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Abstract: The pastoral areas of Ethiopia are facing a recurrent drought crisis that signifi-
cantly affects the availability of water resources for communities dependent on livestock.
Despite the urgent need for effective drought early warning systems, Ethiopia’s pastoral
areas have limited capacities to monitor variations in the intensity–duration–frequency
of droughts. This study intends to drive drought intensity–duration–frequency (IDF)
curves that account for climate-model uncertainty and spatial variability, with the
goal of enhancing water resources management in Borana, Ethiopia. To achieve this,
the study employed quantile delta mapping to bias-correct outputs from five climate
models. A novel multi-model ensemble approach, known as spatiotemporal reliabil-
ity ensemble averaging, was utilized to combine climate-model outputs, exploiting
the strengths of each model while discounting their weaknesses. The Standardized
Precipitation Evaporation Index (SPEI) was used to quantify meteorological (3-month
SPEI), agricultural (6-month SPEI), and hydrological (12-month SPEI) droughts. Over-
all, the analysis of historical (1990–2014) and projected (2025–2049, 2050–2074, and
2075–2099) periods revealed that climate change significantly exacerbates drought con-
ditions across all three systems, with changes in drought being more pronounced
than changes in mean precipitation. A prevailing rise in droughts’ IDF features
is linked to an anticipated decline in precipitation and an increase in temperature.
From the derived drought IDF curves, projections for 2025–2049 and 2050–2074 indi-
cate a significant rise in hydrological drought occurrences, while the historical and
2075–2099 periods demonstrate greater vulnerability in meteorological and agricultural
systems. While the frequency of hydrological droughts is projected to decrease between
2075 and 2099 as their duration increases, the periods from 2025 to 2049 and from
2050 to 2074 are expected to experience more intense hydrological droughts. Generally,
the findings underscore the critical need for timely interventions to mitigate the vulner-
abilities associated with drought, particularly in areas like Borana that depend heavily
on water resources availability.

Keywords: early warning system; water management; climate change; drought intensity–
duration–frequency; SPEI; Borana zone; Ethiopia
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1. Introduction
Ongoing greenhouse gas emissions are expected to significantly impact global

climate systems, resulting in an increase in average annual global surface temperature by
over 1.5 ◦C by the end of the 21st century in reference to the corresponding pre-industrial
1850–1900 period’s average [1]. The projected intensity, duration, and frequency of
droughts are expected to change significantly in the future due to climate change [2,3].
Over the past several decades, surface temperatures have risen substantially, a rising
trend likely to continue unless greenhouse gas emissions are reduced [4,5]. Changes
in temporal precipitation patterns are anticipated to be region-specific [1]. There will
likely be a rise in the frequency and intensity of drought occurrences as temperatures
rise and precipitation patterns change [6,7]. The International Disaster Database (EM-
DAT) reports that, from 1998 to 2017, climate change and its related extreme events
caused around 1.3 million deaths and left approximately 4.4 billion people requiring
emergency assistance. Notably, 91% of these disasters stemmed from floods, heat stresses,
droughts, and other extreme weather events. Global climate models (GCMs) have been
employed to analyze the climate-change impact (CCI) on projected changes in drought
intensity–duration–frequency (IDF).

Several studies have examined drought projections in various regions under climate
change [6,8–22]. Most of these studies report a rising trend in both the severity and
frequency of droughts across different regions, including tropical areas [12], the Mediter-
ranean [19,20,22], Africa [13,15,19,20], America [19], and Asia [19]. Naumann, Alfieri [19]
found that the drought frequency in the Mediterranean, Central America, south and west-
ern Asia, much of Africa, and Oceania is expected to increase by 5 to 10 times until the end
of the 21st century.

The Horn of Africa, particularly Ethiopia, is currently experiencing a severe multi-year
drought attributed to five consecutive failed rainy seasons, with around 23 million people
facing food insecurity in Ethiopia, Kenya, and Somalia [23]. The Horn of Africa is currently
grappling with a severe drought crisis, significantly affecting the availability of pasture
and water for communities reliant on livestock [23,24]. In Ethiopia, the livestock sector is
crucial, contributing 40% to the agricultural gross domestic product (GDP), 20% to export
earnings, and 19% to the overall GDP of the country [25], yet it has been severely impacted
by climate change [26]. Conflicts in pastoral areas often arise due to the scarcity of resources,
particularly water and pastures. Drought has greatly impacted the availability of water
and pastures in the Ethiopian pastoral region, particularly the Borana zone. The risk of
droughts has escalated due to global climate change, presenting significant challenges
for managing unprecedented drought conditions. These intensified droughts threaten
the delicate balance of ecosystems and the livelihoods of pastoral communities that rely
on consistent water sources for both domestic needs and livestock production. Rainfall
in the Horn of Africa has been declining sharply since 1999, complicating agricultural
decisions for crops and livestock [24]. The decline in precipitation, along with increasing
temperatures and recurrent droughts, has severely impacted pastoralist communities,
which represent 12–15% of Ethiopia’s population and are primarily located in arid and
semi-arid regions [27]. These communities contribute significantly to the national economy
but are increasingly vulnerable due to climate variability. Thus, proactive climate-change
impact assessments and responsive management strategies are essential for safeguarding
the water resources that pastoral communities depend on.

Frequent and severe droughts have emerged as a significant climate disaster in
the Borana pastoral areas, fundamentally altering the rangeland ecosystem and threat-
ening pastoralists’ and agro-pastoralists’ livelihoods [26,28–30]. The key resources for
livestock production, pastures and water, are intricately tied to rainfall patterns. The
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ongoing drought has exacerbated the already high levels of food insecurity faced by
both pastoral and agro-pastoral communities in the Borana zone. Several studies in
the Borana zone have shown a consistent pattern of decreasing rainfall and increasing
drought severity [31–34]. Iticha, Husen [35] emphasized that drought impacts in the
Omo Ghibe River Basin and the Borana lowlands are intensified by climate change and
other stressors, leading to significant livestock losses. The Borana lowlands, known
for their vulnerability to climate fluctuations, have faced severe livestock losses due
to increasing drought frequency and intensity [33]. Wakeyo [28] pointed out that the
2021–2022 drought led to unprecedented livestock losses in the Borena, Somali, and Afar
regions. The region’s population relies heavily on rainfed agriculture, which is severely
impacted by below-normal rainfall, leading to crop failures and water shortages [36].
As a result, assessing the CCI on drought has emerged as a crucial research topic for
enhancing our understanding of the causes and effects of global warming. Most pre-
vious studies in the Borana zone have concentrated on characterizing drought using
historical data. However, understanding drought under CCI is essential for making
informed decisions and preparing for future drought events. Furthermore, assessing
how climate change affects drought intensity–duration–frequency (IDF) is crucial for
effectively mitigating drought impacts and enhancing resilience. This study aims to fill
that gap by developing drought IDF curves that account for climate-model uncertainty,
spatial variability, and climate-change scenarios using bias-corrected climate-model
outputs through quantile delta mapping. This approach aims to support the sustainable
management of water and pasture resources and facilitate informed decision-making.
Understanding the CCI on IDF and spatiotemporal dynamics of these droughts will
provide critical insights that can inform timely decision-making and responses.

It is important to note that agricultural and hydrological droughts can be quantified
using the Standardized Precipitation Index [37], which focuses solely on precipitation
since droughts typically result from insufficient precipitation. However, rising temper-
atures can lead to increased evaporative losses, adversely affecting water availability.
To address this, this study employs the Standardized Precipitation Evapotranspiration
Index (SPEI) [22] to assess the CCI on meteorological, agricultural, and hydrological
droughts in the Borana pastoral region of Ethiopia. The consequences of meteorological
(3-month SPEI), agricultural (6-month SPEI), and hydrological (12-month SPEI) droughts
can lead to operational drought, as noted by Pedro-Monzonís, Solera [38], as well as
socio-economic drought [38,39]. In the Borana pastoral region (Figure 1), operational and
socio-economic droughts are further exacerbated by population growth, unsustainable
water use for livestock, and the inadequate design and management of artificial reser-
voirs. Hydrological droughts can significantly impact water users in the Borana zone,
including the livestock sector, irrigated agriculture, ecosystems, and domestic water
supplies. Conversely, meteorological droughts can negatively affect rainfed agriculture,
and agricultural droughts can adversely impact both rainfed and irrigated systems.
While it may be challenging to prevent the impacts of meteorological droughts due to cli-
mate change, proactive measures can be adopted to mitigate hydrological droughts [40]
through investments in artificial reservoirs to store excess water during rainy seasons
for use in severe dry periods [41].
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Figure 1. This map displays the location of the Borana Zone (bottom panel), Ethiopia (top panel). 
The water points indicate the current surface water sources available within the Borana zone. Please 
note that the names “Arero, Wachile, Dhas, Moyale, Guchi, Miyo, Dilo, Teltale, Elwaya, Gomole, 
Yabelo, Dubluk, and Dire” refer to the woredas within the study area, the Borana zone. A woreda 
is the third level of administrative divisions in Ethiopia, following regional states and zones. 

2. Study Area and Data Description 
This study was conducted in the Borana zone of the southern region of Ethiopia 

(Figure 1). Covering about 44,203 square kilometers, Borana is home to the largest pastoral 
population in the Oromia region, Southern Ethiopia. In the Borana zone, the community 
mainly engages in small-scale subsistence agriculture and livestock farming, both of 
which are highly affected by climate conditions and often struggle during droughts. Due 
to the area’s aridity, large-scale farming is uncommon. However, the government has 
introduced some farming practices to help diversify income and support families. The 
Borana zone geographically lies between latitudes 3°30′ N and 5°25′ N and longitudes 
36°40′ E and 39°45′ E. The elevation in the Borana zone ranges from 439 to 2473 m above 
sea level. Yabelo, the capital of Borana, is situated roughly 570 km south of Addis Ababa, 
and around 75% of the area is classified as lowland. The Borana zone experiences four 
distinct seasons: (1) Bega, which is the long dry season, lasting from December to 

Figure 1. This map displays the location of the Borana Zone (bottom panel), Ethiopia (top panel).
The water points indicate the current surface water sources available within the Borana zone. Please
note that the names “Arero, Wachile, Dhas, Moyale, Guchi, Miyo, Dilo, Teltale, Elwaya, Gomole,
Yabelo, Dubluk, and Dire” refer to the woredas within the study area, the Borana zone. A woreda is
the third level of administrative divisions in Ethiopia, following regional states and zones.

2. Study Area and Data Description
This study was conducted in the Borana zone of the southern region of Ethiopia

(Figure 1). Covering about 44,203 square kilometers, Borana is home to the largest pastoral
population in the Oromia region, Southern Ethiopia. In the Borana zone, the community
mainly engages in small-scale subsistence agriculture and livestock farming, both of which
are highly affected by climate conditions and often struggle during droughts. Due to the
area’s aridity, large-scale farming is uncommon. However, the government has introduced
some farming practices to help diversify income and support families. The Borana zone
geographically lies between latitudes 3◦30′ N and 5◦25′ N and longitudes 36◦40′ E and
39◦45′ E. The elevation in the Borana zone ranges from 439 to 2473 m above sea level. Yabelo,
the capital of Borana, is situated roughly 570 km south of Addis Ababa, and around 75% of
the area is classified as lowland. The Borana zone experiences four distinct seasons: (1) Bega,
which is the long dry season, lasting from December to February; (2) Belg which is the long
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rainy season, from March to May; (3) Kiremt, which is a short dry spell that occurs from June
to August; and (4) Meher, which is the short rainy season, from September to November.
Unlike much of Ethiopia, Borana receives most of its rainfall during the Belg and Meher
seasons. The climate in Borana is primarily semi-arid, with annual rainfall of 638 mm over
the historical period (1986–2017) and mean annual maximum and minimum temperatures
observed of 29 ◦C and 16 ◦C, respectively. Gridded data on the daily precipitation and
temperature (maximum and minimum) produced through the Enhancing National Climate
Services (ENACTS) initiative (4 km by 4 km) in the Borana zone for the period 1981 to
2016 were collected from the National Meteorological Agency of Ethiopia. These grided
climate data were produced by ENACTS by blending the ground observations with freely
available global remote satellite products.

3. Methods
3.1. Assessment of Climate-Change Impacts on Droughts

The severity and frequency of droughts can be assessed using commonly employed
threshold-level methods designed to characterize drought conditions when a meteorologi-
cal variable, such as rainfall or evapotranspiration, falls below a defined threshold level.
This study used the SPEI [22] to analyze the frequency and intensity of meteorological
(3-month SPEI), agricultural (6-month SPEI), and hydrological (12-month SPEI) droughts.
The meteorological variables (precipitation and temperature) are downscaled from five
GCMs, as detailed in Table 1. The quantile delta mapping (QDM) algorithm [42] is em-
ployed to adjust the GCMs daily temperature and precipitation outputs. A multi-model
ensemble averaging approach was used to quantify the projected climate changes on the
drought IDF. The spatiotemporal reliability ensemble averaging (ST-REA) multi-model
averaging algorithm, proposed by Tegegne, Kim [43], was used to quantify the projected cli-
mate changes by combining outputs from the five GCMs through leveraging their strengths
and discounting their weaknesses. The SPEI [22] is employed to quantify the droughts’
frequency and intensity. The frequency and magnitude of droughts in the future periods
(2025–2049, 2050–2074, and 2075–2099) are then assessed with respect to the baseline pe-
riod (1990–2014). This comprehensive evaluation aims to deepen our understanding of
how climate change may influence drought characteristics in the region, offering valuable
insights for effective management and mitigation strategies.

Table 1. Global climate models used in this study.

No. Model Country Resolution [Degree]

1 ACCESS-ESM1-5 Australia 1.875 × 1.25

2 BCC-CSM2-MR China 1.1 × 1.1

3 CNRM-CM6-1 France 1.4 ×1.4

4 MIROC6 Japan 1.4 × 1.4

5 MRI-ESM2-0 Japan 1.125× 1.125

3.2. Quantile Delta Mapping

The temperature and precipitation outputs (data) from five GCMs (Table 1) of the
two commonly used Shared Socioeconomic Pathways (SSPs), 2–4.5 and 5–8.5, were down-
loaded from the World Climate Research program portal “https://esgf-node.ipsl.upmc.
fr/search/cmip6-ipsl/ (accessed 16 January 2025)” and used in this study for drought
projection. The five GCMs were selected based on their performance in previous studies
on Ethiopia [44–47].

https://esgf-node.ipsl.upmc.fr/search/cmip6-ipsl/
https://esgf-node.ipsl.upmc.fr/search/cmip6-ipsl/
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The GCMs’ output is often characterized with high biases compared to the reality
in the present-day scenario [42]. Johnson and Sharma [48] highlighted the importance of
applying a bias correction in the GCMs’ output for reliable drought projections. They found
that using raw climate-model simulations led to inaccurate representations of the region.
Before assessing CCI on drought, it is crucial to bias-correct precipitation and temperature
outputs from GCMs based on observational datasets. Therefore, applying a bias correction
to GCM outputs is a precondition for reliable climatic extreme projection estimations.

Various studies have proposed several bias correction algorithms to remove empirical
cumulative distribution functions’ (CDFs) biases [42,49–51]. Moreover, several studies
compared the performance of different bias correction approaches in removing the CDF
biases from the GCMs’ output [42,52,53]. Cannon, Sobie [42] developed the quantile
delta mapping (QDM) method, used in this study, to simultaneously bias-correct the CDF
biases and preserve the GCM-projected variability. The GCM outputs were first spatially
disaggregated to the weather station using an inverse distance interpolation technique
and then bias-corrected using QDM. The QDM effectively preserves the projected changes
across all quantiles of a CDF [54]. Cannon, Sobie [42] demonstrated that the QDM algorithm
effectively reproduces the relative trends in climate extremes, closely aligning with the
trends of raw GCMs’ output. The GCMs used in this study (see Table 1) include ACCESS-
ESM1-5 [55], BCC-CSM2-MR [56], CNRM-CM6-1 [57], MIROC6 [58], and MRI-ESM2-0 [59].
The QDM process involves two steps: (1) the GCM outputs are detrended by quantile and
adjusted to observations through quantile mapping; and (2) the projected changes from the
GCMs are superimposed on the bias-corrected climate data [42], as illustrated below.

∆m(t) =
F−1

m,p

[
F(t)

m,p
(
xm,p(t)

)]
F−1

m,h

[
F(t)

m,p
(
xm,p(t)

)] =
xm,p(t)

F−1
m,h

[
F(t)

m,p
(

xm,p(t)
)] for precipitation (1)

∆m(t) = xm,p(t)− F−1
m,h

[
F(t)

m,p
(
xm,p(t)

)]
for temperature (2)

where xm,p(t) represents the raw GCM output at time t during the projected period, ∆m(t)
denotes the projected quantile relative changes, Fm,h refers the CDFs of the historical

simulations, and F(t)
m,p indicates the projected simulations CDFs. The bias-corrected climate

simulations for the projected period are then derived by multiplying the historical corrected
simulations by the relative changes, as shown below in Equations (3) (for precipitation)
and (4) (for temperature):

x̂m,p(t) = F−1
o,h

[
Fm,h

(
xm,p(t)

)]
∆m (t) (3)

x̂m,p(t) = F−1
o,h

[
Fm,h

(
xm,p(t)

)]
+ ∆m (t) (4)

where x̂m,p (t) is the projected bias-adjusted simulations at time t, and Fo,h is the historical
observed CDFs.

3.3. Spatiotemporal Reliability Ensemble Averaging

A multi-model ensemble approach enhances prediction reliability by leveraging the
strengths of each climate simulator while minimizing their weaknesses [7,43,60,61]. The
original Reliability Ensemble Averaging (REA) method [62] evaluates the performance of
GCMs based on two key criteria: their performance to replicate observed data characteris-
tics during the historical period and their ability to converge with other models regarding
projected changes in data. This multi-model averaging assessment leads to the calculation
of both performance and convergence weights. The performance weight is derived from
the GCM’s bias, which evaluates how accurately the GCM reproduces historical data. Con-
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versely, the convergence weight reflects how closely a GCM’s projected data change aligns
with the ensemble mean change from multiple models. This is estimated by calculating
the distance of a GCM’s precipitation-change signal from the ensemble average. A key
innovation of the REA approach is the incorporation of the model convergence criterion.
This is particularly significant because high performance in historical simulations does
not necessarily guarantee reliable future climate projections. By including convergence in
the assessment, the REA method ensures that models not only perform well historically
but also show consistency with the collective projections of other models. As a result, if a
model’s projected changes are significantly distant from the ensemble average (deemed an
outlier), its performance weight is reduced accordingly.

Tegegne, Kim [43] enhanced the REA approach by introducing a spatiotemporal vari-
ability term into the weighting algorithm. This modification led to the development of the
spatiotemporal reliability ensemble averaging (ST-REA) approach, which simultaneously
accounts for both temporal and spatial variability in climate projections. Generally, the
ST-REA weight for a specific GCM is computed as the product of two reliability terms: the
performance factors—which encompass both bias (B) and variability (Var) in reproducing
historical data—and the convergence factor, which is represented by the distance (D) of
that model’s projected changes from the ensemble mean. This comprehensive method en-
hances the reliability and robustness of climate-change projections, enabling more accurate
assessments of future data patterns. The ST-REA considers both the spatial and temporal
variability simultaneously, as shown in Equation (5).

wST
i =


 εST√(

BST
i

)2
+ VarST

i

m[
εST

abs
(

DST
i

)]n


[1/(m×n)]

(5)

where E denotes the variability in the observation defined as the difference between the
maximum and minimum values of the 25-year moving averages in the observations after
linearly detrending the data to remove century-scale trends. The parameters m and n
are used to weigh each criterion, both set to 1 in this work. wST

i indicates the ST-REA
weight of GCM i. The letters S and T in the superscript and subscript represent the spatial
and temporal variables, respectively. BST

i , VarST
i , and DST

i represent the simulation bias,
variability, and distance of the target GCM i’s projected changes from the ensemble mean
of GCMs-projected changes, respectively. BST

i , VarST
i , DST

i , and EST can be expressed
as follows:

BST
i =

1
J + T

[
ΣJ

j=1.ΣT
t=1.

(
Xi,j,t − Oj,t

)]
(6)

VarST
i =

1
J + T

[
ΣJ

j=1.ΣT
t=1.

(
Xi,j,t −

1
J + T

ΣJ
j=1.ΣT

t=1.
(
Xi,j,t

))2
]

(7)

DST
i = ∆XST

i − ∑N
i=1 wST

i × ∆XST
i

∑N
i=1 wST

i
(8)

εST = max


O1,1 O1,2 · · · O1,T

O2,1 O2,2 · · · O2,T
...

...
. . .

...
OJ,1 OJ,2 · · · OJ,T

− min


O1,1 O1,2 · · · O1,T

O2,1 O2,2 · · · O2,T
...

...
. . .

...
OJ,1 OJ,2 · · · OJ,T

 (9)

where O and X represent the observed and simulated data, respectively. The letters i, j,
and t in the subscripts, respectively, represent the climate-model type, i, location, j, and
time, t. The expressions max{OS

1 , · · · , OS
T} and max{OT

1 , · · · , OT
J } indicate the maximum

spatial and temporal values of the average data after the data are linearly detrended, while
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min{OS
1 , · · · , OS

T} and min{OT
1 , · · · , OT

J } represent the minimum values of the spatially and
temporally averaged data, respectively, after the data are linearly detrended. ∆ signifies
the changes in GCM simulation, and N is the GCMs number in the analysis.

3.4. Meteorological, Agricultural, and Hydrological Droughts

CCI on droughts of different systems (i.e., meteorological, agricultural, and hydrologi-
cal) were analyzed based on the ST-REA approach. The SPEI was employed to characterize
the climate change risk of hydrological, meteorological, and agricultural droughts. CCI
on droughts of agricultural systems often respond to meteorological anomalies over short
periods, and the longer period can express the drought’s impacts on the hydrological
system. This is as per the United States and European drought assessment framework [63].
In this study, therefore, the CCI on meteorological, agricultural, and hydrological systems,
respectively, were detected via the SPEI values at 3 months, 6 months, and 12 months. The
detailed procedure for SPEI calculation can be found in the work of Vicente-Serrano, Be-
guería [22]. Based on the drought classification by McKee, Doesken [37], the SPEI drought
intensity categories are as follows: less than −2 (extreme drought), between −1.5 and
−2 (severe drought), between −1 and −1.5 (moderate drought), between −1 and 1 (normal
condition), between 1 and 1.5 (moderately wet), between 1.5 and 2 (severely wet), and
above 2 (extremely wet). This study used the SPEI drought intensity of less than or equal
to −1 to assess the CCI on droughts. By employing this comprehensive framework, the
study aimed to provide nuanced insights into how climate change is expected to affect
drought characteristics across different systems, thereby guiding future research and policy
decisions in resource management and climate adaptation strategies.

3.5. Drought Intensity–Duration–Frequency

This study quantified the CCI on droughts by deriving intensity–duration–frequency
(IDF) curves, following the methodology by Wang, Hejazi [9]. The following steps outline
the procedure used in this study to derive the IDF curves for both historical (1990–2014)
and projected future periods (2025–2049, 2050–2074, and 2075–2099):

• Select drought intensity (I): Drought intensity is quantified using the SPEI. Specifi-
cally, SPEI values that are less than or equal to −1 are aggregated to compute the
drought intensity.

• Determine drought duration (D): The analysis utilizes monthly data for precipitation
and potential evapotranspiration to calculate drought indices. This computation is
performed for durations ranging from 1 month to 24 months, allowing us to cap-
ture the variation in drought conditions over different time scales. Droughts of 1 to
3 months are short-term droughts, reflecting immediate conditions. Droughts of 3 to
6 months are useful for monitoring seasonal droughts related to agricultural impacts.
Droughts of 6 to 12 months indicate moderate drought conditions that account for
cumulative effects. Droughts of 12 to 24 months represent long-term drought trends,
which are used for hydrological and ecological assessments. Each timescale provides
insights into different aspects of droughts, helping with effective management and
response strategies.

• Perform drought frequency (F): With the defined intensity and duration, the drought
events frequency is assessed over a 25-year time window. This includes both baseline
years (1990–2014) and future periods (2025–2049, 2050–2074, and 2075–2099). The
frequency count provides insights into how often drought conditions are expected to
occur under varying climate scenarios.

• Construct drought IDF curves: Finally, using both the ST-REA multi-model ensemble
average and five GCMs’ output, the drought IDF curves are constructed for both the
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historical and projected periods. This analysis incorporates data from two emission
scenarios of SSP2-4.5 and SSP5-8.5. The resulting IDF curves illustrate the relationship
between drought intensity, duration, and frequency, providing a comprehensive view
of how climate change may alter drought characteristics over time.

By employing this structured approach, the study aimed to derive the drought IDF
curves to provide valuable insights into the anticipated changes in drought behavior due
to climate change, thereby informing resource management and policy decisions in the
Borana zone.

4. Results and Discussion
4.1. Projected Changes of Precipitation and Temperature

The study employed the QDM method to bias-correct precipitation and temperature
data using observations from 1990 to 2005 for calibration and 2006 to 2014 for validation.
The analysis confirmed that QDM effectively eliminated distributional biases in the output
from GCMs. The overall projected climate-change impacts indicate a concerning trend
of rising temperatures and declining precipitation in the Borana zone across all selected
GCMs and future time periods (see Figure 2 for precipitation and Figure 3 for tempera-
ture). Under the SSP2-4.5 scenario, the precipitation is projected to decrease by 33.73% in
2025–2049, 32.41% in 2050–2074, and 25.52% in 2075–2099. The SSP5-8.5 scenario shows
similar declines, with reductions of 33.68%, 26.67%, and 19.44% over the same periods.
Detailed projections reveal variable changes in precipitation across different GCMs. For
instance, the ACCESS-ESM1-5 model projects the precipitation with relative changes rang-
ing from −64.74% to 4.64% in 2025–2049, and from −78.14% to 12.61% in 2050–2074,
while showing a broader range of −64.36% to 45.61% in 2075–2099 under SSP2-4.5. Sim-
ilarly, BCC-CSM2-MR indicates changes from −72.56% to 6.12% in 2025–2049 and from
−75.63% to 8.69% in 2050–2074. Other models, such as CNRM-CM6-1 and MIROC6,
project even steeper declines. For example, MIROC6 predicts changes from −95.83% to
−1.82% in the initial period and from −89.42% to 3.55% in the next. MRI-ESM2-0 projects
the precipitation with relative changes ranging from −71.78% to 17.51% in 2025–2049,
with notable variability in later years. These projections highlight a consistent trend of
reduced precipitation, which poses significant risks to water resources and agriculture
in the Borana zone, underscoring the urgency for adaptive strategies to manage these
anticipated changes.

The projected changes in average minimum and maximum temperatures indicate a
significant warming trend over the coming decades, with variations depending on the
scenario (Figure 3). Under SSP2-4.5, the overall average minimum temperature is modeled
to increase by 0.98 ◦C (0.54 ◦C for the maximum) between 2025 and 2049. This rise reaches
1.59 ◦C (1.02 ◦C for the maximum) by 2050 to 2074 and 1.96 ◦C (1.24 ◦C for the maximum)
by 2075 to 2099. For SSP5-8.5, the projections are even more pronounced (see Figure 3). The
average minimum temperature is modeled to increase by 1.23 ◦C (0.73 ◦C for the maximum)
from 2025 to 2049, with further increases of 2.41 ◦C (1.39 ◦C for the maximum) by 2050 to
2074, and a substantial 3.64 ◦C (2.23 ◦C for the maximum) by 2075 to 2099.

Specifically, under SSP2-4.5, minimum temperatures are projected to vary from
0.73 to 1.28 ◦C in 2025 to 2049, 1.27 to 2.07 ◦C in 2050 to 2074, and 1.59 to 2.54 ◦C in
2075 to 2099. Maximum temperatures will rise more modestly, ranging from 0.42 to
0.74 ◦C in 2025 to 2049, 0.81 to 1.28 ◦C in 2050 to 2074, and 0.97 to 1.57 ◦C in
2075 to 2099. In contrast, the SSP5-8.5 scenario shows that minimum temperatures could
increase between 0.97 and 1.66 ◦C in 2025 to 2049, 1.94 to 3.07 ◦C in 2050 to 2074, and
2.94 to 4.62 ◦C in 2075 to 2099. Maximum temperatures under this scenario are projected
to rise more significantly, from 0.62 to 0.94 ◦C in 2025 to 2049, 1.04 to 1.73 ◦C in 2050 to
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2074, and 1.69 to 2.75 ◦C in 2075 to 2099. Generally, these projections highlight a concerning
trend of increasing temperatures that could have profound implications for the pastoral
and agro-pastoral sectors in the Borana zone.
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period of 1990–2014. The box represents the interquartile range, with the first quartile at the bottom
and the third quartile at the top, while the red line inside the box indicates the median. The whiskers
extend from the quartiles to the minimum and maximum values, with the lowest and highest data
points typically outside the box representing the minimum and maximum, respectively. Red “+”
symbols above and below the whiskers indicate outliers, which are unusually high or low data points.

The projected changes in average precipitation over the Borana zone indicate a signifi-
cant declining trend compared to historical records, raising concerns about future drought
probabilities in the region. This decline is particularly pronounced in the western parts
of Borana, specifically in the Teltale and Dilo woredas, which are expected to experience
the most substantial reductions in precipitation across all future time periods under both
SSP2-4.5 and SSP5-8.5 (see Figure 4). In contrast, the eastern woredas, including Arero,
Wachile, Dhas, Moyale, Guch, Miyo, and Dire, are projected to see relatively smaller de-
clines in precipitation compared to the other parts of the Borana zone. However, this does
not negate the overall risk; even minimal reductions can exacerbate water scarcity issues in
an already vulnerable area. Please note that a woreda is the third level of administrative
divisions in Ethiopia, following regional states and zones. The projected relative changes
in precipitation for the Borana zone vary significantly. Under SSP2-4.5, changes are ex-
pected to range from −42.99% to −28.35% in the 2025–2049 period, −42.37% to −27.97% in
2050–2074, and −39.46% to −17.22% in 2075–2099. SSP5-8.5 shows even more drastic
declines, with precipitation projected to decrease between −48.11% and −29.11% from
2025 to 2049, −36.21% to −22.73% from 2050 to 2074, and −34.91% to −13.88% from
2075 to 2099.
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Figure 3. Maximum (top) and minimum (bottom) temperatures’ projected changes relative to the
baseline period (1990–2014) in the Borana zone. The box represents the interquartile range, with
the first quartile at the bottom and the third quartile at the top, while the red line inside the box
indicates the median. The whiskers extend from the quartiles to the minimum and maximum values,
with the lowest and highest data points typically outside the box representing the minimum and
maximum, respectively. The red “+” symbols above and below the whiskers indicate outliers, which
are unusually high or low data points.

The substantial reductions in precipitation across different regions of Borana imply
an increased likelihood of drought conditions in the future. The western woredas, facing
the steepest declines, will likely experience more frequent and severe droughts, leading to
significant challenges for local agriculture and livestock production, key components of
the pastoralist lifestyle. As water availability diminishes, food security will be jeopardized,
increasing the vulnerability of communities that rely heavily on consistent rainfall for their
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livelihoods. Generally, the anticipated changes in precipitation underscore the urgent need
for adaptive water management strategies and drought mitigation measures to enhance
resilience in the Borana zone and support its communities in addressing the challenges
posed by climate change.
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Figure 4. Projected changes in precipitation (%) over the Borana zone calculated using spatiotemporal
reliability ensemble averaging (ST-REA) for the periods of 2025–2049 (upper row), 2050–2074 (middle
row), and 2075–2099 (lower row). These changes are presented relative to the historical period of
1990–2014, under both SSP2-4.5 (left column) and SSP5-8.5 (right column). Please note that the names
“Arero, Wachile, Dhas, Moyale, Guchi, Miyo, Dilo, Teltale, Elwaya, Gomole, Yabelo, Dubluk, and
Dire” refer to the woredas within the study area, the Borana zone. A woreda is the third level of
administrative divisions in Ethiopia, following regional states and zones.

4.2. Spatiotemporal Dynamics of Meteorological, Agricultural, and Hydrological Droughts

The intensity, frequency, severity, and spatial extent of meteorological, agricultural,
and hydrological events with an SPEI value of less than or equal to −1 were used to assess
the CCI on droughts in the Borana zone. Figures 5–7 show the projected variation in
drought frequency for different drought durations in terms of SPEI in the Borana zone.
Meteorological and agricultural droughts are influenced by precipitation anomalies over
relatively short timescales, while longer SPEI periods capture the effects on hydrological
droughts [63]. In the Borana zone, the range of drought frequency (estimated from five
GCMs) increases as the drought duration increases from 1–3 months (toward meteorological
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drought) to 3–6 months (toward agricultural drought) and 12–24 months (toward hydro-
logical drought). The overall analysis indicates that droughts’ IDF features are expected
to increase in the future, primarily due to projected rises in temperature and declines in
precipitation. The spatial dynamics of meteorological drought, as measured by the 3-month
SPEI, indicate that the eastern regions of the Borana zone, including Yabelo, Arero, Dubluk,
Dire, Miyo, Guchi, Moyale, Dhas, and Wachile, will likely experience fewer drought events
compared to the western areas (see Figure 5). Specifically, the Telltale and parts of Dilo
woredas are projected to face the highest drought occurrences in future periods. Overall,
meteorological droughts are expected to increase across the Borana zone, with relative
changes ranging from 21.81% to 391.36% in 2025–2049, 59.32% to 501.85% in 2050–2074,
and 18.56% to 389.72% in 2075–2099 under SSP2-4.5. Under SSP5-8.5, these changes range
from 54.36% to 454.85% in 2025–2049, −7.58% to 222.28% in 2050–2074, and −6.64% to
278.16% in 2075–2099.
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Figure 5. Meteorological droughts’ (SPEI-3) projected changes calculated for the periods of
2025–2049 (first row), 2050–2074 (second row), and 2075–2099 (third row) relative to the reference
period of 1990–2014. The SPEI-3 was computed and plotted for both SSP2-4.5 (left column) and
SSP5-8.5 (right column). Please note that the names “Arero, Wachile, Dhas, Moyale, Guchi, Miyo,
Dilo, Teltale, Elwaya, Gomole, Yabelo, Dubluk, and Dire” refer to the woredas within the study area,
Borana zone. A woreda is the third level of administrative divisions in Ethiopia, following regional
states and zones.
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Figure 6. Agricultural droughts’ (SPEI-6) projected changes calculated for the periods of
2025–2049 (first row), 2050–2074 (second row), and 2075–2099 (third row), relative to the refer-
ence period of 1990–2014. The SPEI-6 was computed and plotted for both SSP2-4.5 (left column) and
SSP5-8.5 (right column). Please note that the names “Arero, Wachile, Dhas, Moyale, Guchi, Miyo,
Dilo, Teltale, Elwaya, Gomole, Yabelo, Dubluk, and Dire” refer to the woredas within the study area,
Borana zone. A woreda is the third level of administrative divisions in Ethiopia, following regional
states and zones.

Agricultural drought, estimated by the 6-month SPEI, is projected to increase signifi-
cantly throughout all regions of Borana (see Figure 6). The western areas will experience
the most severe drought, with projections relative to the historical indicating changes
from 49.89% to 698.62% in 2025–2049, 100.14% to 817.95% in 2050–2074, and 19.79% to
537.96% in 2075–2099 under SSP2-4.5. SSP5-8.5 presents even more alarming figures, with
increases ranging from 108.06% to 894.13% in 2025–2049, 6.17% to 449.13% in 2050–2074,
and 26.33% to 450.32% in 2075–2099.

Hydrological drought, assessed using the 12-month SPEI, shows that Yabelo, Arero,
Miyo, Dire, and parts of Wachile will experience lower increases in drought compared
to other areas (see Figure 7). In contrast, the western parts, particularly Telltale, Dilo,
and Elwaya, are expected to face significant drought events. Projected relative changes
in hydrological drought range from 457.61% to 1171.26% in 2025–2049, 467.24% to
1198.93% in 2050–2074, and 372.07% to 1010.95% in 2075–2099 under SSP2-4.5. Un-
der SSP5-8.5, the increases could be even more severe, ranging from 448.23% to
1320.52% in 2025–2049, 453.19% to 1102.17% in 2050–2074, and 411.12% to 982.93% in
2075–2099. These results highlight increasing drought severity across the Borana zone. The
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anticipated rise in drought events poses significant risks to agriculture, water resources,
and overall food security, necessitating urgent adaptation and mitigation strategies to
support the affected communities.
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Figure 7. Hydrological droughts (SPEI-12) projected changes calculated for the periods of
2025–2049 (first row), 2050–2074 (second row), and 2075–2099 (third row), relative to the refer-
ence period of 1990–2014. The SPEI-12 was computed and plotted for both SSP2-4.5 (left column)
and SSP5-8.5 (right column). Please note that the names “Arero, Wachile, Dhas, Moyale, Guchi, Miyo,
Dilo, Teltale, Elwaya, Gomole, Yabelo, Dubluk, and Dire” refer to the woredas within the study area,
Borana zone. A woreda is the third level of administrative divisions in Ethiopia, following regional
states and zones.

Figures 8 and 9 illustrate the spatial variability of hydrological droughts at each
monitoring station, assessed using the SPEI-12 for both historical and projected future
periods. The sunflower plots effectively visualize the frequency of drought occurrences,
with darker segments indicating a high frequency of events, while lighter segments reflect a
moderate frequency. The analysis reveals a considerable projected increase in the frequency
of hydrological droughts in the future compared to historical data. Notably, the majority
of SPEI-12 values for the future period are expected to fall below the zero threshold,
contrasting with historical values that predominantly remained above this threshold. This
shift showed a heightened likelihood of frequent hydrological droughts in the Borana zone.
In addition to hydrological droughts, both meteorological droughts (measured by SPEI-3)
and agricultural droughts (measured by SPEI-6) are also projected to rise across all future
periods relative to historical trends. This increase in drought frequency poses significant
challenges for water resources, agriculture, and ecosystem health in the region.



Climate 2025, 13, 31 16 of 25
Climate 2025, 13, x FOR PEER REVIEW 17 of 26 
 

 

 

Figure 8. SPEI-12 using SSP2-4.5. Note that the range of the plot represents spatial variability based 
on the SPEI-12 values of all stations’ data and five GCMs data. SPEI = −1 is shown in the y-axis, as it 
is the threshold value for the drought IDF curve development. 

 

Figure 9. SPEI 12 using SSP5-8.5. Note that the range of the plot represents spatial variability based 
on the SPEI-12 values of all stations’ data and five GCMs data. SPEI = −1 is shown in the y-axis, as it 
is the threshold value for the drought IDF curve development. 
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is the threshold value for the drought IDF curve development.
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Figure 9. SPEI 12 using SSP5-8.5. Note that the range of the plot represents spatial variability based
on the SPEI-12 values of all stations’ data and five GCMs data. SPEI = −1 is shown in the y-axis, as it
is the threshold value for the drought IDF curve development.
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4.3. Projected Changes of Drought Intensity–Duration–Frequency (IDF) Curves

The IDF curves for meteorological (1- to 3-month SPEI), agricultural (3- to 6-month
SPEI), and hydrological (12- to 24-month SPEI) droughts in the Borana zone are presented
in Figures 10 and 11. These IDF curves are calculated using data from all GCMs, and they
encompass values from all monitoring stations, thereby capturing both the uncertainty
inherent in GCMs and the spatial variability of drought occurrences. The IDF with drought
intensity of an SPEI value of less than −1 illustrates how the frequency of droughts changes
over varying durations. Specifically, it depicts the relationship between the drought du-
ration (measured in months) and drought’s expected frequency. To visualize these data,
density distribution sunflower plots are employed. In these plots, dark sunflowers sig-
nify high-frequency drought events, while light sunflowers represent moderate-frequency
events. Each petal of a dark sunflower corresponds to 23 SPEI values, indicating a ro-
bust representation of drought events, while each petal of a light sunflower represents a
single SPEI value, denoting less frequent occurrences. This visual representation aids in
comprehending the frequency of droughts across different durations. The analysis reveals
that the spatial variability of droughts increases as we move from meteorological (1- to
3-month SPEI) to agricultural (3- to 6-month SPEI) and finally to hydrological droughts
(12- to 24-month SPEI). This progression indicates that, as drought conditions persist, their
impact amplifies across different systems, affecting agricultural productivity and water
resources. Projections for the periods of 2025–2049 and 2050–2074 indicate a significant
rise in drought occurrences under both SSP2-4.5 and SSP5-8.5 as the drought propagates
from meteorological into agricultural and hydrological systems. Interestingly, the baseline
period (1990–2014) and the projected period (2075–2099) demonstrate greater vulnerability
of the meteorological and agricultural systems to climate change.
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Figure 10. Drought IDF curve derived based on the data from all stations and GCMs to show the
spatial variability and the uncertainty with the climate-model outputs under SSP2-4.5. Density distri-
bution sunflower plots effectively illustrate the frequency of drought events, with dark sunflowers
indicating high-frequency occurrences and light sunflowers representing moderate-density events.
Each petal of a dark sunflower corresponds to 3 SPEI values, while each petal of a light sunflower
reflects a single SPEI value.
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Figure 11. Drought IDF curve derived based on the data from all stations and GCMs to show the
spatial variability and the uncertainty with the climate-model outputs under SSP5-8.5. Density distri-
bution sunflower plots effectively illustrate the frequency of drought events, with dark sunflowers
indicating high-frequency occurrences and light sunflowers representing moderate-density events.
Each petal of a dark sunflower corresponds to 3 SPEI values, while each petal of a light sunflower
reflects a single SPEI value.

Figures 10 and 11 illustrate that the meteorological and agricultural droughts during
the baseline and far-future (2075–2099) periods are more severe compared to those occurring
in 2025–2049 and 2050–2074, despite the latter periods experiencing more frequent droughts.
Conversely, the projected hydrological droughts are expected to be more severe during
the 2025–2049 and 2050–2074 periods. The result also reveals a consistent pattern in
which the frequency of agricultural and hydrological droughts decreases as the duration
of the drought increases in both the historical (1990–2014) and far-future (2075–2099)
periods. Furthermore, it is evident from the results that the spatial variability in drought
event frequency increases with longer durations across all future periods. Generally,
understanding the IDF curves and their implications for drought intensity and duration
is crucial for developing effective management strategies to mitigate the CCI on water
resources and agriculture in the Borana zone.

Figure 12 presents the drought IDF curves in the Borana zone, aggregated from five
GCMs and all monitoring stations under SSP2-4.5 and SSP5-8.5. This analysis reveals
critical insights into the future implications of drought conditions across different systems
in the region. The aggregated drought indices indicate that meteorological droughts are
expected to have increasingly pronounced effects on agricultural and hydrological systems
during the projected periods of 2025–2049 and 2050–2074. This trend suggests a heightened
probability of consecutive dry years, which poses significant risks to agricultural productiv-
ity and water availability. Specifically, as meteorological droughts persist, they are likely to
exacerbate conditions in agriculture and water resources, leading to compounded impacts
on food security and ecosystem health. In the historical period (1990–2014), the frequency of
drought events was observed to decline as the duration of these events increased. This trend
in the historical period highlights a higher frequency of meteorological and agricultural
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droughts compared to hydrological droughts in the Borana zone. In the far-future periods
(2075–2099), a similar frequency trend to that of the historical period is expected, suggesting
that, while meteorological and agricultural droughts may frequently occur, hydrological
droughts may remain less prevalent. Conversely, during the periods of 2025–2049 and
2050–2074, the frequency of droughts is projected to increase as meteorological droughts
transition into agricultural and hydrological droughts. This propagation underscores a
concerning trend toward consecutive dry periods, emphasizing the need for proactive
management strategies.
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Figure 12. Drought intensity–duration–frequency (IDF) curves that are derived from the
multi-model ensemble average and aggregated across all stations under SSP2-4.5 (top) and
SSP5-8.5 (bottom) scenarios.

4.4. Discussion

This study analyzed the CCI on the meteorological (1- to 3-month SPEI), agricultural
(3- to 6-month SPEI), and hydrological (12- to 24-month SPEI) systems by deriving drought
intensity–duration–frequency (IDF) curves with an intensity of less than or equal to −1 over
durations of 1 to 24 months. The results indicate a concerning increase in both the frequency
and intensity of droughts across all stations, with projections suggesting that these trends
will worsen in the future compared to historical data. The GCMs utilized in this study
consistently predict a decline in precipitation and a rise in temperatures, contributing
to an intensified drought situation in the Borana zone. The findings underscore that
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climate change is significantly complicating drought management and food security in the
Borana region.

Historical records show that Borana pastoralists experienced substantial livestock
losses during major droughts from 1980 to 2000, with further droughts between 2005 and
2017 leading to ongoing asset depletion [64]. Rising temperatures and erratic rainfall
threaten livestock by reducing the availability of pasture and water resources [65]. Previous
studies revealed marked declines in mean annual rainfall during critical drought years,
which adversely affected livestock populations [66]. Habte, Eshetu [67] reported an uptrend
in the frequency and intensity of droughts in the Borana zone, emphasizing the need for
policymakers to have access to reliable climate data to effectively address these challenges.
To combat these challenges, implementing effective drought risk management strategies is
crucial for alleviating poverty and improving food security [25]. A shift towards sustainable
development strategies is essential for adapting to the evolving climatic conditions [68].
Adaptive strategies must be developed at household, regional, and national levels to
mitigate the adverse impacts of drought.

An early warning system is vital for preparing for drought impacts, allowing for
timely responses before conditions worsen [23]. To enhance Borana pastoralists’ resilience
through access to near-real-time water and pasture resource information, the Alliance of
Bioversity International and CIAT, in collaboration with partners, developed and installed
a fully working interactive and dynamic web-based digital platform (ET–Monitoring) using
human-centered design (HCD). The platform provides timely and accurate information
on water and forage availability to livestock producers so that they can make informed
decisions. Such kinds of innovations and best experiences should be adopted and scaled
up in other pastoral areas to enhance the resilience and adaptation capacity among pas-
toralists, as well as to support people in anticipating, responding to, and quickly recovering
from crises.

Additionally, communities have developed a range of adaptations and coping strate-
gies, including migration, livestock diversification, and emergency water and feed sup-
plies [23]. Traditional coping mechanisms in the Borana zone include mobility, herd
diversification, and forming local alliances [69,70]. Wakeyo [28] recommended promoting
diversified income sources, such as agro-processing and livestock breeding technologies, as
well as establishing early warning systems and small-scale water projects to bolster commu-
nity resilience. Birhanu, Ambelu [26] argue that effective drought risk reduction strategies
must be context-specific and incorporate local knowledge and practices. Recommendations
include diversifying livestock, improving market access, and enhancing infrastructure,
particularly for water resources. Timely drought warnings and meteorological information
should be prioritized to strengthen the resilience of pastoral communities. While destock-
ing is a recognized response to drought, it often serves as a last resort for herders who have
strong emotional ties to their livestock [23]. Therefore, exploring alternative strategies with
higher cost-benefit ratios is essential. For example, Bekele, Abera [71] demonstrated that
emergency livestock feed supplementation has a higher cost–benefit ratio in Ethiopia. Mera
and extremes [72] also emphasized the importance of well-planned infrastructure, adequate
funding, and effective governance in addressing drought challenges. Drought responses
should encompass more than just food aid; they must also include access to agricultural
inputs, water sources for livestock, and the establishment of resilience programs through
safety nets [25]. Such interventions can help mitigate immediate drought effects while
building national capacity for climate-change adaptation.

Climate services (CSs) are increasingly employed to manage the impacts of climatic
hazards [73]. Vaughan and Dessai [74] define CS as the generation and provision of
climate-related information to support decision-making at all societal levels. For instance,
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timely weather forecasts can enable farmers to destock and select drought-resistant crops.
Tailoring CS to meet the specific needs and experiences of users can enhance decision-
making quality [73]. This may require a shift from merely providing climate data to offering
training on how to effectively use that data.

As droughts become more severe, the existing water infrastructure—comprising
surface water points and hand-dug wells—will likely be inadequate to meet the demands
for livestock and domestic use. Without the establishment of additional water sources,
pastoral communities will face significant challenges in sustaining their livelihoods amid
climate-induced water scarcity. Therefore, it is essential to identify and develop new water
points and wells in strategic locations near communities and grazing areas. Timely planning
in this regard is critical for managing the anticipated increases in drought frequency and
intensity. Additionally, enhancing the storage capacity of existing water points is vital, as
many are losing usability due to sediment accumulation from upstream watersheds. This
gradual decline highlights the necessity for proactive measures to maintain and improve
water storage facilities. Implementing integrated watershed management strategies can be
pivotal in addressing sediment influx into water points. The Borana zone’s grasslands are
deteriorating due to multiple factors, including overgrazing and climate change [75]. By
focusing on sustainable land use and soil conservation techniques in watershed areas, it is
possible to reduce sediment inflow into water points and improve overall grassland health.
These efforts not only enhance water quality and availability but also contribute to broader
climate-change adaptation and mitigation strategies.

5. Conclusions
This study analyzed the CCI on drought conditions in the Borana zone, focusing on

the intensity, frequency, severity, and spatial extent of meteorological, agricultural, and
hydrological droughts. Utilizing the SPEI with a drought intensity of less than −1, the
study assessed the projected variations in drought frequency across different durations.
The findings reveal that drought frequency increases with duration, highlighting the sen-
sitivity of agricultural and hydrological systems to climate change in the 2025–2049 and
2050–2074 periods. Projections indicate that, from 2025 to 2099, both temperature increases
and precipitation declines will exacerbate drought conditions across the Borana zone. The
spatial dynamics of drought show that eastern parts of the Borana zone, including Yabelo
and Arero, are likely to experience fewer drought events compared to western areas. No-
tably, the Telltale and parts of Dilo woredas are projected to face the highest occurrences
of drought in the future. Under SSP2-4.5 and SSP5-8.5 scenarios, the result revealed a
significant increase in meteorological, agricultural, and hydrological droughts, particu-
larly in the western regions of the Borana zone. The IDF curves generated in this study
illustrate a clear progression of drought conditions, indicating that, as droughts transition
from meteorological to agricultural and hydrological types, their impacts intensify. This
interconnectedness underscores the need for robust adaptation strategies and community-
based early warning systems to mitigate risks to agriculture, water resources, and overall
food security.

As drought frequency and severity rise, livestock production and crop yields will
be adversely affected, necessitating the adoption of drought-resistant crop varieties and
improved water management practices. Enhanced water conservation strategies and
infrastructure improvements are essential to sustaining water supplies for the pastoral
community. To address these challenges, policymakers should integrate climate projections
into land use and water management strategies, focusing on resilience-building measures.
This includes identifying and developing new water sources, enhancing existing facilities,
and implementing integrated watershed management. Implementing community-based
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early warning systems and fostering collaborations between scientists and local stakehold-
ers will further enhance drought management efforts. Without these critical interventions,
the pastoral community in the Borana zone will face escalating challenges in adapting to
climate change, potentially jeopardizing its livelihoods and food security. Generally, the
future of water management in the Borana zone relies on a multifaceted approach that
includes constructing new water sources, enhancing existing facilities, and implementing
integrated watershed management.
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