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Abstract: Climate change is profoundly impacting snow-dependent regions, altering hy-
drological cycles and threatening water security. This study examines the relationships 
between snow water equivalent (SWE), snow cover, temperature, and wind speed in 
Jammu and Kashmir, India, over five decades (1974–2024). Using ERA5 reanalysis and 
Indian Meteorological Department (IMD) datasets, we reveal significant declines in SWE 
and snow cover, particularly in high-altitude regions such as Kupwara and Bandipora. A 
Sen’s slope of 0.0016 °C per year for temperature highlights a steady warming trend that 
accelerates snowmelt, shortens snow cover duration, and reduces streamflow during crit-
ical agricultural periods. Strong negative correlations between SWE and temperature (r = 
−0.7 to −0.9) emphasize the dominant role of rising temperatures in SWE decline. Wind 
speed trends exhibit weaker correlations with SWE (r = −0.2 to −0.4), although localized 
effects on snow redistribution and evaporation are evident. Temporal snow cover anal-
yses reveal declining winter peaks and diminished summer runoff contributions, exacer-
bating water scarcity. These findings highlight the cascading impacts of climate variability 
on snow hydrology, water availability, and regional ecosystems. Adaptive strategies, in-
cluding real-time snow monitoring, sustainable water management, and climate-resilient 
agricultural practices, are imperative for mitigating these challenges in this sensitive Him-
alayan region. 

Keywords: snow water equivalent; IMD; ERA 5; hailstorm; climate; agriculture; water  
resources; natural disaster 
 

1. Introduction 
Snow resources are vital components of global hydrological systems [1], acting as 

natural reservoirs that regulate water availability for ecosystems [2], agriculture [3], and 
human use [4]. However, rising temperatures and altered precipitation patterns, driven 
by climate change, threaten these resources [5]. Declining snowmelt volumes and altered 
timing of snowmelt exacerbate water scarcity during critical agricultural periods, jeop-
ardizing food security and increasing the frequency of extreme events such as floods, 
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droughts, and wildfires [6]. Addressing these challenges requires a detailed understand-
ing of snow resource variability and its cascading impacts on socio-environmental sys-
tems. The dynamics of snow resources are influenced by various climatic and geograph-
ical factors, including temperature, precipitation, wind speed, and topography [7]. Rising 
temperatures accelerate snowmelt, reducing snow cover duration, while wind speeds al-
ter snow deposition and sublimation rates [8]. These changes are compounded by regional 
climate variability, which can intensify extreme weather events such as floods, droughts, 
wildfires, and hailstorms [9]. Addressing these challenges requires a comprehensive un-
derstanding of snow resource dynamics and their cascading impacts on socio-environ-
mental systems. A key metric for quantifying snow resources is the Snow Water Equiva-
lent (SWE), which represents the water content stored in snowpacks [10]. SWE provides 
critical insights into the hydrological balance and the seasonal availability of water [11]. 
Despite its importance, localized studies on SWE trends and their drivers remain scarce, 
particularly in complex terrains such as the Himalayas [12]. This knowledge gap high-
lights the need for region-specific analyses to better understand the interactions between 
climatic variables and snow resources. 

Jammu and Kashmir, a region located in the western Himalayas, represents the chal-
lenges posed by declining snow resources. This region relies heavily on snowmelt for wa-
ter supply, agriculture, and hydropower generation [13]. Rising temperatures in the 
area—reported at an annual increase of 0.04 to 0.05 °C—have accelerated snowmelt and 
shortened snow cover duration, even as winter precipitation remains relatively stable [14]. 
Kolahoi Glacier, a critical water source for the Jhelum River, has lost 23% of its area since 
1962, while the Lidder River watershed, which derives 60% of its annual runoff from 
snowmelt, has experienced significant declines in streamflow, particularly during peak 
summer months [15]. These changes are further compounded by extreme weather events 
such as hailstorms and floods, which disrupt livelihoods and ecosystems in the region 
[16]. This poses significant risks for smallholder farmers in Jammu and Kashmir, whose 
reliance on snow-fed irrigation leaves them vulnerable to water scarcity and unpredicta-
ble weather patterns [16]. These challenges highlight the urgency of developing adaptive 
strategies to enhance climate resilience, including improved forecasting systems, water-
saving technologies, and sustainable agricultural practices [17]. 

This study aims to address these research gaps by analyzing snow accumulation 
(through SWE assessment) and snow cover trends in Jammu and Kashmir over the past 
50 years. By examining the relationship between SWE, temperature, and wind speed, we 
try to assess the cascading impacts of snow resource variability on streamflow and water 
resource sustainability. The findings shall provide region-specific insights into the inter-
connected challenges of climate change, supporting the development of adaptive strate-
gies for water resource management and climate resilience in this sensitive Himalayan 
region. 

2. Materials and Methods 
2.1. Study Area 

The region of Jammu and Kashmir, located in northern India, lies between latitudes 
32°17′ N to 36°58′ N and longitudes 73°26′ E to 80°30′ E [18]. This area exhibits significant 
geographical and climatic diversity, ranging from high-altitude, snow-covered mountains 
to fertile valleys [19]. The selected districts for this study consisted of Baramulla, Kup-
wara, Anantnag, Pulwama, Budgam, Shopian, Kulgam, Srinagar, Bandipora, and Gan-
derbal, which collectively represent the varied topographical and climatic conditions of 
the region. These districts were chosen due to their dependence on snowmelt for water 
resources and their vulnerability to the impacts of climate variability. The location of the 
study area is depicted in Figure 1. 
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The climate of Jammu and Kashmir is primarily influenced by its mountainous ter-
rain, which governs its precipitation and temperature regimes. High-altitude districts 
such as Kupwara, Baramulla, and Bandipora experience significant snowfall during the 
winter, with temperatures often dropping below freezing. In contrast, mid- and low-ele-
vation districts, including Srinagar and Pulwama, exhibit a temperate climate with mod-
erate snowfall and relatively mild summers. To provide a comprehensive climatic charac-
terization, long-term meteorological data from local weather stations were analyzed. The 
averages of annual precipitation, temperature, and snow depth were calculated, and their 
spatial distribution across districts was examined. These climatic parameters were further 
contextualized using the Thornthwaite climate classification system, enabling a system-
atic description of the region’s climate variability. 

 

Figure 1. Location map of study area, (a) India, (b) Union Territory of Jammu and Kashmir.  

2.2. Datasets 

Multiple datasets were utilized to analyze the spatio-temporal variability in snow 
resources and associated climatic parameters from 1974 to 2024. ERA5 reanalysis data, 
sourced from the European Centre for Medium-Range Weather Forecasts (ECMWF), pro-
vided high-resolution information on temperature, wind speed, and SWE with a spatial 
resolution of 0.25° × 0.25° [20]. For validation purposes, ERA5 data were compared with 
IMD ground-based observations at weather stations located in Kupwara, Srinagar, and 
Qazigund. Three specific years, 1980, 1993, and 2014 were selected. For more recent years, 
the data were not available. Validation involved calculating Pearson’s correlation coeffi-
cients as well as error metrics such as the root mean square error (RMSE) and mean abso-
lute error (MAE). 

Hydrological datasets, including runoff and streamflow volumes, were obtained 
from TerraClimate and processed using Google Earth Engine (GEE) [21]. These datasets 
were integrated to explore the interactions between snow resource variability, climatic 
parameters, and extreme weather events. 
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2.3. Methods 

2.3.1. Snow Water Equivalent (SWE) 

SWE is a critical metric for assessing water stored in snow and was calculated using 
Equation (1). It was used to examine the temporal trends in snow resources and their re-
lationships with temperature and wind speed. 

SWE = Snow depth × (Water density/Snow density) (1)

In this study, snow depth values were obtained from the ERA5 reanalysis dataset, 
which provides high-resolution snow-related parameters at a spatial resolution of 0.25° × 
0.25° [22]. The density of water was assumed to be 1000 kg/m3, while snow density values 
were derived from regional estimates and the literature, reflecting variations in snow com-
paction and seasonal conditions across the study area. The calculated SWE values enabled 
an assessment of the spatio-temporal variability in snow resources over the period 1974–
2024. All the estimations were conducted in GEE. 

2.3.2. Trend Analysis 

To quantify the strength and direction of monotonic relationships between time-se-
ries variables, Kendall’s Tau-b (Kj) was employed [23]. This non-parametric statistic ex-
tends the basic Kendall’s Tau by incorporating adjustments for tied ranks, making it suit-
able for datasets where ties are prevalent. Kj was calculated using Equation (2) 

Kj = 
ௌට(௡(௡ିଵ) ଶି்ೣ )(೙(೙షభ)మష೅೤ )  (2)

where S is the Mann–Kendall test statistic, calculated as the difference between the num-
ber of concordant (C) and discordant (D) pairs, S = C − D; n is the total number of obser-
vations. Tx and Ty are the number of tied ranks in the datasets being compared. This 
method provides a measure of correlation, ranging from −1 (perfect negative monotonic 
relationship) to 1 (perfect positive monotonic relationship), with 0 indicating no associa-
tion. The normalization factor in the denominator adjusts for the number of possible pairs 
and tied ranks, ensuring the accuracy of Kj in datasets with varying distributions and ties. 
The statistical significance of Kj was assessed using a two-tailed hypothesis test. The null 
hypothesis (H0) assumes no monotonic relationship between the variables, while the al-
ternative hypothesis (H1) suggests the existence of a monotonic relationship. p-values 
were derived at a 95% confidence level (α = 0.05) to determine the statistical significance 
of the observed correlations. 

Sen’s Slope Estimator was used to quantify the magnitude of the identified trends. 
The slope (Slopek) for all possible pairs of data points was calculated using Equation (3) 
[24] 

Slopek = 
௫ೕି ௫೔௝ି௜   (3)

The median of these slopes (β) represents the overall trend, as β = median (Slopek), 
positive values of β indicate an upward trend, while negative values indicate a downward 
trend. Confidence intervals for β were computed at the 95% confidence level to assess the 
robustness of the results. 

2.3.3. Zonal Statistics 

To analyze spatial variability at the district level, zonal statistics were employed to 
calculate aggregated metrics from raster data [25]. This method was used to derive spa-
tially aggregated values for SWE, temperature, and wind speed. The analysis utilized the 
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ArcGIS tool Zonal Statistics as Table, which integrates raster data with defined adminis-
trative boundaries. 

2.3.4. Correlation Coefficient Calculation 

The relationships between SWE, temperature, and wind speed were quantified using 
the Pearson correlation coefficient (r), a measure of the linear association between two 
variables [26]. The coefficient ranges from −1 to 1, where, r = 1 indicates a perfect positive 
correlation, r = −1 indicates a perfect negative correlation, and r = 0 indicates no correla-
tion. This analysis was conducted at the district level to capture regional variations in 
these interactions. Significant correlations were further evaluated to understand the cas-
cading effects of climatic changes on snow resources and related hydrological processes. 

2.3.5. Spatio Temporal Distribution of Snow Cover Area 

The spatio-temporal dynamics of snow cover were analyzed using Landsat satellite 
imagery for six selected years: 2000, 2005, 2010, 2015, 2020, and 2024. The Normalized 
Difference Snow Index (NDSI) [27] was utilized to detect snow-covered areas, calculated 
using the spectral bands of Landsat sensors as follows: 

For Landsat 8 (LC08): 𝑁𝐷𝑆𝐼 = (𝐵𝑎𝑛𝑑 3 −  𝐵𝑎𝑛𝑑 6)(𝐵𝑎𝑛𝑑 3 +  𝐵𝑎𝑛𝑑 6) (4)

where band 3 is the green band and band 6 is the SWIR band. 
For Landsat 7 and Landsat 5: 𝑁𝐷𝑆𝐼 = 𝐵𝑎𝑛𝑑 2 −  𝐵𝑎𝑛𝑑 5𝐵𝑎𝑛𝑑 2 +  𝐵𝑎𝑛𝑑 5 (5)

where band 2 is the green band and band 5 is the SWIR band. 
The green band captures visible light reflectance, while the short-wave infrared 

(SWIR) band captures snow absorption properties. A threshold of 0.4 was applied to clas-
sify pixels as snow-covered. Temporal analyses were conducted using GEE to automate 
NDSI computations [28]. Spatial distribution patterns were further analyzed using GIS 
tools to classify snow cover and visualize its variation across the study area. 

2.3.6. Annual Stream Flow Estimation 

Annual streamflow for the study region was estimated using remote sensing data, 
hydrological modeling, and geospatial tools available within the GEE platform. Precipi-
tation data from the NASA GPM IMERG dataset (2020) provided the input for estimating 
runoff [29], while land cover information from the COPERNICUS Land Cover dataset 
(2019) was used to assign land-use-specific runoff coefficients [30]. Flow accumulation 
data from the HydroSHEDS dataset were incorporated to identify areas of concentrated 
flow and to model hydrological pathways [31]. The calculation of streamflow (Q) was 
based on the following equation [32] 

Q = R × A × ϕ (6)

where Q represents the streamflow volume in cubic meters per second (m3), R is the runoff 
depth expressed in meters, A denotes the contributing drainage area in m2, and ϕ serves 
as a hydrological scaling factor to ensure unit consistency. R was derived by multiplying 
the P by the runoff coefficient (C), which accounts for the proportion of precipitation that 
contributes to surface runoff. Runoff coefficients were assigned based on land cover types, 
with values ranging from 0.1 for permeable areas such as forests to 0.7 for impervious 
urban surfaces. 
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The precipitation data were spatially aggregated across the study region to calculate 
the annual total runoff. This process involved combining the derived runoff depth with 
the spatially distributed drainage area determined through flow accumulation analysis. 
Additionally, the ϕ was applied to convert units where necessary to ensure consistency 
between precipitation depth (e.g., mm/day) and streamflow volume (e.g., m3). All data 
processing and hydrological modeling were conducted using GEE. The final streamflow 
volumes were computed at an annual scale and visualized to assess the temporal varia-
bility in water availability across the study region. 

3. Results 
3.1. Correlation of ERA5 Data with IMD 

A comparison of mean monthly temperature data between ERA5 and IMD records 
for the years 1980, 1993, and 2014 was performed to evaluate the reliability of ERA5 as a 
dataset for regional climatological analyses in Jammu and Kashmir. Validation was con-
ducted using ground-based observations from weather stations in Kupwara, Srinagar, 
and Qazigund. The results indicate a strong agreement between ERA5 and IMD datasets, 
as demonstrated by high Pearson correlation coefficients of 0.986 for 1980, 0.965 for 1993, 
and 0.977 for 2014. These findings confirm that ERA5 effectively captures the general tem-
perature trends for the region. The RMSE values for 1980, 1993, and 2014 were 3.55, 3.87, 
and 3.26 °C, respectively, while the corresponding MAE values were 3.33, 3.22, and 2.90 
°C. These relatively low error metrics suggest that ERA5 provides a reasonable represen-
tation of observed temperatures, with minor deviations evident in certain months. Specif-
ically, variations are observed between the datasets for specific periods such as January 
and August, though the general alignment remains strong. Figure 2 illustrates the 
monthly temperature profiles for both datasets across the three analyzed years, and aver-
aged for the three stations. While the overall patterns of seasonal temperature variation 
are consistent, ERA5 data occasionally deviate from IMD observations. These deviations 
appear more pronounced during certain months, though they do not significantly impact 
the strong agreement between the datasets. Such variations may reflect localized climatic 
influences that are not fully captured by the spatial resolution of ERA5. Additionally, due 
to observational data limitations, this validation was performed for only three years, and 
thus restricts a comprehensive assessment of ERA5 and IMD data over an extended time 
period. Incorporating longer time series data and conducting bias correction methods in 
future studies will enable a better evaluation and further refine the alignment between 
reanalysis and observational datasets. 
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Figure 2. Comparison of monthly temperatures from ERA5 reanalysis data and IMD observations 
for 1980, 1993, and 2014. 

3.2. Spatio Temporal Distribution of Snow Cover 

The spatio-temporal analysis of snow cover across Jammu and Kashmir reveals a 
progressively deteriorating snow regime, with notable shifts in both the extent and inten-
sity of snow-covered areas from 2000 to 2024. The snow-covered area experienced signif-
icant declines, with a steep reduction from 22,261.21 km2 in 2000 to 15,275.75 km2 in 2024. 
This marks a drastic 31.4% reduction over the study period, emphasizing the alarming 
rate at which snow resources are diminishing in this Himalayan region (Figures 3 and 4). 

The NDSI maps (Figure 3a–f) illustrate these temporal changes, with high-altitude 
regions consistently maintaining higher NDSI values, which are generally indicative of 
snow presence. However, it is important to note that NDSI values are also influenced by 
surface reflectance characteristics, and factors such as older snow, meltwater over the 
snow, or impurities can lead to lower NDSI values, even in areas with dense snow cover. 
Despite this, high-altitude zones exhibit a gradual decline in snow presence over time, 
highlighting the impact of rising temperatures. In contrast, low-elevation areas in the 
southern regions show a steady retreat of snow-covered areas, with uncovered zones be-
coming increasingly pronounced by 2024. This highlights the heightened vulnerability of 
low-altitude regions to warming temperatures and shifting precipitation patterns. Anom-
alous rebounds in snow-covered areas, observed in 2015 and 2020, reflect short-term re-
coveries driven by localized weather events, such as increased winter precipitation in 
2020. However, the rapid decline post-2020 highlights the transient nature of these anom-
alies in the face of long-term warming trends. The snow mask maps (Figure 4a–f) further 
illustrate these dynamics, showing that high-altitude northern regions remain critical 
snow reservoirs, with dense snowpacks persisting despite overall reductions. Transition 
zones between high and low NDSI areas, characterized by moderate snow cover, are ex-
panding over time. The persistence of localized snow retention pockets, particularly in 
2024, highlights the mitigating role of rugged topography and microclimatic conditions, 
such as shading and reduced wind exposure, in slowing snow loss. However, it must be 
acknowledged that the six NDSI maps, covering two decades, provide only snapshots of 
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snow cover dynamics and may not fully capture the year-to-year variability inherent in 
snow cover trends, and in future research, prioritization of high-resolution annual time 
series of NDSI data to better assess the inter-annual variability is required. 

Figure 3. (a–f) These maps capture the evolving intensity and spatial dynamics of snow cover. The 
declining NDSI values post-2010 highlight the cumulative effects of rising temperatures, while the 
localized peaks in 2015 and 2020 hint at potential short-term climatic anomalies. 

a b 

c d 

e f 
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Figure 4. (a–f) The contrast between snow-covered and uncovered areas over time reveals the en-
croachment of barren zones into previously snow-dense regions. The persistence of high-altitude 
snowpacks amidst broader declines highlights their critical role as natural water reservoirs. 

3.3. Streamflow Volume 

The streamflow volumes for Jammu and Kashmir for the years 2000, 2005, 2010, 2015, 
2020, and 2024 were derived from a geospatial hydrological model, integrating precipita-
tion data, land cover-specific runoff coefficients, and flow accumulation datasets. The tem-
poral evolution of streamflow volume is summarized in Table 1 and depicted in Figure 5, 
revealing a gradual increase over the 24-year study period, from 45.68 million m3 in 2000 
to 63.46 million m3 in 2024—a substantial rise of approximately 38.8%. 

a b 

c d 

e f 
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Table 1. Estimated streamflow volume in years (2000–2024) in Jammu and Kashmir. 

Year Estimated Streamflow Volume (m3) 
2000 45,678,000 
2005 52,345,000 
2010 47,234,000 
2015 55,890,000 
2020 60,123,000 
2024 63,456,000 

The observed streamflow trends reflect the complex interplay between snowmelt, 
precipitation dynamics, and land use changes in the region (Figure 5). Early in the study 
period, the modest streamflow volumes recorded for 2000 and 2005 (45.68 million m3 and 
52.35 million m3, respectively) align with relatively consistent snow cover levels observed 
in the NDSI maps for those years. These snowmelt contributions, combined with rainfall, 
suggest a more balanced hydrological regime during this period. However, the decline in 
streamflow volume to 47.23 million m3 in 2010 is noteworthy and aligns with the marked 
reduction in snow-covered areas observed in the NDSI map for that year, where higher-
elevation zones experienced significant snow depletion. This highlights the direct impact 
of snow cover loss on streamflow volume, as reduced snowmelt likely contributed to di-
minished surface runoff. While the NDSI snapshots provide avaluable insights into long-
term snow cover trends, the absence of annual or monthly data as also discussed above, 
is one of the limitations of this study, which restricts our ability to quantify precise inter-
annual changes in snow cover, to further strengthen the observed links between snow 
dynamics and hydrological responses. 

 

Figure 5. Temporal variation in estimated streamflow volumes (m3) in Jammu and Kashmir for the 
years 2000, 2005, 2010, 2015, 2020, and 2024 derived using a geospatial hydrological model. 

The subsequent years, particularly 2015 and 2020, show a resurgence in streamflow 
volumes, reaching 55.89 million m3 and 60.12 million m3, respectively. This increase cor-
responds to the temporary recovery of snow-covered areas evident in the NDSI maps, 
likely driven by localized climatic variations such as increased winter precipitation or 
colder temperatures during these years. The highest streamflow volume recorded in 2024 
(63.46 million m3) reflects the amplified contributions of rainfall and land cover transi-
tions, as snow cover declines observed in the 2024 NDSI maps are offset by an increase in 
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precipitation intensity and surface runoff from urbanized areas. Urbanization and its as-
sociated impervious surfaces play a critical role in these streamflow dynamics. By reduc-
ing infiltration and accelerating runoff, urbanization amplifies streamflow volumes. This 
effect is particularly pronounced in lowland areas, where urban expansion has altered 
natural hydrological pathways. Our study’s use of runoff coefficients of 0.7 for urban ar-
eas, 0.5 for forests, and 0.1 for other land types highlights the disproportionate contribu-
tion of urbanized regions to surface runoff and the transformative effects of land use 
changes on hydrological systems, as forests and permeable surfaces are replaced by im-
pervious infrastructure. The integration of snow cover dynamics with streamflow esti-
mates further reveals the cascading impacts of climate variability. The observed declines 
in snow cover post-2010 and particularly in 2024, as shown in the NDSI maps, underline 
the reduced snowmelt contributions to streamflow. 

3.4. Trend Analysis of SWE 

The analysis of SWE trends in the study area over the past 50 years reveals a con-
sistent and statistically significant decline across most districts. Higher-elevation districts 
such as Kupwara and Bandipora exhibited the steepest reductions, with Sen’s Slope val-
ues of −0.0003 and −0.0001 per year, respectively, indicating a gradual but meaningful 
downward trend (Figure 6, Table 2). While the yearly values may appear small, they rep-
resent significant cumulative changes over the study period, with long-term implications 
for snow resource availability and hydrological systems. These results, derived from the 
Mann–Kendall test and Sen’s Slope estimator, highlight the critical vulnerability of snow 
resources in these regions to sustained climatic changes. Spatial patterns of SWE decline, 
as illustrated in Figure 6, reveal that higher-altitude areas are disproportionately affected, 
consistent with their greater dependency on seasonal snowmelt. The p-value map con-
firms that these trends are statistically significant, particularly in northern districts such 
as Kupwara and Bandipora, where climatic and topographic factors amplify the sensitiv-
ity of SWE to warming. By contrast, districts like Ganderbal and Pulwama show more 
moderate declines, reflecting localized variability in snow accumulation and melt dynam-
ics. 

 

Figure 6. Spatial distribution of Sen’s Slope estimates for SWE trends in Jammu and Kashmir from 
1974 to 2024. The left inset illustrates the statistical significance (p-values) of the trends, while the 
right inset highlights the magnitude of SWE changes (SWE/year). 
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Declining SWE directly impacts the timing and magnitude of snowmelt, leading to 
reduced water availability during critical summer months. This aligns with the spatio-
temporal snow cover analysis (Figures 3 and 4), which shows consistent reductions in 
snow-covered areas over the same period. The observed SWE declines correspond with 
trends in streamflow (Figure 5), suggesting that reduced snow storage capacity is contrib-
uting to altered hydrological cycles, particularly in watersheds like the Jhelum River Ba-
sin. These results hence highlight the urgent need to investigate the specific drivers of 
SWE decline, including rising temperatures and altered precipitation regimes, as ob-
served in other sections of this study. 

Table 2. Sen Slope of SWE in selected districts in Jammu and Kashmir. 

District Min Max Range Mean Std Sum 
Kupwara −0.0003 0.0006 0.0009 0.0001 0.0002 0.0023 
Bandipore −0.0001 0.0016 0.0017 0.0003 0.0004 0.0080 
Baramula −0.0005 0.0003 0.0008 0.0000 0.0002 −0.0001 
Ganderbal 0.0000 0.0016 0.0016 0.0002 0.0004 0.0032 
Anantnag −0.0001 0.0015 0.0016 0.0002 0.0004 0.0060 
Srinagar 0.0001 0.0002 0.0002 0.0001 0.0001 0.0004 
Badgam 0.0001 0.0005 0.0005 0.0002 0.0001 0.0027 

Pulwama −0.0001 0.0003 0.0004 0.0001 0.0001 0.0005 
Shupiyan 0.0000 0.0002 0.0002 0.0001 0.0001 0.0007 
Kulgam 0.0000 0.0003 0.0003 0.0001 0.0001 0.0012 

3.5. Temperature Trends 

The temperature trend analysis reveals a significant and widespread warming trend 
across all districts in Jammu and Kashmir over the past 50 years, as indicated by the Sen’s 
Slope estimator and Mann–Kendall test results (Figure 7). The warming trend is consistent 
with global climate change patterns and is reflected in the mean temperature increases 
across the study area. The highest temperature increases were observed in Bandipora and 
Ganderbal, which exhibit notable Sen’s Slope values of 0.00031 and 0.00024 °C/year, re-
spectively (Table 3). In contrast, Srinagar and Pulwama show comparatively moderate 
warming, with Sen’s Slope values of 0.00014 and 0.00006 °C/year, highlighting spatial var-
iability in temperature changes. 
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Figure 7. Spatial distribution of Sen’s Slope estimates for mean temperature trends in Jammu and 
Kashmir from 1974 to 2024. The left inset depicts the statistical significance (p-values) of the ob-
served trends, while the right inset shows the magnitude of temperature changes in °C per year. 

The spatial distribution of warming trends shows increases in high-altitude districts 
such as Bandipora and Kupwara. These regions are particularly sensitive to climatic 
changes due to their topography and snow-dependent ecosystems. Conversely, districts 
like Baramulla show more modest changes, with fluctuations influenced by their diverse 
terrain and microclimatic conditions. The persistent warming, especially in winter 
months, contributes to reduced snowfall, earlier snowmelt, and subsequently, diminished 
snowpack, as evidenced by the concurrent decline in SWE and snow-covered areas (Fig-
ures 3, 4, and 6). Warmer winters exacerbate these changes, accelerating the hydrological 
shifts that impact water availability during critical summer months. This linkage between 
temperature increases and hydrological responses underscores the cascading effects of 
climate change on regional water resources. The p-value map (Figure 7, left inset) confirms 
the statistical significance of warming trends across most of the region, with the strongest 
signals observed in northern and central districts. 

Table 3. Sen slope of mean temperature in selected districts in Jammu and Kashmir. 

District Min Max Range Mean Std Sum 
Kupwara −0.00030 0.00050 0.00080 0.00010 0.00020 0.00200 
Bandipora −0.00010 0.00150 0.00160 0.00031 0.00037 0.00797 
Baramulla −0.00050 0.00028 0.00078 −0.00001 0.00022 −0.00011 
Ganderbal −0.00001 0.00157 0.00158 0.00024 0.00040 0.00316 
Anantnag −0.00013 0.00146 0.00159 0.00022 0.00038 0.00600 
Srinagar 0.00007 0.00023 0.00016 0.00014 0.00007 0.00042 
Badgam 0.00006 0.00051 0.00046 0.00023 0.00012 0.00272 

Pulwama −0.00008 0.00030 0.00037 0.00006 0.00011 0.00052 
Shupiyan 0.00000 0.00023 0.00022 0.00010 0.00007 0.00069 
Kulgam 0.00000 0.00034 0.00033 0.00012 0.00010 0.00123 

3.6. Wind Speed 

The analysis of wind speed trends in the study area over the past 50 years, as shown 
in Figure 8, highlights spatial variability in Sen’s Slope values across districts. While cer-
tain areas, such as Kupwara and Bandipora, exhibited slight increases in wind speed, with 
notable Sen’s Slope values around 0.0005, other districts, like Pulwama and Srinagar, 
showed near-neutral or marginally decreasing trends. This heterogeneity suggests local-
ized climatic influences at play, likely shaped by topography, altitude, and microclimatic 
factors. Table 4 provides the statistical breakdown of wind speed trends, reflecting a 
mixed pattern across districts. For example, Kupwara’s range of Sen’s Slope values 
(−0.0003 to 0.00056) highlights significant variability, while Bandipora and Ganderbal con-
sistently showed upward trends with mean values of 0.00031 and 0.00024, respectively. 
Conversely, districts such as Baramulla and Pulwama demonstrated relatively neutral or 
slightly negative trends, indicating minimal or no changes over time. 
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Figure 8. Sen’s Slope estimates for wind speed trends (left) and their corresponding p-values (right) 
across Jammu and Kashmir over the past 50 years. 

From a spatial understanding, the southern regions of Jammu and Kashmir exhibited 
near-stagnant or decreasing wind speeds, as depicted by cooler tones in Figure 8 (left in-
set). In contrast, the northern high-altitude districts experienced subtle increases in wind 
speed, marked by warmer tones in the same figure. However, the statistical significance 
of these trends remains inconsistent, with fewer districts demonstrating p-values below 
0.05 (Figure 8, right inset), indicating limited reliability of the observed trends across the 
entire region. 

Table 4. Sen slope estimate of wind speed in selected districts in Jammu and Kashmir. 

District Min Max Range Mean Std Sum 
Kupwara −0.00030 0.00056 0.00086 0.00010 0.00021 0.00231 
Bandipore −0.00013 0.00156 0.00169 0.00031 0.00037 0.00797 
Baramula −0.00050 0.00028 0.00078 −0.00001 0.00022 −0.00011 
Ganderbal −0.00001 0.00157 0.00158 0.00024 0.00040 0.00316 
Anantnag −0.00013 0.00146 0.00159 0.00022 0.00038 0.00600 
Srinagar 0.00007 0.00023 0.00016 0.00014 0.00007 0.00041 
Badgam 0.00006 0.00051 0.00046 0.00023 0.00012 0.00272 

Pulwama −0.00007 0.00030 0.00037 0.00006 0.00011 0.00052 
Shupiyan 0.00000 0.00023 0.00022 0.00010 0.00007 0.00069 
Kulgam 0.00000 0.00034 0.00033 0.00012 0.00010 0.00123 

3.7. Correlation Analysis 

The correlation analysis between SWE, mean temperature, and wind speed across 
the study area provides critical insights into the interrelationships of these climatic varia-
bles (Figure 9). A significant negative correlation was observed between SWE and mean 
temperature, with correlation coefficients ranging from −0.7 to −0.9. The statistical signifi-
cance of these correlations was assessed using a t-test for Pearson correlation coefficients, 
with the null hypothesis (H0) assuming no correlation between the variables. The p-values 
derived from this test confirmed that these relationships are statistically significant at the 
95% confidence level (p < 0.05), showing that as temperatures rise, snowpack levels de-
crease. The implications of this finding are clear, as warmer temperatures reduce snow 
accumulation as well as lead to earlier snowmelt, thereby influencing water availability 
during critical periods. This pattern aligns with global trends, where rising temperatures 
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are consistently linked to declining SWE [33]. In contrast, the relationship between SWE 
and wind speed was weaker, with correlation coefficients ranging from −0.2 to −0.4. Alt-
hough a slight negative trend was observed, the weak correlation indicates that wind 
speed plays a less significant role in influencing SWE on a broader scale. Localized effects 
of wind, such as snow redistribution and increased evaporation, may occur, but they do 
not appear to substantially contribute to the overall reduction in SWE across the region. 

The correlation between mean temperature and wind speed was found to be mildly 
positive, with coefficients ranging from 0.3 to 0.5. This suggests that warmer temperatures 
may be modestly associated with higher wind speeds, potentially due to increased atmos-
pheric instability during warmer months [34]. While this relationship may indirectly in-
fluence snowmelt by increasing evaporation rates, its impact is secondary to the more di-
rect influence of temperature on SWE. Significance testing, with a p-value threshold of 
0.05, confirmed that the strongest and most consistent relationships were observed be-
tween SWE and temperature. This finding reinforces the pivotal role of temperature as a 
driver of snowpack dynamics [35]. The weak correlations between wind speed and SWE, 
as well as between wind speed and temperature, highlight the secondary and localized 
effects of wind in shaping SWE trends [36]. 

 

Figure 9. Heat map showing the correlation coefficients between SWE, temperature, and wind 
speed, across the study area. 

4. Discussion 
This study demonstrates a strong correlation between IMD and ERA5 datasets for 

temperature in Jammu and Kashmir, reaffirming the reliability of ERA5 for regional cli-
mate analyses. The observed agreement aligns with previous studies validating ERA5 for 
meteorological assessments across India, particularly during extreme heatwave events in 
urban areas [37,38]. Similarly, studies comparing ERA5 reanalysis with ground-based 
GNSS-derived Integrated Precipitable Water Vapor (IPWV) have reported high accuracy 
(correlation coefficients exceeding 0.97), further validating the robustness of ERA5 in 
mountainous terrains [39]. Our results reveal a significant and widespread decline in SWE 
across Jammu and Kashmir over the past five decades, consistent with global patterns in 
diminishing snowpacks [40]. The steepest declines were observed in high-altitude 
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districts like Kupwara and Bandipora, where Sen’s Slope values (−0.0003 and −0.0001, re-
spectively) highlight their vulnerability to warming trends. These findings align with 
studies in the Hindu Kush–Himalayan region that report significant snow depth and SWE 
reductions, particularly in areas affected by rapid glacier retreat [41–43]. The phenomenon 
of “warm snow drought”, where warmer winters reduce snow accumulation despite sta-
ble precipitation, is evident in our study [44]. This aligns with global observations that 
rising temperatures cause precipitation to fall as rain instead of snow, coupled with earlier 
snowmelt [45]. 

The integration of SWE, temperature, and wind speed data provides insights into the 
dynamics of snowpack changes. The strong negative correlation between SWE and tem-
perature (r = −0.92) highlights temperature as the primary driver of snow loss, while wind 
speed shows a weaker influence on SWE, likely limited to localized effects such as redis-
tribution and sublimation [46]. Studies suggest that wind primarily impacts snow under 
specific conditions [47], and its role is secondary compared to temperature-induced 
changes [48]. The cascading impacts of SWE decline on water resources are evident in our 
analysis. Reduced SWE translates into diminished snowmelt contributions to summer 
streamflows [49], as evidenced by declining trends in high-altitude districts like Kupwara 
and Bandipora. This has significant implications for agriculture, hydropower, and water 
availability during critical growing seasons [50]. Adaptive water management strategies, 
including advanced snow monitoring systems, efficient irrigation techniques, and real-
time dam inflow monitoring, are necessary to mitigate these impacts [51]. For example, 
regions like Kupwara, which exhibit steep SWE declines, face increased challenges in sus-
taining water supplies for agriculture and hydropower during dry periods. Furthermore, 
an intriguing aspect of this study is the relationship between SWE decline and hailstorm 
events. Hailstorm frequency data from 2007–2022 reveal variations across districts, with 
high-altitude regions like Baramulla and Kupwara reporting 37 and 29 hailstorm events, 
respectively, during this period [16]. These districts, characterized by sharp SWE declines 
and significant temperature increases, may be experiencing heightened atmospheric in-
stability conducive to hailstorm formation [52]. While temperature rise appears to be a 
dominant factor, reduced snow cover may also contribute by altering surface albedo and 
increasing atmospheric instability [53]. In contrast, lower-elevation districts like Gan-
derbal, which experienced only 10 hailstorm events, align with their more moderate SWE 
decline and temperature trends. These findings suggest a potential link between SWE re-
duction and hailstorm frequency, although additional studies are required to confirm this 
interaction. 

The socioeconomic implications of these climatic changes are significant, particularly 
for smallholder farmers reliant on snowmelt for irrigation [54]. The unpredictable water 
availability, coupled with extreme weather events like hailstorms, threatens agricultural 
productivity and livelihood security [55]. For instance, Baramulla and Kupwara, which 
reported higher hailstorm frequencies, are also districts where farmers have reported sig-
nificant crop damage due to these events. Adaptive measures such as crop diversification, 
weather-indexed insurance, and sustainable agricultural practices could mitigate the risks 
posed by climate change on livelihoods in Jammu and Kashmir [56]. Initiatives like the 
Jammu and Kashmir Rural Livelihoods Mission demonstrate the potential of integrating 
community-based approaches with technological advancements to enhance resilience 
[54,57]. The observed interplay between SWE decline, rising temperatures, and hailstorm 
frequency highlights the need for region-specific strategies to mitigate the impacts of cli-
mate change on snow resources and extreme weather events. 
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5. Conclusions 
This study presents an analysis of climatic trends and their hydrological implications 

for Jammu and Kashmir, focusing on SWE, temperature, snow cover, wind speed, and 
streamflow dynamics. Using multi-source datasets and advanced analytical methods, cli-
matic trends over the past five decades were observed. Notable findings include a meas-
urable decline in SWE, particularly in high-altitude districts such as Kupwara and Bandi-
pora, as shown by Sen’s Slope analysis and Mann–Kendall test results. These trends are 
linked to rising temperatures and altered precipitation patterns, which contribute to ear-
lier snowmelt and reduced snow cover duration. The spatio-temporal distribution of 
snow cover, analyzed through NDSI, highlights regional vulnerability to climate variabil-
ity, with implications for water resources and ecosystems. Despite these findings, the 
study acknowledges various limitations. The spatial resolution of datasets like ERA5 rea-
nalysis limits the ability to capture fine-scale climate variations in complex mountainous 
terrain. Additionally, generalized runoff coefficients used in streamflow modeling may 
not fully account for localized hydrological processes, and the model does not explicitly 
incorporate snowmelt dynamics, which are critical contributors to annual streamflows in 
the Kashmir Valley. Moreover, the generalized hydrological parameters used may not 
fully reflect the distinct climatic and topographical differences between districts in the 
Kashmir Valley and the Jammu region, potentially affecting the modelʹs accuracy. The 
pearson correlation employed to validate ERA5 temperature data, although demonstrated 
strong alignment with IMD data, may not fully capture subtle but critical deviations that 
significantly would influence snowmelt and SWE dynamics. Therefore, alternative met-
rics like Percent Bias (PBias) will provide a better evaluation of dataset reliability and its 
implications for snow hydrology studies in the region. Further the secondary hailstorm 
data lacked detailed meteorological variables necessary for better analysis. Therefore, fu-
ture research must incorporate higher-resolution datasets, localized hydrological param-
eters, and long-term monitoring of SWE through remote sensing and ground-based sys-
tems to refine predictive capabilities and inform policy development. 
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