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Abstract:



Ensembles of general circulation model (GCM) integrations yield predictions for meteorological conditions in future months. Such predictions have implicit uncertainty resulting from model structure, parameter uncertainty, and fundamental randomness in the physical system. In this work, we build probabilistic models for long-term forecasts that include the GCM ensemble values as inputs but incorporate statistical correction of GCM biases and different treatments of uncertainty. Specifically, we present, and evaluate against observations, several versions of a probabilistic forecast for gridded air temperature 1 month ahead based on ensemble members of the National Centers for Environmental Prediction (NCEP) Climate Forecast System Version 2 (CFSv2). We compare the forecast performance against a baseline climatology based probabilistic forecast, using average information gain as a skill metric. We find that the error in the CFSv2 output is better represented by the climatological variance than by the distribution of ensemble members because the GCM ensemble sometimes suffers from unrealistically little dispersion. Lack of ensemble spread leads a probabilistic forecast whose variance is based on the ensemble dispersion alone to underperform relative to a baseline probabilistic forecast based only on climatology, even when the ensemble mean is corrected for bias. We also show that a combined regression based model that includes climatology, temperature from recent months, trend, and the GCM ensemble mean yields a probabilistic forecast that outperforms approaches using only past observations or GCM outputs. Improvements in predictive skill from the combined probabilistic forecast vary spatially, with larger gains seen in traditionally hard to predict regions such as the Arctic.
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1. Introduction


General circulation models (GCMs) that represent atmosphere, ocean and land surface processes can be run to make meteorological predictions weeks to months ahead. Although such long-term or seasonal-scale predictions are not very reliable because uncertainties in initial conditions and in model structure get amplified over time, they are still expected to contain useful information because there are sources of predictability, such as the Southern Oscillation, for this timescale. In recent years, there have been a number of efforts to regularly produce ensembles of GCM seasonal predictions that can inform climate-sensitive applications such as agriculture and water resources. Given the limited GCM skill at these timescales, though, much work remains to be done to convert ensemble predictions into well-calibrated, reliable forecasts [1]. A number of research groups have considered different aspects of using statistical methods to generate such forecasts from GCM ensembles, but many of these methods are more commonly used for and better suited to combining multiple GCMs [2,3,4,5,6,7,8,9]. This paper builds on previous work on the statistical calibration of seasonal predictions of a one GCM ensemble in the case where these projections are expressed as probabilities of each climatology tercile [10].



We extend this previous work to the case where a set of discrete ensemble predictions for the future value of a continuous variable of interest (temperature) are available, along with sets of past observations and predictions (or “postdictions” or “hindcasts”, generated for prior time periods by running a current GCM version initialized using an earlier starting point) made using the same ensemble. We use the sets of previous observations and predictions to construct a reliable forecast, expressed as a probability distribution for the future value of the variable. As in our previous work, we concentrate on three aspects of this task: (a) creating probabilistic forecasts that account for possible biases in the mean and dispersion of the GCM ensemble; (b) quantifying the performance of probabilistic forecasts using information theory metrics, notably the information gain from including the GCM projections in the forecast model compared to either a “climatology” forecast model using only the past observations or a slightly more sophisticated but still simple statistical model based on month-to-month persistence in climate anomalies; (c) studying whether we can better account for the relatively large climate trends of recent decades [11,12], which are not necessarily well represented in the GCMs used for seasonal prediction, through simple statistical methods such as giving more recent observations greater weight than older observations in constructing the climatology and forecast probability distribution.




2. Methods


2.1. Data


We considered monthly mean temperatures on a [image: there is no content] global spatial grid as the meteorological variables to be forecast. For this case study comparing different forecast methods, the observations and GCM postdictions considered cover the period February 1984 to January 2009. The GCM outputs represent 1 month ahead seasonal predictions taken from a hindcast archive for the second version of the NCEP Climate Forecast System (CFSv2), a state-of-the-art operational GCM [13]. The ensemble members were initialized from observations up to various days during the beginning of the month previous to the month whose temperature value was to be forecast; for example, most of the September ensemble members are forecasted in August.



While the CFSv2 has 12 ensemble members, we selected the 9 members [image: there is no content] that were present in every month for which the CFSv2 was run. The “observation” temperatures used to calibrate and verify the forecasts were taken from the NCEP CFSv2 reanalysis. Aspects of this hindcast and reanalysis data set have been described and studied elsewhere [14,15,16,17,18,19,20,21].




2.2. Probabilistic Models


We evaluated the skill of the climatology and the forecasts by first assuming that both are normally distributed. We based these models on the average predicted temperature and the spread of the predictions. We used climatology as a baseline by computing the average and spread (μ and σ respectively) of past temperatures. These values were then used to compute a Gaussian pdf of the form:


[image: there is no content]



(1)




where [image: there is no content] is the observation, t is a time index (month and year), l is a spatial index (corresponding to the latitude and longitude of the observation). The μ and σ parameters in the exponential formula for the Gaussian distribution are taken to be space-time dependent. We evaluated the temperature observations, but the methodology is generic to any variable. We explored multiple ways of representing the average and spread, so in some models μ was replaced by the bias-corrected version [image: there is no content] and σ was replaced by a time averaged Root Mean Square Error . These models p are subscripted by either a c for climatology or an f for forecasts. That letter is further subscripted by a number to indicate that different parameters are used for constructing that model. The simplest model, which is based on the μ and σ for the dataset (climatology or hindcasts) is labeled 0, while other numbers indicate either a different μ or different σ. Throughout the paper, the model is referenced by its letter and number.



2.2.1. A First Probabilistic Forecast Model


For each [image: there is no content] grid point and for each time step (month), we have 9 temperature projections (one for each member of the hindcast ensemble) [image: there is no content] from which to produce a forecast distribution. The simplest method to do this is to assume that the hindcasts are normally distributed. Given this naive assumption, the probability density of the hindcast, denoted [image: there is no content], uses the ensemble mean [image: there is no content], at a given forecast time t and location l, for the mean of the forecast normal distribution, and the variance of the hindcasts [image: there is no content] as its variance:


[image: there is no content]



(2)







In order to understand whether or not this is a good probabilistic forecast model, we must first establish an evaluation metric.




2.2.2. Information Gain Over Climatology


Climatology itself can be considered a reasonably effective baseline predictor of monthly mean temperatures because the monthly temperature field does not vary much between years; for example, while the global mean temperature for January is 276 K, the mean inter-annual standard deviation of grid-cell January temperatures averages only 1.5 K. For our baseline climatology model, we take a normal distribution based on the running mean [image: there is no content] and running standard deviation [image: there is no content] of the observations. Although the running statistics suffer from high sampling variability, they are used so that our analysis models real world conditions wherein data is only available as it comes, meaning that January 2008 has no awareness of March 2008. The running statistics are computed as the mean and standard deviation, respectively, of all observations [image: there is no content] occurring in the same month as t for all years prior to t:


[image: there is no content]



(3)






[image: there is no content]



(4)




where [image: there is no content]. This is then used to compute the probability distribution:


[image: there is no content]



(5)







While probability density functions (distributions) may be compared by many metrics, a natural measure for the ability to represent observed values is information gain, which is also known as the Kullback-Leibler divergence [22,23,24]. The Kullback-Leibler divergence was chosen because it can be decomposed into three diagnostically useful components: (1) reliability: conditional bias in the forecast relative to observations; (2) resolution: the forecast’s skill in explaining the observational uncertainty; (3) uncertainty: the initial uncertainty in the observation [25]. Information gain was chosen over the computationally similar ignorance score IGN (itself just the mathematical inverse of IG) because IG is a more robust measure of the same quantity [23,26,27].



To compute the information gain, we first compute the negative log likelihood of the probability of the observed measurement occurring in the distribution constructed from climatology ([image: there is no content]):


[image: there is no content]



(6)







The negative log likelihood described by Equation (6) is also interpreted as a measure of how surprising the observation is with respect to our probabilistic prediction p. We subtract the negative log likelihood of the model being evaluated from the negative log likelihood of the baseline model to measure the information gain:


[image: there is no content]



(7)







We chose the climatology distribution [image: there is no content] as our baseline because it is based solely on observational measurements and so it does not rely on the GCM output. We then evaluated all the other probabilistic models against this baseline by averaging the IG temporally and spatially. A skilled forecast will have, on average, lower NLL than the baseline forecast because it should be less surprised by the observation than climatology, yielding a net positive IG. To ascertain whether the differences in mean IG seen between probabilistic methods are robust to the choice of time interval over which they were tested, we evaluate the significance of differences in mean IG between methods using Student’s t-test on the monthly time series of the difference in mean IG between two methods, with the degrees of freedom adjusted based on the observed lag-1 autocorrelation of the time series [28]. We found that differences of 0.01 bit or more in mean IG were generally significant at the 95% confidence level.



Figure 1 illustrates how the probabilistic models are created and evaluated. The probability density [image: there is no content] is constructed using Equation (2) from the mean and standard deviation of the CSFV2 hindcast predicted values [image: there is no content] at t,l, which are shown under [image: there is no content] as dots. The baseline climatology distribution [image: there is no content] is constructed from the mean and standard deviation of the historical observations [image: there is no content] using Equation (5). The straight line that cuts across the figure is the observed (true) temperature at time t, location l, which in this example is quite far from the mean of the hindcast values [image: there is no content]. Although this example is specific to November 2004 in the equatorial Atlantic ocean, this behavior is typical; with respect to IG, the naive probabilistic forecast method of Equation (2) is not particularly accurate when compared to climatology.


Figure 1. Estimating the skill of models predicting the temperature for November 2004 at a grid point on the equatorial Atlantic ocean (12∘ S, 356∘ E). The probability density [image: there is no content] is a naive normal (Gaussian) distribution constructed using the 9 CFSv2 hindcasts [image: there is no content] at a single point l for the date t; the bias-corrected (mean shifted) version is [image: there is no content]. The historical observations [image: there is no content], restricted to the same calendar month as t, at l are used to construct [image: there is no content]. The bias-corrected mean of the forecasts and the standard deviation of the climatology is used to build [image: there is no content]. The information gain is the difference between [image: there is no content] and [image: there is no content].



[image: Climate 04 00019 g001 1024]








2.3. Improved Probabilistic Models


In the section that follows, we sought to increased the quantifiable skill of the model by accounting for biased predictions and better incorporating the variability of the observed measures.



2.3.1. Bias-Corrected Probabilistic Model


In order to improve the probabilistic forecast presented in Equation (2), we can take into account one well known source of error, GCM prediction bias [17,20,29,30]. In order to remove the bias, we subtract the mean GCM error for the same calendar month over previous years (for the same grid point l) with respect to the observation:


[image: there is no content]



(8)







We replaced [image: there is no content] with [image: there is no content] to obtain a new probabilistic formula:


[image: there is no content]



(9)







While this improved the IG of the probabilistic forecast, there was a spatial pattern of large negative IG in the Antarctic region.



As seen in Figure 2, this localized behavior is largely due to a small ensemble spread but relatively large spread in the actual observations in certain regions of the maps. The poor model performance indicates that the uncertainty of the forecast is not well captured by the spread in the individual ensemble projections and may be better captured by a different measure such as the climatology spread or forecast RMSE.


Figure 2. The deviation in the predicted ensembles is consistently lower than what is shown in both the climatology [image: there is no content] and the error [image: there is no content], as seen in the temporal averages shown in (b–d) and the spatial average over the non-shaded time period in (a). The ensemble spreads tendency towards lower uncertainty is especially evident in the polar regions, which indicates overconfidence in the predictions for those regions; this over-confidence persists even after the forecast has been bias-corrected, as in (d). The shaded period is shown for consistency with the other graphs but is omitted from later calculations.



[image: Climate 04 00019 g002 1024]







2.3.2. Climatological Variance Adjusted Probabilistic Models


Figure 2 illustrates that forecast is sometimes a poor proxy for spread due to overconfidence in highly variable regions. This is also shown in Figure 1, where the bias-corrected forecast [image: there is no content] has a narrower range of potential temperatures than historical observations have recorded for that location. This motivated us to explore the use of climatology spread [image: there is no content] as a proxy for error. The probabilistic model [image: there is no content] is computed as:


[image: there is no content]



(10)




where the climatology standard deviation replaces the use of the spread of the GCM ensemble as the standard deviation σ in the normal distribution of the probabilistic forecast. In Figure 1, the probability of the measured temperature (black line) computed using the [image: there is no content], [image: there is no content] and [image: there is no content] models. Model [image: there is no content] reports the highest likelihood of the temperature occurring, as illustrated by [image: there is no content] (pink dot) being of greater value than [image: there is no content] (cyan dot). By removing the bias and replacing the ensemble uncertainty [image: there is no content] with the climatology standard deviation [image: there is no content], we obtained a probabilistic forecast which usually outperforms the climatology forecast (positive IG).




2.3.3. Mean Adjusted Forecast RMSE Adjusted Probabilistic Models


Since Figure 2d indicated that the mean adjusted forecast [image: there is no content] RMSE is similar to the overall climatology spread, we constructed a model that used the time averaged RMSE as a proxy for uncertainty. We computed the time averaged RMSE as:


[image: there is no content]



(11)







Using this time-averaged RMSE, the probabilistic model [image: there is no content] is computed as:


[image: there is no content]



(12)




where the time averaged root mean squared error is now the standard deviation σ in the normal distribution of the probabilistic forecast. As a time averaged RMSE it is very sensitive in the early parts of the time series, but improves significantly over time.





2.4. Autoregressive Models


The improvement in forecast skill through the incorporation of information from climatology, as described in Section 2.3.1, motivated us to explore the contributions of some of the many input variables the CFSv2 uses to generate a prediction for a point. We were particularly interested in the historical values of physical variables at the grid point l because climatology is derived from those variables. One way to clarify the relevance of this information is to build a simple statistical forecast model, progressively incorporating more of the past observations. Besides giving us a new benchmark against which we can judge the added value of running CFSv2 or similar GCMs for long term forecasting, such statistical models can also give us some indications of which variables are most informative for the future state of the climate system.



We name these statistical forecast models as R (for regression) and use positional subscripts to denote the parameters on which the model is fit. The first subscript c or h indicates the absence or inclusion, respectively, of hindcasts. The second and third subscripts indicate the presence w or absence e of weighting in computing the climatology and regression respectively. This weighting scheme is discussed in Section 2.4.3. These statistical forecast models also yield predictions q, notated as [image: there is no content] when hindcasts are omitted and [image: there is no content] when they are included. We include an r in the error notation to distinguish the statistical computations used for the regression models from the ones discussed in Section 2.2.



2.4.1. Autoregressive Climatology


We consider a very simple linear auto-regressive model which uses data from two and three months prior. We do not use the preceding month’s data because it would not be available for use in a forecast until the end of the month being predicted, but we include prior data so that we can incorporate seasonal trends to some degree. The model first fits a forecast based on a linear combination of the climatology mean and the observations two months and three months prior to the observation being predicted.


[image: there is no content]



(13)




where α, [image: there is no content], and [image: there is no content] are the weights computed using a linear regression that employs observations from previous time-steps [image: there is no content]. We then bias correct the predictions by subtracting the running bias:


[image: there is no content]



(14)







In order to build a probabilistic forecast, we need to estimate its uncertainty, so at a given time t and location l the time averaged distribution of errors is computed as:


[image: there is no content]



(15)







The RMSE represents the historical error and thus is a good proxy for the uncertainty in the forecast. We then use the bias-corrected prediction and the RMSE to construct the probabilistic forecast:


[image: there is no content]



(16)








2.4.2. Combined GCM-Autoregressive Forecast Model


In Section 2.3 we saw that removal of the hindcast bias and replacement of the standard deviation with climatological uncertainty (standard deviation) in the normal distribution results in an improvement of the GCM ensemble based probabilistic forecast. Because combining the hindcasts and climatology yielded a better forecast, we fit a linear combination of the bias-corrected mean hindcasts, the climatology, the 2-month lookback, and the 3-month lookback to test if that will further improve the forecast. Defining γ as the weight of the hindcasts’ contribution to the model, we compute a combined GCM-autoregression forecast with mean:


[image: there is no content]



(17)







This fitting should at least not greatly worsen performance of the forecast compared to the probabilistic model [image: there is no content] described in Section 2.4.1. When the distribution is normal, the IG is essentially the squared error in the forecast mean; therefore fitting predictor coefficients by least squares should reduce the error. The combined model performance should also be at least comparable to that of the probabilistic model because [image: there is no content] is a special case of the regression in which the coefficients are [image: there is no content] and [image: there is no content].



As with the model in Section 2.4.1, we bias correct [image: there is no content]:


[image: there is no content]



(18)




and then take the uncertainty to be the time averaged root mean square error:


[image: there is no content]



(19)







The combined climatology and forecast model is therefore:


[image: there is no content]



(20)







We considered fitting a regression model for an initial portion of the data, e.g., the first 1/3, and applying it to the remainder of the time series, but this gave poor results. There are indications that this is because slowly changing means progressively make the autoregressive statistical forecast worse. The model was therefore modified so that the coefficients would be updated on every new observation, making it an online algorithm ([image: there is no content] and [image: there is no content]).




2.4.3. Auto-Regressive Weights


We considered further modifying the auto-regressive forecast model to better account for climatology trends. To accomplish this, climatology computed using the running average was replaced with climatology computed using an exponentially weighted moving average (EWMA) that more heavily weights recent observations. Weights are applied to the observations as follows:


[image: there is no content]



(21)




wherein 1 is the weight of the most recent observation and λ is:


[image: there is no content]



(22)




where s is the span of the EWMA. We investigated three methods of incorporating EWMA weighting:

	
computing the climatology using EWMA ([image: there is no content], [image: there is no content])



	
updating the weights in the online regression using EWMA ([image: there is no content], [image: there is no content])



	
combining methods 1 and 2 ([image: there is no content], [image: there is no content])








We used a span s of 17 years for EWMA analyses because it gave the highest mean information gain of all the spans we tested, which ranged from 1 to 30 years in increments of 1 year. This is very similar to the optimum EWMA span found in an analysis of station monthly temperature data [12].






3. Results


3.1. Non-Auto-Regressive Probabilistic Models


Information gain is the difference in the negative log likelihood (NLL), as shown in Equation (7). NLL measures the probability of an observation occurring in a distribution, with lower NLL indicating a better probabilistic model. [image: there is no content] was used as the baseline model for all the comparisons. In Figure 3 and Table 1 the models that use ensemble spread as a measure of uncertainty, [image: there is no content] and [image: there is no content] are highly susceptible to seasonal regularly recurring overconfidence. Together with the spatial maps of uncertainty shown in Figure 2 we can pinpoint the errors as occurring in the poles in May. The lower graph in Figure 3 removes the models based on [image: there is no content] to more clearly illustrate the improvements in IG gained through using better proxies for error. These two models, [image: there is no content] and [image: there is no content] , are for the most part statistically indistinguishable from each other, a similarity which can be seen in how close their time series are to each other in Figure 3. Both models show improvement over time, yielding mostly positive IG in the latter part of the timeseries.


Figure 3. The predictive skill of [image: there is no content] is used as the baseline against which all the other models are compared because it is based solely on past observations. The spikes in IG only occur in the models that use [image: there is no content], [image: there is no content] and [image: there is no content] so these models are removed in the lower graph to highlight that the models based on other proxies for uncertainty, [image: there is no content] and [image: there is no content] are not susceptible to these errors and show positive information gain in the later part of the time series. The shaded portion of the time series is omitted from later analysis but is shown here to demonstrate that the IG grows more positive over time.



[image: Climate 04 00019 g003 1024]






Table 1. Gaussian probabilistic models were constructed using the listed parameters for the mean and standard deviation. The IG of the model is computed relative to the baseline model [image: there is no content] and the table reports the IG averaged over space and time between 1999 and 2009. [image: there is no content] and [image: there is no content] are the most skilled models because they have largest positive mean. Models are statistically distinguishable from each other if they differ by at least 0.01 bit at an α level of 0.05 .







	
IG of [image: there is no content] Relative to [image: there is no content]






	
Model

	
Param.

	
Mean

	
Median




	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
- - - -

	
- - - -




	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
–5.602

	
–0.410




	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
–0.858

	
0.151




	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
0.140

	
0.035




	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
0.169

	
0.037










Figure 3 shows that the forecasting skill of the [image: there is no content] model improves over time. This may be because the standard deviation may more accurately capture the forecast uncertainty as more historic data points are added into the computation. Model [image: there is no content] yielded some gains in the tropical Pacific, which are shown in Figure 4b, but overall it did not do well in many of the same regions in which [image: there is no content] is also unskilled. This is indicated by the high RE in Figure 4a across North America, Asia, and Antarctica. The limited IG gains achieved by using a model based on GCM predictions further motivated the development of regression models that, as described in Section 2.4.2, combine both historical data and the GCM predictions.


Figure 4. These maps are the averages of NLL and IG for each grid point from February 1999 to January 2009. Climatology can be used to build a fairly good predictor in the tropical oceans, but falters on most landmasses as shown by the higher NLL in (a). The models [image: there is no content] and [image: there is no content] which incorporate the hindcasts and the climatology mostly do better in regions such as the ocean where [image: there is no content] already does well, but they also show small gains on land, especially in the northern hemisphere. As seen in (b,c), [image: there is no content] does slightly better in the ENSO region but otherwise [image: there is no content] and [image: there is no content] are mostly indistinguishable.



[image: Climate 04 00019 g004 1024]







3.2. Auto-Regressive Models


The various auto-regression based models are very unskilled at the beginning of the time series, as shown in Figure 5, because they overfit the little data they have. However, for the entire evaluation period, Table 2 reports that all the methods perform better than [image: there is no content].


Figure 5. While all the regression based probabilistic forecast models ([image: there is no content][image: there is no content][image: there is no content][image: there is no content][image: there is no content][image: there is no content][image: there is no content][image: there is no content]) have very similar skill, the combined models ([image: there is no content][image: there is no content][image: there is no content][image: there is no content]) are consistently more skilled, especially as the data becomes positive. Each time series is the spatial average of the global NLL at each observation time. The shaded region is not used in further analysis.



[image: Climate 04 00019 g005 1024]






Table 2. Gaussian probabilistic models were constructed using the regression’s predicted value q as the mean. [image: there is no content] or [image: there is no content], for climatology only and forecast inclusive regressions, were used as the standard deviation. The IG of the model is computed relative to the baseline model [image: there is no content] and the table reports the IG averaged over space and time between 1999 and 2009. While [image: there is no content] is the most skilled based on mean and median IG, the scores between the various forecast inclusive models are very similar. Models are statistically distinguishable from each other if the differ by at least 0.01 bit at an α level of 0.05.







	
IG [image: there is no content] Relative to [image: there is no content]






	
Model

	
Hindcasts

	
EWMA Weighted

	
Mean

	
Median




	

	

	
Climatology

	
Regression

	

	




	
[image: there is no content]

	
no

	
no

	
no

	
0.112

	
–0.053




	
[image: there is no content]

	
no

	
yes

	
no

	
0.095

	
–0.084




	
[image: there is no content]

	
no

	
no

	
yes

	
0.095

	
–0.056




	
[image: there is no content]

	
no

	
yes

	
yes

	
0.067

	
–0.074




	
[image: there is no content]

	
yes

	
no

	
no

	
0.200

	
0.005




	
[image: there is no content]

	
yes

	
yes

	
no

	
0.190

	
–0.011




	
[image: there is no content]

	
yes

	
no

	
yes

	
0.151

	
–0.014




	
[image: there is no content]

	
yes

	
yes

	
yes

	
0.137

	
–0.0033










Figure 6a,b show that the auto-regressive models also yield improved skill in some of the regions that climatology does poorly in, specifically North America and Central Asia. Figure 6c shows very strong skill in the tropical Pacific, like all the forecast models, and that that skill has spread to much of the equatorial landmass. The predictions in the Arctic and Antarctic are also not as unskilled as in the other models.


Figure 6. The auto-regressive model yields small improvements on land over the simpler model shown in Figure 4. Figure 6c shows that [image: there is no content] is generally more skilled than [image: there is no content] over land, especially in the ENSO region. While there is a lack of skill in the Arctic and Antarctic, the difference is very small. As with Figure 4, these maps are the temporal average between 1999 and 2009 as that is the period when the IG improves. (a) [image: there is no content]. (b) [image: there is no content]. (c) [image: there is no content].



[image: Climate 04 00019 g006 1024]






Figure 7 shows the coefficients of the forecast auto-regression. While the climatology coefficient appears to contribute the most to the regression, GCM predictions are not very far behind. There also appears to be a trade off wherein the GCM prediction coefficient contributes strongly to regions, such as the tropical Pacific, weakly contributed to by climatology. The 2-month and 3-month lookback coefficients ([image: there is no content] and [image: there is no content] respectively) contribute almost negligibly to the regression, except for a slight peak in the tropical Pacific for [image: there is no content]. Figure 7 indicates that the coefficients remain fairly consistent along the entire later portion of the time series.


Figure 7. (a) shows that, at first, climatology is weighed more heavily (positively) than the forecast coefficient (γ) in (d); (e) illustrates how that contribution wanes over time, replaced by the a stronger contribution from forecast, especially in the ENSO region, in (h). This shift indicates that the improved skill over time shown in (h) is likely due to the added information forecasts provide. The changes in the contributions of the 2-month and 3-month lookbacks are mostly negligible, as seen in the lack of strong visible differences between (b,f) and (c,g).



[image: Climate 04 00019 g007 1024]








4. Discussion


We have introduced and evaluated several probabilistic models for combining GCM ensemble predictions with climatology and autoregression to produce long term meteorological forecasts. We have shown that a probabilistic model based on GCM predictions alone, even when they are corrected for bias, does not outperform a baseline probabilistic model based only on climatology because the GCM ensemble sometimes suffers from unrealistically little dispersion. However, when we integrated the bias-corrected predictions with the standard deviation of the climatology, we obtained a modified probabilistic forecast model which outperformed the baseline. We then examined a set of models which incorporated an autoregressive 2-month and 3-month lookback. When used as a pure statistical model, it is not as effective as a model that incorporates GCM predictions but is more skilled at predicting observations than the plain climatology model. When we combined the GCM projections with the autoregression, we obtained a combined model which is superior to all models considered in the global average. It appears to produce the most improvement near the Equator, at the expense of slightly poorer performance near the poles. We investigated weighting schemes to incorporate trends, but found that they yielded only small further improvement, possibly because of the relatively short time series of observations used. We found that the contribution of the 3-month lookback was quite weak and that further lookback terms do not contribute. We did not consider spatial statistical correlations, but conjecture that they may contribute to a further improved forecast model. Also, note that the GCM ensemble members used here are all from a single GCM (with different initial conditions) and were therefore treated as interchangeable. Multimodel GCM ensembles, such as the North American Multi-Model Ensemble (NMME) [31] facilitate the exploration of incorporating traditional multimodel calibration methods, such as EMOS and BMA [5,6], into the tools introduced here [32]. Multimodel GCMs also offer the additional possibility of investigating differentially weighting projections from different GCMs based on their demonstrated skill through further extensions of these tools.
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