of Brazil for the study area, highlighting the three mesoregions (a) and the spatial
variability of elevations (b) in the state of Alagoas. Data source: the Brazilian Institute of Geography
and Statistics (IBGE) [101].

2.2. Data Acquisition

Part of the results presented in this study were obtained using the GEE platform,
where datasets can be accessed and manipulated through an integrated development
environment (IDE) called the GEE Code Editor [105]. In the Code Editor, all scripts were
developed using the JavaScript programming language. The data used were obtained from
the MODIS sensor aboard the TERRA satellite, from the MOD14A1, MOD11A2, MODQ9A1,
and MCD43A3 libraries. The selected products are provided with atmospheric correction
and orthorectification, with a spatial resolution of 500 m [76,106,107].

For the retrieval of images of the state of Alagoas, the MBR 2.0 snippet for GEE (MBR
is part of the MapBiomas Project, which does annual Land Use Land Cover Maps of Brazil),
considering the period from 2003 to 2022 at biennial intervals, with the data averaged only
for the recurring year. To achieve the study’s objectives, spectral indices for water detection
from remote sensing images were employed, such as NDWI [60], MNDWI [61], AWEI [67],
albedo [86], and MBR 2.0 data.

2.3. Precipitation Data

Precipitation data were obtained from automatic and conventional meteorological
stations of the National Institute of Meteorology (INMET) [108], the National Water and
Basic Sanitation Agency (ANA) [14], the Institute for Innovation in Sustainable Rural
Development of Alagoas (EMATER), the National Center for Monitoring and Early Warning
of Natural Disasters (CEMADEM), the Brazilian Institute of Geography and Statistics
(IBGE) [102], and the Pernambuco Agency for Water and Climate (APAC) [109]. These
data were subjected to quality control due to adverse failures or missing precipitation
data. Failures and missing data in meteorological stations are common, with missing data
reaching up to one-third of the data collection period in some cases [43,110].
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To fill in the gaps in the data, multiple imputation was performed for up to 10% of
the missing data from meteorological stations, taking into account the distance between
the nearest neighboring stations and those at the same latitude [25,111]. In the context of
validating precipitation data, the application of the EM algorithm can assist in estimating
missing values and identifying patterns and trends in the data, improving the consistency
and quality of the time series [112,113]. This approach has been successfully used in various
hydrological and climatic studies, demonstrating its effectiveness in validating and filling
precipitation data [114,115]. This procedure enabled the generation of a representative set
of precipitation information reflecting the spatiotemporal variability of rainfall in Alagoas
during the study period, minimizing errors and inconsistencies in the data [24,116].

Meteorological Characterization of the Data

The analysis of water bodies’ response to climatic variations, particularly during ex-
treme events such as El Nifio and La Nifia, requires a rigorous methodology to understand
water dynamics in the face of water stress [19,117]. Between 2003 and 2022, critical years
were identified that exemplify extreme conditions of both drought and intense precipitation,
with these climatic phenomena associated with El Nifio and La Nifia events [118,119]. This
association was confirmed through the analysis of the obtained rainfall data and corrob-
orated by information captured from both biophysical indices and the annual mean of
surface temperature (Tsup) [19,34,120].

Based on the analysis of climatic data associated with extreme events and the average
of El Nifio and La Nifia, years with characteristics of drought or high rainfall were identified,
ranging from moderate to extreme intensity. Among the years studied, the series from the
interval of 2003 to 2021 was selected, with data collected biennially, averaging only the odd
years plus the addition of the year 2022 to the data range of this study, thus comprising
eleven time series of rainfall and biophysical data. The analysis considered the relationship
of these events with the occurrence of El Nifio and La Nifia phenomena [119,121]. This
approach follows the research line proposed by Marengo et al. [121,122], which examines
the implications of El Nifio and La Nifia events on regional climate variability [123,124].

2.4. Pre-Processing

The preprocessing of raster images obtained on the GEE platform is a crucial step in
the analysis of water indices. Using JavaScript programming, specific spectral bands are
combined to calculate indices such as NDWI, MNDWI, AWEI, albedo, and Tsup. The final
product mitigates atmospheric interferences, such as aerosols and particles, and corrects
reflectance errors, scattering, and diffusion, resulting in images with reduced error.

Subsequently, the images were reprojected to the SIRGAS 2000 geodetic reference
system, UTM zone 24S, to ensure geospatial accuracy. In QGIS (Quantum Geographic
Information System) version 3.28, the images were cropped using a shapefile (SHP) for
the state of Alagoas, obtained from the IBGE [101], which provides free shapefiles for the
geopolitical divisions of the country.

The shapefiles were used within the GEE platform to automate the clipping process
on the raster images generated and already calculated with the water indices, ensuring that
the analysis was restricted to the geographical boundaries of Alagoas. The pre-processed
raster layers were then retrieved from Google Drive, downloaded to the local computer,
and exported to QGIS for data analysis.

Finally, thematic maps and the extraction of quantitative and qualitative water data
were performed in QGIS using internal tools and Python-based plugins. This method
facilitates the acquisition of relevant water parameters and enables a detailed analysis of
the spatio-temporal variability of water conditions in Alagoas.

2.5. Calculation of Hydro-Physical Indices

In this study, a biennial interval starting from 2003 was employed, utilizing only the
representative mean for each specific year (ex. 2003, 2005, ..., 2022). The biophysical



Climate 2024, 12, 150

7 of 37

indices NDWI, MNDWI, AWEI, and albedo were computed using the GEE platform, which
automatically performs a cleaning and calibration of each raster image as mentioned before.
The NDWI was proposed by McFeeters [63] and is used for detecting and monitoring
changes in water content. The NDW1 is calculated based on the reflectance of the green band
(pGreen) and the reflectance of the near-infrared band (pNIR), as shown in Equation (1):

(pGreen — pNIR)
(pGreen + pNIR)

NDWI = 1)

The NDWI may confuse urban targets with water bodies [61] and fail to enhance
flooded areas with shallow depth [125]. In this regard, Xu [61] proposes a modification
of the NDWI proposed by McFeeters [60]. The modified water index, MNDWI [61], was
used for the extraction of flooded areas and explores the different spectral responses of the
infrared and visible regions [126]. The MNDWI allows for better delineation of open water
bodies and wetter areas, calculated by the ratio between the reflectance of the green band
(pGreen) and the shortwave infrared band (pSWIR1), Equation (2):

(pGreen — pSWIRI1)
MNDWI =
(pGreen + pSWIR1)

(2)

The AWEI, suggested by Feyisa [47], is an advanced technique developed to improve
the detection and extraction of water surfaces from remote sensing images based on five
spectral bands (blue, green, NIR, SWIR 1, and SWIR 2). The AWEI effectively maximizes
the contrast between water and other dark surfaces, such as shadows and buildings with
similar reflectance patterns.

The AWEI has two variants: AWEInsh (AWEI non-shadow) and AWEIsh (AWEI
shadow). AWEInsh is designed to effectively suppress non-water pixels, including built-up
areas and exposed soils, while AWEIsh aims to enhance water extraction accuracy by
removing shadow pixels that may not be completely eliminated by AWEInsh [67]. AWEIsh
is particularly useful in regions with significant shadow presence and other dark surfaces,
although it may lead to the misclassification of some highly reflective targets as water [67].

AWEInsh = 4 x (pGreen — pSWIR1) — (0.25 x pNIR + 2.75 x pSWIR2) 3)

AWEIsh = pBlue + 2.5 x pGreen — 1.5 x (pNIR + pSWIR1) — 0.25 x pSWIR2 ~ (4)

In the present study, the AWEInsh (AWEI non-shadow) spectral index was chosen for
characterizing water bodies in the state of Alagoas, considering the specific characteristics of
the study area. The choice of AWEInsh is justified by its ability to effectively suppress non-
water pixels, including exposed soil and sparse vegetation, which are prominent features
of the Alagoas landscape. Unlike other spectral indices, such as NDWI and MNDWI,
which may experience confusion between water and other targets with similar spectral
responses [62,127], AWEInsh demonstrates greater robustness in discriminating between
classes in areas with mixed coverage.

Surface albedo, along with hydro-physical indices, plays a crucial role in monitoring
and understanding natural resources. Through albedo analysis, it is possible to infer
important characteristics of the Earth’s surface, such as vegetation cover, the presence
of wetlands, and changes in land use and land cover [128]. Albedo plays a significant
role in climate and environmental systems for its role in radiation balance, particularly in
modulating the absorption of solar radiation received by the earth’s surface [129].

ahoa = (0.215 X p1) 4 (0.215 x p2) + (0.242 x p3) + (0.129 X p4) )
+(0.101 x p5) + (0.062 x p6) — (0.036 X p7)

Considering the ability of the GEE platform to automatically adjust various atmo-
spheric effects in its processed products, it was not necessary to implement additional
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correction procedures for the raster images of both albedo and other indices. This feature is
highlighted by Gorelick et al. [105], who elucidate the functionality of GEE in providing
an extensive archive of pre-processed satellite imagery and geospatial datasets, where
atmospheric corrections are applied automatically.

2.6. Classification and Extraction of Water Bodies Using MapBiomas Rios 2.0

The characterization of water bodies was based on the use of products from the MBR
2.0 project, which were processed and classified using Landsat series raster data with a
spatial resolution of 30 m [130]. The process relied on machine learning algorithms via the
GEE platform and the MapBiomas Project, part of the MapBiomas Brazil [91], an initiative
focused on mapping the dynamics of surface water and water bodies across Brazil since
1985, using images from the Landsat 5, 7, and 8 satellites and currently covering the period
from 1985 to 2023.

After completing the necessary procedures to obtain the image series on the GEE
platform, including selecting libraries, location, area, and sequence of years, the data were
stored and made available for download on Google Drive. The classification of MBR rasters,
clipping, calculation of water body areas, and development of thematic maps were carried
out in QGIS 3.28.8 Firenze.

2.7. Sampling of Water Body Values

After acquiring raster images containing relevant indices through the GEE platform
and MapBiomas 2.0 applet (Figure 2), these products were processed and downloaded
from the GEE cloud; they were then used to create the maps presented in this article,
conducting both quantitative and qualitative analyses. Given the vast number of pixels in
each image (where each pixel represents a unit of information), a sampling of these data
was performed.

* Droughts;

* Climate change; \©
* Water shortage; ‘
* Anthropogenic Impacts;

- Aquatic Ecosystems Degradation. G0ogle Earth Engine

ax
elif label
ax. text(x!
else:
offset = (-0.001, 5) if i %2 =0
ax.text(x[1] + offset(a], y[i] + of

a NDVI

Summary results and e
water bodies impacts

MNDWI
AWEInsh
* MapBiomas Rios 2.0

Figure 2. Sequence of tools used in the study, followed by data retrieval from the study area and the
tools used up to the final results, such as thematic maps and index databases.

This operation involved applying the raster file areas to a vector layer (shapefile point
files), thus facilitating the extraction of information through the use of specialized tools.
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This approach allowed for sampling of the data (image pixels) in the calculated indices,
reducing the number of data points captured from over 39,000 pixels to 998 points, thereby
decreasing the number of pixels data points by 97.4%.

The information retrieved by this method allowed for the acquisition of geolocation
data and specific index values for each point, which were then organized into a tabular
format and exported to data manipulation software such as Excel [131,132]. Using the
retrieved values, it was possible to generate graphs and corresponding numerical correla-
tions. These data were extracted and transferred to Excel, enabling a detailed analysis of
both numerical and graphical aspects.

Additionally, a unitary classification of the pixel values was performed, recoding
them to reflect land use, land cover, and water body classifications consistent with the
methodologies applied by MBR 2.0. This process was facilitated by the use of the r.recode
tool applied to the raster images. The application of r.report allowed for the quantification
of the classified data, expressing the results in square kilometers for each classified category
relative to the index (Figure 2).

3. Results and Discussion

Figure 3 shows the annual average of the spatiotemporal distribution of NDWI during
the study period. NDWI values range from —1.00 to 1.00; however, for this study, values
lower than —0.74 and higher than 0.28 were not observed, indicating moderate levels
of turbidity or influence on the mean pixel values in water bodies. According to Yang
etal. [70], NDWTI is an effective index for water body extraction, capable of enhancing water
features and suppressing the response from other targets, such as vegetation and soil.

The area I represented on the NDWI thematic map Figure 3, as well as on the others
(MNDWI, AWEInsh, resampled MBR, albedo, Tsup) thematic maps in this paper, partially
corresponds to the Sao Francisco River within the geopolitical division of the state of
Alagoas at LAT/LONG coordinates 9.267° S/38.265° W; 9.645° S/37.625° W, near the
city of Paulo Afonso and Paulo Afonso Hydroelectric Power Plant at the state of Bahia.
Area Il is located near the mouth of the Sdo Francisco River in the Atlantic Ocean at
LAT/LONG coordinates 10.072° S/37.011° W; 10.449° 5/36.157° W, and area III represents
the Manguaba, Mundat, Roteiro lagoons, and the Coruripe River, from right to left and
from top to bottom, with LAT/LONG coordinates 9.576° S/36.098° W; 10.022° 5/35.676° W,
all these water bodies flowing into the Atlantic Ocean.

The NDWI thematic maps highlighted a characteristic of homogenization in agricul-
tural and natural vegetation areas, except for water bodies. Spectral smoothing, particularly
in vegetated environments, aims to facilitate the observation of areas with water coverage.
This corroborates the findings of Xie et al. [127], which demonstrated that NDWI can
have limitations in distinguishing between water bodies and other dark surfaces, such as
shadows and urban areas.

The range of values between —0.25 and 1.00 appears in the thematic geospatial maps
as areas covered by water bodies, such as lakes, ponds, or rivers, while the largest areas
are situated between —1.00 and —0.25. This highlights areas of land use, exposed soil,
planting, or native forests in the state of Alagoas. According to Wang et al. [64], positive
NDWI values are generally associated with water pixels, while negative values correspond
to other types of land cover.

In this study; it is considered that the range of values from —0.25 to 1.00 has the highest
reliability for detecting water bodies. However, the range of values from —0.25 to 0.00
may reflect moisture conditions around rivers and reservoirs with respect to the NDWI.
This interpretation aligns with the observations of Huang et al. [56], who indicate that
NDWI values near the threshold between water and non-water classes may represent wet
transition zones adjacent to water bodies.
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Figure 3. Annual average of the spatiotemporal distribution of NDWI in Alagoas, between 2003
and 2022.

When analyzing the NDWI maps (Figure 3) and MNDWI maps (Figure 4), it is ob-
served that in the years 2003, 2013, 2015, and 2017—periods marked by moderate to extreme
El Nifio events [19,120]—the western portion of the state of Alagoas shows distinct values
for each index. For the NDWI, values between —0.45 and —0.25 are highlighted, contrasting
with the other years, while for the MNDWI, the values from —1.00 to —0.60 are most promi-
nent, indicating low moisture in the western region of the state. Additionally, there are no
anomalous values or discontinuities related to moisture levels in this semi-arid region.

According to Yang et al. [70], NDWI may exhibit inconsistencies in detecting water
bodies in arid and semi-arid regions during extended drought periods [133], such as those
observed during intense El Nifio events in Northeast Brazil [119]. In similar scenarios, the
drastic reduction in precipitation leads to the disappearance or significant decrease of water
levels in intermittent rivers and reservoirs, further complicating the spectral discrimination
between water and other targets by NDWI. Martins et al. [117] said since the accuracy of
the detection from satellite images depends on several factors, including the type of object
being detected and the quality of the satellite image [134].
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Figure 4. Annual average of the spatial-temporal distribution of the MNDWI water index in the state
of Alagoas, between 2003 and 2022.

In contrast, MNDWI demonstrates greater robustness in identifying water features
even under adverse conditions, as evidenced by the higher spatial-temporal coherence of
index values during El Nifio years compared to NDWI [135,136]. This is due to MNDWTI's
higher sensitivity to variations in the spectral response of water and its greater ability to
suppress the influence of other targets, such as vegetation and exposed soil [62,137].

Souza used the MNDWI to analyze the spatial-temporal variability of water bodies in
the Sao Francisco River transboundary region and showed that the water content in the
study area was generally low, with no significant variations over time, but with an increase
in the water bodies, mainly due to the construction of a reservoir in the Brazilian semi-arid
region [138]. Similarly, Silva applied the MNDWTI to assess the distribution and availability
of surface water in Northeast Brazil, demonstrating the index’s capability to capture the
region’s hydrological response to extreme climate events [27].

The use of the biophysical index AWEI in studies since 2014 has demonstrated its
effectiveness in identifying and mapping water bodies in various environmental contexts.
Yang et al. [70] utilized the AWEI to map the spatial and temporal distribution of water
resources in the Yellow River Basin in China, highlighting the index’s capability to detect
variations in the extent and quality of surface water. Xie et al. [127] applied the AWEI to
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assess water quality across China, demonstrating the index’s robustness in distinguishing
between clean and polluted water.

In this study, the application of AWEInsh (Figure 5) in the state of Alagoas revealed
distinct spatiotemporal patterns in the distribution of water bodies and wetter zones across
the East-West axis, with significant variations in the extent and connectivity of surface
water resources over the analyzed period (2003-2022). The thematic maps generated from
AWEI enabled a more precise characterization of water-covered areas, highlighting the
index’s sensitivity to seasonal and interannual changes in both regional water availability
and seasonal humidity throughout the year.
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Figure 5. Annual average of the spatiotemporal distribution of AWEInsh in Alagoas, between 2003
and 2022.

Compared to other spectral indices, such as NDWI and MNDWI, AWEI demonstrated
a greater ability to discriminate between water and other targets with similar spectral
responses, reducing confusion among land use and land cover classes such as water bodies,
exposed soil, and areas with vegetation [67,70,127]. This improvement in mapping accuracy
is supported by recent studies highlighting AWEInsh effectiveness in distinguishing water
features from other targets, even in complex environmental conditions [137,139,140]. This
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is likely due to its greater ability to minimize the influence of non-water features, such as
exposed soil and vegetation.

The increased accuracy in detecting water bodies provided by AWEInsh is crucial for
both research and a better understanding when applying water resource management in
Alagoas, especially in the context of growing anthropogenic pressure caused by human
activities and climate change [141,142]. Due to the rising anthropogenic pressure from
agricultural expansion, deforestation, and urbanization, the negative impacts on water
resources are intensified, contributing to the degradation of water bodies, decreased soil
moisture [142,143], as well as the depletion of soil physical-chemical properties and water
contamination. These land use and land cover changes alter hydrological dynamics,
affecting infiltration, surface runoff, and aquifer recharge [144,145].

The use of AWEInsh in conjunction with MNDWI for the spatiotemporal characteri-
zation of water bodies in Alagoas facilitates a significant improvement in monitoring and
understanding regional water dynamics [144,146]. During the analysis of MNDWI maps
(Figure 4) and AWEInsh (Figure 5), it is observed that in the years 2003, 2013, 2015, 2017,
and 2019, there was a significant decrease in moisture in the region due to low rainfall, as
evidenced by the lower values in the spectral indices.

Figure 6 illustrates the spatiotemporal distribution of surface albedo in the state of
Alagoas between 2003 and 2022. Albedo, defined as the proportion of incident solar
radiation reflected by a surface [147], ranges from 0.00 to approximately 1.00, with values
observed between 0.00 and 0.36 for the study area. The highest values, around 0.36, are
found in the white sand dunes of Piacabucu, near the mouth of the Sao Francisco River,
corroborating the findings of Dantas [148] and Costa [149].

The lowest albedo values are typically associated with water bodies, wetlands, and
wet soils, while the highest albedo values are generally found in dry land or bare soil, as
observed in some studies [129,150]. These reduced albedo values in water surfaces and
dense vegetation are consistent with previous studies conducted in different regions of
Brazil [151,152].

In areas with typical Caatinga vegetation, agriculture, and pastures, albedo values
are intermediate, starting at approximately 0.20 (Figure 6). These results align with prior
research investigating the spectral behavior of albedo in different types of vegetation and
land use in the Brazilian semi-arid region [153].

The albedo value range between 0.25 and 0.30, peaking at 0.30, predominantly high-
lights non-vegetated areas, urban infrastructure, and desert regions, such as the white sand
dunes in Piagabucu [47]. This variation in albedo values reflects the heterogeneity of land
cover and the influence of factors such as substrate composition, vegetation presence, and
surface moisture.

The spectral behavior pattern of albedo revealed a clear distinction between water
bodies (at minimum values) and natural vegetation areas, corroborating the geospatial and
quantitative data from the MapBiomas Project [51,154]. The trend analysis conducted in
this study detected a significant decrease in vegetation and water body areas, consistent
with the results obtained from the MNDWI, AWEI, and albedo indices.

In the years 2003, 2013, 2015, 2017, and 2019, images show a reduction in moisture, cor-
roborating the patterns identified by the MNDWI and AWEI indices (Figures 4 and 5). This
decrease in moisture can be attributed to various factors, such as prolonged droughts [19]
caused by extreme El Nifio events, changes in land use and cover [155], and the intensifica-
tion of anthropogenic activities in the region [156].

Mariano et al. [157] point out that surface albedo plays a significant role in the surface
energy balance, being one of the main drivers of the evapotranspiration process in the
partitioning of sensible and latent heat fluxes. Over time, a well-defined spectral behavior
pattern is also observed over the western region of the State of Alagoas, where there is an
increase in albedo values in the area corresponding to the Agreste region in eastern Alagoas
(Figure 6).



Climate 2024, 12, 150

14 of 37

37°59'W

378w

36°17'W

36°17'W

36°17W

35°26'W

35°26'W

35°26'W

37°8'W 36°17'W 35°26'W 37°59'W 37°8'W 36°17TW 35°26'W

37°8'W 36°17'W 35°26'W b 37°8'W 36°17'W 35°26'W

36°17'W 35°26'W 37°8'W

36°17W 35°26'W

LEGEND
[ State of Alagoas
and Mesoregions
Albedo
= 888 }_ g?g 40 0 40 80 120km
.00 |— 0. ————
0 0.151—020
Bl 020 ‘7 0.30 Geographical Coordinate System
_ Projection LAT/LONG
- 030[—035 Datum SIRGAS 2000
0.35|—0.45 Scale 1:3,300,000
045 ]—1.00 Source: Google Earth Engine, IBGE.

Figure 6. Spatiotemporal Distribution of the Surface Albedo Biophysical Parameter in the State of
Alagoas, from 2003 to 2022.

In the annual quantitative analysis of NDWI, the most critical period concerning the
water condition in the State of Alagoas is noted for the years 2020 and 2021. However,
when analyzing other indices, differences are observed in the years with the lowest water
availability. For MBR 2.0, the most critical year is 2021, while for MNDWI it is 2019, and for
AWEInsh it is 2017 (Table 1) [56,137].

The variation in water body detection across different indices can be attributed to
differences in sensitivity to drought conditions and the specific characteristics of water
bodies during each period [56,137]. The annual data show that for water bodies and
potential wet areas, NDWI values range from 200.0 km? to 319.2 km?, while MNDWI
varies from 220.1 km? to 423.4 km?, and AWEInsh ranges from 330.0 km? to 432.2 km?. In
comparison, the more stable and consistent values from the MapBiomas Rios (MBR) 2.0
dataset range between 304.8 km? and 400.9 km?, reflecting a more moderate response to
temporal and spatial variations in water coverage. This variation in water body detection
area between NDWI and MNDWT  is consistent with a brief study conducted by Gil et al.,
2019 [158].
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Table 1. Table of values for the biophysical identification of areas covered by water bodies according
to the index ratios (MBR, AWEInsh, MNDWI, NDWI) and the calculated values from resampled MBR
2.0 data in the State of Alagoas, between 2003 and 2022.

Indices/Year 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
MBR 367.1 394.2 397.1 391.9 400.9 395.2 396.2 385.4 371.4 354.5
Resampled MBR 366.4 391.1 393.6 389.7 398.2 390.6 392.5 378.6 368.4 349.3
AWEInsh 405.3 415.7 4153 407.3 432.2 399.7 424.9 396.8 406.5 399.7
MNDWI 3424 4234 346.6 317.2 367.9 337.0 349.3 315.0 338.0 270.0
NDWI 309.9 319.2 260.9 239.4 259.9 244.5 252.8 205.4 218.1 200.0
Indices/Year 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
MBR 332.2 324.2 317.1 308.6 312.3 313.3 309.0 314.1 304.8 376.0
MBR resampled 324.3 317.5 310.9 303.3 309.7 310.7 305.3 3114 303.1 371.8
AWEInsh 375.8 377.7 371.3 413.0 330.0 333.2 342.2 371.8 358.4 426.1
MNDWI 270.0 286.4 235.2 226.7 235.5 222.8 220.1 246.7 262.2 409.8
NDWI 200.0 196.1 191.7 189.2 183.8 168.9 165.5 162.5 165.0 200.5

Regarding the resampled MBR as illustrated in the spatiotemporal distribution shown
in Figure 7, values show a high degree of alignment with the original MBR dataset, with
values ranging between 303.1 km? and 398.2 km?. This consistency demonstrates that
despite being resampled from 30 m to 500 m resolution, the resampled MBR dataset still
provides an accurate representation of water bodies.

The minimal differences between the original and resampled MBR values, typically
within a margin of error of 0.5-1.5%, highlight the reliability of this dataset for detecting
water body dynamics even at lower spatial resolutions. This proves advantageous in large-
scale temporal analyses, where higher-resolution datasets might not always be available or
feasible to use due to computational limitations.

The areas covered by water bodies during the most critical years range from 199.99 to
165.48 km?, indicating a significant reduction in the extent of water surfaces compared to
other years in the spatiotemporal analysis. This decrease may be associated with various
factors, such as prolonged droughts [19], changes in land use and land cover [159-161],
and increased demand for water resources due to economic activities [156].

On the other hand, the years from 2003 to 2022 stand out for having the largest
amounts of water-covered areas, with values of 303.1 and 398.7 km? (Figure 7). These
results suggest a higher availability of surface water during these periods, possibly related
to more favorable climatic conditions, such as the occurrence of wetter years [162], and a
lower anthropogenic pressure on water resources [163].

It is important to emphasize that, in addition to the differences in the identification
of water bodies by spectral indices, the characteristics of the images used also influence
the results obtained. The data from the MBR 2.0 project and the MapBiomas 8.0 collec-
tion are derived from Landsat satellite images, which have a spatial resolution of 30 m,
corresponding to an area of 900 m? per pixel [164].

On the other hand, images acquired by MODIS sensors onboard the Terra and Aqua
satellites have a spatial resolution of 500 m, which equals an area of 250,000 m? per
pixel [76]. This difference in spatial resolution has direct implications for the detection and
discrimination of targets.

The pixel, being the basic unit of the image, represents the average reflectance values
of the elements present in the corresponding area on the ground [144]. Thus, the lower
spatial resolution of MODIS sensors ends up incorporating the spectral response of mixed
targets in the landscape, such as riparian vegetation bordering water bodies [67]. This
spectral mixing effect can lead to an underestimation of the actual extent of water surfaces,
especially in areas with smaller water bodies or dense surrounding vegetation [56].
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Figure 7. Annual average of the spatiotemporal distribution of resampled MapBiomas Rios from
30 m to 500 m spatial resolution in Alagoas between 2003 and 2022.

This inherent limitation of the spatial resolution of MODIS data was evidenced in the
results presented in Table 2. When comparing the areas of water bodies mapped by the
NDWI and MNDWI indices with the values obtained from MBR 2.0, there is a systematic
overestimation by the spectral indices. This discrepancy can be attributed, in part, to the
lower spatial resolution of MODIS images, which tend to aggregate the spectral response
of water with that of adjacent targets, such as riparian vegetation [56]. It is worth noting
that the values of AWEInsh do not follow the same pattern as indices such as MNDWI
and NDWIL

Previous studies corroborate these findings, highlighting the influence of spatial reso-
lution on the accuracy of water body mapping. Lima et al. [165] compared the performance
of different spectral indices derived from Landsat and MODIS images in detecting reser-
voirs in the Brazilian semiarid region, observing a consistent underestimation of water
areas by MODIS data compared to the results obtained with higher spatial resolution
Landsat images.
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Table 2. Spatiotemporal comparison of water-covered areas between the NDWI, MNDWI, and
AWEInsh physical-hydrological indices, MBR 2.0 and resampled MBR 2.0, including mean, standard
deviation, and coefficient of variation (CV) of the values found in the State of Alagoas, from 2003

to 2022.
Year 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
Mean 358.22 388.72 362.70 349.10 371.81 353.41 363.15 336.23 340.48 314.70
SD 35.18 41.25 62.30 70.58 66.56 65.95 67.33 79.77 72.58 79.32
Ccv 9.82% 10.61% 17.18% 20.22% 17.90% 18.66% 18.54% 23.72% 21.32% 25.20%
Year 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
Mean 300.45 300.37 285.25 288.17 274.26 269.77 268.41 281.31 278.69 356.84
SD 67.59 66.92 71.30 86.32 62.22 70.66 73.12 79.79 72.17 90.34
Ccv 22.50% 22.28% 24.99% 29.95% 22.69% 26.19% 27.24% 28.36% 25.89% 25.32%

Analyzing the presented results, it is evident that the water-covered area values
mapped by the spectral indices NDWI and MNDWI show significant differences compared
to the data quantified by the MBR 2.0 project. This discrepancy is exemplified by the
year 2003, where the extent of water bodies detected by MNDWI was 342.43 km?, while
MapBiomas indicated an area of 367.12 km?. This overestimation by MNDWT is consistently
observed throughout all the analyzed years, due to the different sensors used during
the research.

Figure 8 illustrates, in a bar chart, the areas in km? covered by water bodies, character-
ized using annual values of hydrophysical indices such as AWEI, NDWI, MNDWI, MBR
2.0, and resampled MBR 2.0.
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Figure 8. Spatiotemporal comparison of the detection capability of hydrophysical indices for areas
covered by water bodies between NDWI, MNDWI, and AWEInsh values calculated in MBR 2.0 and
resampled MBR 2.0 in the State of Alagoas, between 2003 and 2022.
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This may introduce a certain degree of uncertainty in the characterization of water
resources, as pixels with lower resolution, used in MODIS images, tend to aggregate
the spectral response of different targets, such as water and vegetation, resulting in a
possible underestimation of the actual extent of water areas [56]. This spectral mixing effect
is particularly relevant in regions with smaller water bodies or significant surrounding
vegetation [70].

Previous studies support the influence of spatial resolution on the accuracy of water
body mapping. Silva [166], when analyzing the Sao Francisco and Parnaiba river basins,
found absolute differences ranging from 11% to 19% in the extent of water bodies mapped
by spectral indices derived from images with distinct resolutions. These results highlight
the importance of considering the characteristics and limitations of remote sensing data
used in the analysis of regional hydrological dynamics [167].

It is worth noting that, even with high precipitation levels for the state of Alagoas,
the spatial distribution of rainfall may not favor the geographic location of rivers, lakes,
and reservoirs (Figure 9). Proximity to the Atlantic Ocean plays a significant role in
the distribution of precipitation in Alagoas, as moisture from the ocean is transported
to the mainland by trade winds, promoting cloud formation and rainfall in coastal and
adjacent regions [18,43]. Additionally, the presence of mountainous regions, such as
the Sertao Alagoano, also influences the spatial distribution of precipitation due to the
orographic effect, where moist air is forced to rise over the topographic barrier, resulting
in higher precipitation on the windward slopes and lower precipitation on the leeward
slopes [103,110].

This complex interaction between atmospheric systems, sea surface temperature (SST)
anomalies, extreme climatic events, and local geographic features, such as proximity to the
ocean and topographic composition, results in a heterogeneous distribution of precipitation
in the state of Alagoas, which may not directly favor the location of water bodies, especially
during periods represented in a typical flow in periods of water scarcity [168]. Recent
studies have highlighted the complexity of precipitation distribution in Alagoas and its
impacts on water availability. Oliveira-Junior et al. [169] analyzed wet and dry periods in
the state using the Standardized Precipitation Index (SPI) and found a high spatiotemporal
variability of rainfall, with occurrences of extreme drought and rainfall events over the past
decades. This variability can lead to a significant reduction in annual water quantities in
water bodies, especially during prolonged drought periods, as is the case in NEB regions,
which are further vulnerable to the pressures of anthropogenic actions [19,109].

Understanding the spatiotemporal variability of water bodies, as demonstrated by the
spectral patterns of water indices, is directly conditioned by the high climatic variability
in the state of Alagoas, especially when observing the eastern axis of the region (Figure 8).
Research conducted in the region shows the interaction between vegetation biomass change
patterns and precipitation, such that the absence of rain favors the dynamics of dry vegeta-
tion known as Caatinga or Brazilian savanna [170,171] in the western axis.

Figure 10 illustrates the spatiotemporal distribution of Tsup in the state of Alagoas
between 2003 and 2022. The spatiotemporal analysis of this biophysical parameter reveals
the occurrence of high values, primarily from the eastern to the western part of the state,
characterized by the scarcity of water bodies and a semi-arid climate. The behavior of
water bodies over time in the semiarid region [27] was analyzed, and water body areas
were characterized in the NDWI and MNDWI indices, with pixel values obtained ranging
between —0.25 and 1.0 (Figures 3 and 4).
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Figure 9. Annual precipitation (mm) for the EI Nifio years (2003, 2015, 2019) and La Nifa years (2007
and 2022) in the state of Alagoas. Source: INMET [108], APAC [109], authors (2023).

This result demonstrates significant relevance concerning albedo, contributing sub-
stantially to the scope of the study by highlighting the relationship between high Tsup and
higher reflectance in the albedo spectrum, particularly in semi-arid or desert areas associ-
ated with exposed soil during extreme droughts, a common condition in the region [161].

Additionally, it is possible to observe the formation of intense heat islands in certain
regions over time, especially during extreme El Nifio events [172]. These heat islands and
large warm masses, identified by pixels with red hues indicating high temperatures, are
noteworthy [156]. Tsup values in the state of Alagoas generally range between 20.0 °C and
40.0 °C, with recorded temperatures up to 43.4 °C during the year 2015 (Figure 8).

The integrated analysis of biophysical parameters such as Tsup shown in Figure 10,
and albedo is essential for understanding the patterns of energy exchange processes [173]
between the Earth’s surface and the atmosphere, as well as for evaluating the impacts of
climate change [174,175] and anthropogenic activities [176].
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Figure 10. Space-time distribution of surface temperature (Tsup) in the state of Alagoas, between
2003 and 2022.

The microclimate is strongly influenced by the type of surface cover and the rainfall
regime. Changes in vegetation cover modify energy distribution patterns, significantly
impacting key variables such as temperature and relative humidity [43]. In areas with
dense vegetation cover, producing a thermoregulatory effect of the local microclimate.
These factors are characterized as ecosystem services provided by total or partial non-
suppression of native vegetation cover [177], as clearly observed in Figure 9 in the eastern
region of Alagoas.

However, it is important to note that during periods of high precipitation volume asso-
ciated with La Nifia events, milder temperatures are observed [19,119]. This phenomenon
can be exemplified by the years 2007, 2011, and 2022, in which accumulated temperatures of
37.8 °C, 38.8 °C, and 35.8 °C were recorded, respectively—values lower than the historical
average for the region according to Figure 9 and Table 4.

The relationship between vegetation cover, precipitation regime, and Tsup is supported
by recent studies. Yu [178] analyzed the influence of vegetation and precipitation on the
variability of surface temperature [179] in northwest China, in which the dynamics related
to Tsup are similar to those observed in the Brazilian semi-arid region., highlighting the
thermo-hydro-regulatory role associated with vegetation and the moderating effect of
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rainfall on temperatures. Similarly, ref. [156] emphasized the importance of vegetation
cover in moderating temperatures and maintaining moisture in semi-arid regions, especially
during periods of water scarcity [168].

Table 3 presents the statistical parameters and temporal variability of the hydro-
physical parameters for the state of Alagoas between 2003 and 2022. Analysis of the
raster images and the relationship of the hydro-physical indices NDWI, MNDWI, and
AWEInsh reveal a space-time behavior pattern of medium variability, with the CV values
ranging between 11.69% and 17.78%. These values highlight the influence of climatic and
anthropogenic factors on the dynamics of water resources in semi-arid regions.

Table 3. Table of values comparing physical-hydrological indices, AWEInsh, NDWI, and MNDWI
obtained during the study, for the state of Alagoas in years of more extreme meteorological conditions,
between 2003 and 2022.

2003 2005 2007 2009 2011 2013 2015 2017 2019 2021 2022
Min 282055  —250771 —248569 —25479.0 —253389 275270 —27,082.6 —266623 —27287.6 —253686 —23,910.0
Max _1314 839 547.5 58.9 947.4 97.1 ~1152.0 88.6 249 106.0 649.0
Mean ~ —194123 —189408 —186788 —18771.3 —185194 —19459.1 —19,6032 —19,657.9 —195553 —19,0540 —18439.7
AWEInsh — vipp 190384 189556 187405 188496 186716 —193000 195106 196338 194089 —190511 —18582.0
sD 3119.1 2645.6 2497.6 2607.4 2325.6 2838.6 30147 26332 27605 2391.0 2268.1
cv 1607%  1397%  1337%  13.89%  1256%  1459%  1538%  1340%  1412%  1255%  12.30%
Min 0726  —0695  —0705  —0702  —0700  —0706  —0719  —0683  —0734  —0708  —0.692
Max 0239 0.204 0.272 0245 0207 0.191 0.149 0.175 0.203 0.232 0.201
Wi Mean 0518  -0529  -054 0537  -0546  —0515  —0511 0510  —0551 0535  —0545
NDw MED 0530  —0533  —0545  —0541 —0.551 052  -0514  —0513  —0555  —0537  —0548
SD 0.083 0.066 0.068 0.064 0.064 0.070 0.072 0.067 0.072 0.064 0.064
cv 1605%  1254%  1261%  11.90%  1172%  1354%  1412%  1321%  13.05%  12.00%  11.69%
Min 063 0595 0593 0613 059 0629 0645 0607 0642 0638  —0.600
Max 0277 0337 0.384 0.271 0.395 0.337 0.133 0.331 0.249 0.312 0.393
Mean 0503  —0483  —0465  —0484  —0473  —0488  —0517  —0479  —0514  —0487  —0458
MNDWL y\pp —0516 —0497 —0.480 —0501 —0482 ~0.499 —0527 —0.489 —0527 —0501 —0.470
SD 0.080 0.074 0.079 0.080 0.075 0.075 0.073 0.068 0.071 0.084 0.081
cv 15.87%  1523%  1692%  1652%  1591%  1533%  1410%  14.28%  13.89%  17.16%  17.78%

The statistical analysis of NDWI, MNDWI, and AWEInsh from 2003 to 2022 reveals
their effectiveness in detecting and monitoring water bodies under varying climatic condi-
tions. NDWI consistently detects areas with low water coverage with minimal fluctuations,
and shows increased sensitivity to water presence during wetter years such as 2007. Its
coefficient of variation (CV) decreases over time, highlighting its stability in long-term
monitoring.

In general, the average annual values from the space-time analysis stand out, where
the Normalized Difference Water Index (NDWI) showed an average variation ranging
from —0.511 to —0.551 over time. Negative values of NDWI indicate the presence of dry
vegetation or exposed soil, while positive values are associated with water bodies and areas
with higher moisture [127]. However, its CV has slightly increased in recent years, likely
due to fluctuations in water availability linked to the rainfall regime during series years.

MNDWI exhibits higher sensitivity to both drought and high precipitation, with
moderate variability in detecting water bodies, particularly during wetter years such as
2021, obtaining average values ranging from —0.465 to —0.517, demonstrating its higher
sensitivity in detecting water features and suppressing background noise, such as built-up
areas and exposed soil [61,137]. Meanwhile, its CV has increased slightly in recent years,
probably due to fluctuations in water availability linked mainly to the rainfall regime or
land use changes too.

AWEInsh, the most variable index, is highly sensitive to interannual changes, with
significant fluctuations in water body detection, especially during extreme weather events
such as El Nifio. Over time, AWEInsh has shown increased stability, with its CV decreasing,
reflecting its growing reliability in detecting water bodies despite climatic variability.

The average between the years ranged from —18,440 to —19,658. Due to this scale
factor for this biophysical index, it is not possible to directly associate it with the patterns
of NDWI and MNDWI (-1.0 to 1.0). Only through the integration of normalized AWEInsh
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results with other data, such as high-resolution spatial images, precipitation data, and land
use and cover information, can a more comprehensive and reliable characterization of the
water dynamics in the studied region be achieved [168,180].

In addition to the evidence of space-time behavior patterns with medium to high
variability, the highest CV values are situated between 17.72% and 29.95% when compared
with Table 2. This significant variability in spatial and temporal distribution of rainfall
is a striking feature of the NEB, associated with the influence of atmospheric systems at
different scales, SST anomalies, and the occurrence of extreme climatic events such as El
Nifio and La Nina [19,52,119].

The graph in Figure 11a illustrates a negative correlation between NDVI and the water
surface area. The correlation coefficient R = —0.34 indicates a weak negative relationship,
suggesting that as the NDVI increases, the water surface area tends to decrease. This is
represented by the regression equation y = —477.82x + 515.67, where the slope of the line
reflects the inverse relationship. The Root Mean Square Error (RMSE) of 34.39 suggests a
moderate dispersion of data points around the regression line. NDVI primarily reflects the
health and density of vegetation, where higher NDVI values correspond to more abundant
or healthier vegetation. The negative correlation observed suggests that during periods of
increased vegetation density (i.e., higher NDVI values), the water surface area decreases,
possibly due to reduced precipitation or increased evapotranspiration.

The second graph, Figure 11b, shows a positive correlation between NDWI and the
water surface area, with a correlation coefficient of R = 0.41, indicating a low moderate
positive relationship between the variables. The regression equation y = 685.58x + 362.51
and RMSE of 33.30 suggest that the data points in this graph are more closely aligned
with the regression line compared to the NDVI analysis. NDWTI is specifically designed to
detect water bodies by enhancing the reflectance of water features while suppressing the
influence of vegetation and soil. The positive correlation suggests that higher NDWI values
correspond to larger water surface areas, as expected given that NDWI is more sensitive to
the presence of water.

Years such as 2015, 2016, 2018, and 2019, which are labeled in red and associated with
high-intensity El Nifio events, show small water surface areas associated with drought
conditions. These results may reflect effective water retention in reservoirs or changes
in water management practices that mitigate the reduction of surface water during dry
periods. Conversely, the blue-labeled years—2007, 2008, 2010, 2011, and 2022—associated
with high-intensity La Nifia events show lower scattered NDWI values and larger water
surface areas when compared with El Nifio events.

The results indicate that both indices are reliable in assessing water body dynamics, as
demonstrated by the negative correlation observed in Figure 11a and positive correlation
in Figure 11b. While NDVI provides useful information about vegetation cover, it is less
directly related to changes in water surface area, with the annual averages more dispersed
across the graph, particularly in regions where water bodies and vegetation overlap. In
contrast, NDWT is more focused on water body areas.

Table 4 presents information on albedo, Tsup, and summarized rainfall regime data.
For Ts, spatial-temporal behavior patterns of low variability were observed, with CV
ranging from 6.82% to 11.8%. These low variability values are not only related to the
homogeneity of land cover and topographic characteristics of the region [156].
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Figure 11. Correlation scatter plot with a regression line for maximum and minimum water surface
area (km?) versus (a) NDVI and (b) NDWI over a period of 20 years. The years in red text represent
the driest periods, blue text indicates the wettest years, and black text corresponds to periods with
low to moderate ENSO activity. The scatter points highlight the temporal variation in water surface
area relative to vegetation and water indices, with clear distinctions between drought and wet phases
based on ENSO classification events.

The analysis of albedo, surface temperature (Tsup), and annual total precipitation
from 2003 to 2022 provides valuable insights into environmental and climatic dynamics
during this period. Albedo shows relatively stable minimum values, ranging from 0.049
(2019) to 0.082 (2022), indicating consistent surface reflectance, possibly due to vegetation
or moisture content. Maximum values, from 0.207 (2011) to 0.259 (2003), suggest a slight
decrease in reflectance over time, which may reflect increased vegetation cover or reduced
bare soil exposure.

Albedo exhibited a pattern of medium variability, with CV values ranging from 11.68%
to 19.21%. This variability can be attributed to changes in land use and cover and variations
in surface moisture conditions [181]. Mean albedo values remained stable, ranging between
0.162 (2015, 2019) and 0.174 (2017), with decreasing variability as indicated by the coefficient
of variation (CV), which dropped from 12.64% (2003) to 9.33% (2022), suggesting greater
homogeneity in surface conditions.
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Table 4. Table of values comparing biophysical indices, albedo, temperature, and precipitation
obtained during the study in the state of Alagoas during years of extreme meteorological conditions,
from 2003 to 2022.

2003 2005 2007 2009 2011 2013 2015 2017 2019 2021 2022

Min 0.057 0.074 0.066 0.059 0.080 0.072 0.060 0.073 0.049 0.060 0.082

Max 0.259 0.251 0.228 0.226 0.207 0.258 0.241 0.242 0.234 0.216 0.209

Mean  0.164 0.166 0.166 0.163 0.163 0.169 0.162 0.174 0.162 0164  0.166

Albedo MED  0.162 0.165 0.166 0.163 0.163 0.169 0.161 0.173 0.161 0.165 0.167
SD 0.021 0.017 0.016 0.016 0.015 0.018 0.019 0.019 0.017 0.015 0.015

CV  1264%  10.09%  9.43%  9.69% 9.05%  10.77%  11.77%  10.70%  10.80%  9.27%  9.33%

Min 25470 25050 25.140 25960  25.140  25.690 25710  25.740 25570 25270 25310

Max 41170  39.130  37.820  40.610  37.420 41390 43390  40.840 42150  39.930  35.650

Toup (°C) Mean 32596 31560  29.790  32.861 30295 32409 34355 31555 32336 31607  30.064
MED 31560  31.080 29410 32.040  29.850 31.120 33530  30.870  31.690  30.930  29.750

SD 3.849 2.481 2.034 3.223 2.136 3.783 3.813 2927 3.081 3.196 2.119

CV  1181%  7.86%  6.83%  9.81% 7.05%  11.67%  11.10%  9.28% 953%  10.11%  7.05%

Min 329.6 467.3 226.9 489.4 211.7 238.1 316.3 456.8 404.0 4787 5987

Annual toral | Max 18567 20180 21333 24683 25645 23058 19025 25744 18955 23588 30933
ve o Mean  905.8 10775 11160 11884  1191.8  1044.1 926.5 1413.6  1028.0 11974 17494

precipitation  nrppy 850.6 1028.1 11250 11287 11972 1033.0 878.7 1380.9 952.5 11417  1804.2
(mm) SD 304.9 301.7 3438 369.4 467.3 4204 329.4 500.6 342.0 335.8 581.8

CV  3366%  28.00% 30.81% 31.09%  39.21%  40.26%  3555%  35.41%  3327%  28.04%  33.26%

This parameter is crucial for understanding the energy balance at the Earth’s surface
and is directly related to changes in land use and cover [16,149,182]. Lower albedo values
are observed in water bodies [150,183], while higher values are associated with exposed
soils without vegetation or desert areas [152].

It is important to note that Tsup is influenced by various factors such as water avail-
ability, vegetation, and meteorological conditions, which can present significant variations
at local scales [180,184], ultimately demonstrating that the region has a well-defined climate
with no extreme annual temperature changes. The minimum values of Tsup remained
stable, ranging from 25.05 °C (2005) to 25.96 °C (2009), while maximum values varied
significantly, from 35.65 °C (2022) to 43.39 °C (2015), reflecting periods of intense heat or
drought, particularly in 2015.

The average temperature fluctuated between 29.79 °C (2007) and 34.36 °C (2015),
with lower values corresponding to cooler years and higher values linked to heat waves
or reduced cloud cover. Water availability and climatic conditions influence the spatio-
temporal variability and temporal trends of biophysical parameters [153], considering that
higher average temperatures exceed 43 °C. The standard deviation (SD) decreased over
time, from 3.85 °C (2003) to 2.03 °C (2007), showing increased stability.

The coefficient of variation (CV), which dropped from 11.81% (2003) to 6.83% (2007),
suggests more consistent surface temperature patterns in recent years. It is notable that
Tsup plays a crucial role in energy and mass exchange processes between the Earth’s surface
and the atmosphere [185], serving as a valuable indicator of environmental and climatic
changes [156,186].

Finally, the average annual rainfall totals ranged from 885.81 mm to 1368.24 mm over
the analyzed period. Annual total precipitation exhibited greater variability, with minimum
values ranging from 211.7 mm (2011) to 598.7 mm (2022), reflecting increased consistency in
rainfall by 2022, likely due to La Nifia conditions. Maximum values ranged from 1856.7 mm
(2003) to 3093.3 mm (2022), indicating a general trend of higher precipitation in recent years.
Mean precipitation followed a similar upward trend, from 905.8 mm (2003) to 1749.4 mm
(2022), suggesting intense rainfall events, particularly in 2022.

The SD increased from 301.7 mm (2005) to 581.8 mm (2022), indicating growing vari-
ability in rainfall distribution, while the CV values, ranging from 28.00% (2005) to 40.26%
(2013), suggest higher variability in precipitation during certain years. This significant
variability in precipitation is a notable characteristic of the Brazilian Northeast, associated
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with the influence of atmospheric systems on different scales, SST anomalies, and the
occurrence of extreme climatic events such as El Nino and La Nifia [19,52,119].

The results presented in Table 4 highlight the complexity of the space-time dynamics of
physical-hydric parameters in Alagoas, emphasizing the need for continuous and integrated
monitoring of these parameters to understand the hydrological and climatic processes in
the region. The joint analysis of biophysical indices, precipitation data, Tsup, and albedo,
combined with remote sensing and geoprocessing techniques, provides a comprehensive
assessment of water bodies, supporting sustainable water resource management and
adaptation to climate change in semi-arid environments [119,156,187].

Figure 12 presents boxplot graphs for temperature and precipitation over the studied
period. The accumulated annual precipitation (Figure 12a) demonstrates good interannual
variability, reflecting the nature of rainfall in the region, particularly during years of
moderate to extreme El Nifio and La Nifia events. Outliers present in some years, such
as 2003, 2009, 2021, and 2022, indicate extreme precipitation events that are inconsistent
with the rest of the data, mainly in the coastal region of the state, as shown in Figure 8,
where information from periods of intense rainfall, specifically during La Nifia years,
was captured.
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Figure 12. (a) Boxplot of annual precipitation (mm) from 2003 to 2022, based on MODIS data. The
boxes show the interquartile range (IQR), with whiskers extending to 1.5 times the IQR and outliers
marked as points. Precipitation variability increases over time, with 2022 showing the widest range.
(b) Boxplot of average surface soil temperature (°C) for the same period, also using MODIS data. The
graph shows fluctuations in temperature, with higher values in 2015 and 2017 and a slight decrease
in recent years.

Surface temperature (Figure 12b) shows significant variation between years, reflecting
climate change and the influence of land cover conditions. Outliers identified in the years
2005, 2007, 2011, 2017, and 2019 indicate events related to transitional effects between El
Nifio and La Nifia on the captured temperature throughout the year, factors attributed
to heatwaves or abrupt changes in vegetation cover during the respective year. The joint
analysis of the precipitation and temperature graphs allows for an assessment of the inter-
action between climatic variables and their implications for the environmental dynamics
of the region. The presence of outliers in both graphs suggests the occurrence of extreme
climatic events that affect both precipitation and temperature, potentially impacting water
availability and vegetation cover in the state.

The analysis of soil temperature ratios, obtained from MODIS sensor data, and precip-
itation measured by meteorological stations provides crucial information about the interac-
tions between climatic variables and surface conditions. Some studies have shown that Tsup
is strongly influenced by land cover, water availability, and climatic conditions [43,156].
Precipitation, in turn, plays a crucial role in modulating surface temperatures and the dy-
namics of water bodies. Precipitation data from meteorological stations have been widely
used to correlate precipitation events with variations in Tsup, highlighting the importance
of rainfall in maintaining soil moisture levels and thermal regulation [19,119].



Climate 2024, 12, 150

26 of 37

Figure 12, which presents the soil temperature ratio obtained from MODIS data relative
to precipitation measured at meteorological stations, reveals distinct patterns that reflect
the complex interaction between water availability, land cover, and climatic variations. The
ratio of precipitation to soil temperature is a powerful metric that provides insights into the
state of the environment.

The analysis of the relationship between precipitation (rainfall) and soil temperature
is crucial for understanding the hydric and thermal dynamics of a region, especially in
areas susceptible to climate change and intensive anthropogenic activities, such as the
state of Alagoas. Previous studies have highlighted the importance of this relationship for
environmental and agricultural management [1,117].

Annual averages of temperature and precipitation were calculated for each year
from 2003 to 2022, revealing significant variability in both parameters. Years with higher
precipitation often corresponded to lower soil temperatures and vice versa, showing a
moderate negative correlation between precipitation and soil temperature. This indicates
that years with higher precipitation tend to have lower soil temperatures. This effect can
be explained by the cooling from increased evapotranspiration and greater cloud cover
during rainy periods [117,120].

The scatter plots in Figure 13 depict the negative correlation between annual precipi-
tation (mm) and average soil temperature (°C) over the years 2003 to 2022. A consistent
inverse relationship is observed throughout the period, where rising soil temperatures
are associated with reduced annual precipitation. This relationship is quantified by the
correlation coefficients (R) and regression equations in each plot, showing varying strengths
of correlation across the years.

In 2003 and 2005, the correlations were moderately strong (R = —0.73 and —0.59,
respectively), indicating a clear inverse relationship between soil temperature and precip-
itation. 2007 showed the weakest correlation (R = —0.49), suggesting that other climatic
factors may have influenced precipitation patterns that year. By 2009 and 2011, stronger
negative correlations (R = —0.72 and —0.57) were re-established, with sharper declines in
precipitation as soil temperature increased.

Notably, 2015 exhibited the strongest correlation (R = —0.79), with 63% of the variation
in precipitation explained by soil temperature, highlighting severe drought conditions likely
driven by high soil temperatures. In 2017 and 2019, moderate correlations (R = —0.61 and
—0.72) persisted, again reflecting the strong influence of soil temperature on precipitation
levels. In 2021 and 2022, the correlations remained significant (R = —0.71 and —0.66), with
2022 displaying the steepest regression slope (Y = —182.61X + 7237.98), indicating that
higher soil temperatures had an even greater impact on reducing precipitation.

The analysis confirms the interdependence between precipitation and soil temperature
in Alagoas. Variations in precipitation, influenced by extreme climate events, directly im-
pact soil temperatures. Furthermore, Tables 3 and 4 complement the analysis by presenting
the surface temperature and total precipitation data observed in the study area. Both soil
temperature and rainfall data are crucial for understanding the processes of energy and
mass exchange between the Earth’s surface and the atmosphere, influenced by factors such
as land cover, water availability, and prevailing climatic conditions. This reaffirms findings
from other studies, where the eastern part of Alagoas is classified as tropical Aw and the
western part of the state exhibits high temperatures and low humidity (Bsh).
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Figure 13. Scatter plot of the annual precipitation ratio and average soil temperature throughout
the year.

4. Conclusions

The state of Alagoas has experienced significant changes in its water bodies over the
past two decades (2003-2022), driven by climate change and anthropogenic activities. The
analysis of hydrological indices—NDWI, MNDWI, and AWEInsh—demonstrates their
effectiveness in detecting and monitoring water bodies, despite some limitations. NDWI
tends to underestimate the extent of water bodies and presented the smallest detected areas
among all indices, ranging from 162.5 km? (2020) to 319.2 km? (2004).

This suggests that NDW1 is less sensitive in detecting water bodies, particularly during
low precipitation years. The lowest values were recorded between 2015 and 2021, years
marked by severe droughts that reduced the extent of water bodies and, consequently,
the available water volume, while MNDWI also underestimates, but to a lesser extent,
with somewhat variation, and values ranging from 220.1 km? (2019) to 423.4 km? (2004),
demonstrating that this index is highly sensitive to climatic conditions. In years of high
precipitation, such as 2004 and 2007, MNDWI detected larger water body areas, while
during drought years such as 2015 and 2017, it showed significantly reduced areas.

AWEInsh, despite its higher variability and overestimation, is particularly effective in
capturing extreme seasonal and interannual changes in water bodies, making it a robust tool
for analyzing dynamic water body variations, especially in regions prone to both drought
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and heavy rainfall. Together, these indices provide a comprehensive understanding of
water body dynamics in Alagoas, particularly under the influence of climatic events such
as El Nifio and La Nifia.

AWEInsh displayed the greatest variation, with areas ranging from 330.0 km? (2017) to
432.2 km? (2007), indicating its sensitivity to seasonal and interannual variations in water
bodies. Despite this, AWEInsh remains effective in detecting water bodies even during
drought periods, making it a robust tool for temporal analysis of water dynamics.

The comparison of average values, standard deviations, and coefficients of variation
reveals greater variability in MNDWI, followed by AWEInsh and NDWI. Each index shows
distinct strengths in water body detection over the study period. NDWI proves to be
the most stable, though moderately reliable, due to its underestimation, exhibiting lower
variability, and performing well in long-term water body monitoring. MNDWI balances
the detection of small water bodies and reflects seasonal changes, although its sensitivity to
climatic variability can fluctuate in certain years.

The original and resampled MBR data exhibited consistent values over the years, with
minimal variations. Water body areas ranged from a maximum of 400.9 km?2 (2007) to a
minimum of 304.8 km? (2021) for the original MBR, while the resampled MBR ranged from
398.2 km? (2007) to 303.1 km? (2021).

This consistency underscores the robustness of the MBR, even after data reprocessing.
The lowest values for MBR occurred between 2012 and 2015, possibly due to intense
droughts influenced by events such as El Nifio. The resampled MBR data maintains the
spatial-temporal coherence of water body dynamics, making it a robust choice for long-term
monitoring, especially when combined with indices such as AWEInsh or MNDWI, which
capture more extreme variations during dry and wet periods.

Fluctuations in albedo were consistent with decreased precipitation and increased
temperatures, reflecting changes in vegetation cover and soil moisture. Surface temperature
analysis conducted through MODIS products revealed significant variations exclusively
correlated with extreme El Nifio and La Nifia events, showing warming during drier
periods and cooler, wetter conditions during higher precipitation years.

The negative correlation between albedo and precipitation, along with increased Tsup
during drought periods, confirms the interdependence of these variables. While albedo
remained stable, reflecting consistent surface conditions, Tsup exhibited fluctuations tied
to extreme climatic events. Precipitation, however, showed significant variability, with
an increasing trend in recent years due to changes in the climatic cycle, highlighting the
region’s susceptibility to climate change and extreme weather patterns (ENSO).

The analysis of annual precipitation versus average soil temperature from 2003 to
2022 reveals a consistent inverse relationship, with higher soil temperatures contributing to
reduced precipitation levels. The strongest correlations occurred in drought years, such
as 2015, emphasizing the critical role of soil temperature in determining precipitation pat-
terns. Monitoring soil temperature alongside precipitation will be vital for understanding
and predicting future water availability, especially as climate change continues to alter
these dynamics.

Finally, the analysis of the correlation between water surface area and NDVI, compared
to NDWI, shows that NDVI is not as strongly correlated with water surface area as NDWL
This is expected, as NDVI primarily focuses on vegetation density and health, while NDWI
is specifically designed to detect water bodies. The graph illustrating the relationship
between NDWI and water surface area indicates that NDWI is a more reliable index for
monitoring water bodies over time, especially in semi-arid or drought-prone regions, where
water availability is highly variable.

The variability observed in water surface area over the years also highlights the
influence of El Nifio and La Nifia events, with El Nifio typically reducing water surface
areas and La Nifia increasing water availability. However, local factors such as land use
changes and water management practices may influence this general pattern.
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Despite the limitations of MODIS data—low spatial resolution but high temporal
resolution and broad spatial coverage—these data provide valuable information for the
sustainable management of water resources in Alagoas. The fluctuations observed from
2003 to 2022 reflect the climatic and anthropogenic dynamics that directly influence water
availability. The study reaffirms the importance of using biophysical indices, hydrological
indices, and remote sensing data to understand and manage water resources, providing a
solid foundation for the development of public policies aimed at water sustainability in the
state of Alagoas.
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